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ABSTRACT 

The use of fixed or scheduled setpoints combined with varying occupancy patterns in buildings 

could lead to spaces being over or under-conditioned, which may lead to significant waste in 

energy consumption. The present study aims to develop a vision-based deep learning method 

for real-time occupancy activity detection and recognition. The method enables predicting and 

generating real-time heat gain data, which can inform building energy management systems and 

heating, ventilation, and air-conditioning (HVAC) controls. A faster region-based convolutional 

neural network was developed, trained and deployed to an artificial intelligence-powered 

camera. For the initial analysis, an experimental test was performed within a selected case study 

building's office space. Average detection accuracy of 92.2% was achieved for all activities. 
Using building energy simulation, the case study building was simulated with both ‘static’ and 

deep learning influenced profiles to assess the potential energy savings that can be achieved. 

The work has shown that the proposed approach can better estimate the occupancy internal heat 

gains for optimising the operations of building HVAC systems.  

KEYWORDS 

Artificial intelligence, deep learning, energy management, occupancy detection, activity detection, 

HVAC system. 

INTRODUCTION AND LITERATURE REVIEW 

The built environment sector accounts for a significant proportion of global energy use and 

energy-related emissions [1]. It is responsible for up to 35% of the total final energy 

consumption and is increasing – fast [2]. Reducing buildings' energy consumption is crucial 

towards meeting the global carbon emission reduction targets and will require innovative 

methods. Major energy consumers in buildings include the heating, ventilation and air-

conditioning (HVAC), hot water, lighting and appliances. While HVAC systems and their 

associated operations are responsible for up to 40% of the total consumption [3]. This is even 

higher in areas with harsh or extreme climates. Enhancing the efficiency or minimising the 

consumption of such systems will go a long way towards developing the low carbon economy 
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and future. Solutions such as occupancy-based controls can achieve significant energy savings 

by eliminating unnecessary energy usage. 

A significant element affecting the usage of these energy consumers is the occupants' behaviour 

[4]. For instance, rooms in offices or lecture theatres are not fully utilised or occupied during 

the day, and in some cases, some rooms are routinely unoccupied. Current standards and 

guidelines such as the ASHRAE 90.1 [5] and ASHRAE 55 [6] suggest a generalised set point 

range and schedule for room heating and cooling during occupied and unoccupied hours. For 

example, during occupied hours, it suggests 22 – 27°C for cooling and 17 – 22°C for heating, 

while during unoccupied hours, it suggests 27 – 30°C for cooling and 14 – 17°C for heating. 

However, according to Papadopoulos [7], these HVAC setpoint configurations must be revised 

when applied to commercial buildings. The use of fixed or scheduled set points combined with 

varying occupancy patterns could lead to rooms frequently being over or under-conditioned. 

This may lead to significant waste in energy consumption [8] which can also impact thermal 

comfort and satisfaction [9]. Delzendeh et al. [10] also suggested that the impact of occupancy 

behaviour has been overlooked in current building energy performance analysis tools. This is 

due to the challenges in modelling the complex and dynamic nature of occupant's patterns, 

influenced by various internal and external, individual and contextual factors. Peng et al. [11] 

collected occupancy data from various offices and commercial buildings and have identified 

that occupancy patterns vary between different office types. Multi-person office spaces 

regularly achieve occupancy rates of over 90%. However, private, single-person offices rarely 

achieve an occupancy rate of over 60%. While equipment or appliances in offices can be kept 

in operations during the entire working day, irrespective of occupancy patterns [12]. The study 

by Chen et al. [13]  highlighted that occupancy behaviour is a major contributing factor to 

discrepancies between the simulated and actual building performance. In current building 

energy simulation (BES) programs, the occupancy information inputs are also static and lack 

diversity, contributing to discrepancies between the predicted and actual building energy 

performance. 

This indicates the need to develop solutions such as demand-driven controls that adapt to 

occupancy patterns in real-time and optimise HVAC operations while also providing 

comfortable conditions [14]. These systems take advantage of occupancy information to reduce 

energy consumption by optimising the scheduling of the HVAC and other building systems 

such as passive ventilation [15] and lighting [16]. Energy can be saved using demand-driven 

solutions by (1) adjusting the setpoints to reduce the temperature difference between the 

outdoor and air-conditioned indoor space and (2) reducing the operation time of the systems.  

The integration of occupancy information into building HVAC operations can lead to 

energy savings [17]. The occupancy detection and monitoring approach proposed by Erickson 

and Cerpa [18] employed a sensor network of cameras within underutilised areas of a building 

and have shown to provide an average 20.0% annual energy savings and 26.5% savings during 

the winter months. The study by Shih [19] highlighted that offline strategies for pre-defined 

control parameters cannot handle all variations of building configurations, particularly the large 

numbers of humans and their various behaviors.  

Information on real-time occupancy patterns is central to the effective development and 

implementation of a demand-driven control strategy for HVAC [20]. Several sensors and 

technologies [21] can be used to measure and monitor real-time occupancy. Nagy et al. [22] 

presented the use of motion sensors to monitor occupancy activity throughout the day. Various 

types of environmental sensors have been employed in buildings for automation and controls, 

temperature and ventilation control, fire detection, and building security systems [23]. 

Wearable-based technologies have been increasingly popular for human detection and activity 

analysis in the indoor environment [24]. Furthermore, Wi-Fi enabled internet of things (IoT) 

devices are increasingly being used for occupancy detection [25]. To some extent, these sensor-

based solutions provide accurate detection of occupancy patterns. Previous works, including 
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[20, 25], have shown these strategies' capabilities in sensing occupancy information through 

the count and location of occupants in spaces and aid demand-driven control systems. 

However, there is limited research on sensing the occupants' actual activities, which can affect 

the indoor environment conditions [26, 27]. The activities of occupants can affect the internal 

heat gains (sensible and latent heat) in spaces directly [26] and indirectly towards other types 

of internal heat gains [27]. The real-time and accurate predictions of the occupants' heat emitted 

with various activity levels can be used to estimate better the actual heating or cooling 

requirements of a space. A potential solution is to use artificial intelligence (AI) based 

techniques such as computer vision and deep learning to detect and recognise occupants' 

activities [28]. 

Literature Gap and Novelty 

Several works [29, 30] have already implemented vision-based deep learning methods to 

identify human activities and have shown to be capable of learning features from new sensor 

data and predicting the associated movement. Most of these studies attempted to improve the 

performance and accuracy of the deep learning model for human presence and detection 

activity classification rather than using the data to seek solutions to minimise unnecessary 

energy loads associated with buildings. Furthermore, no work has attempted to predict the 

associated sensible and latent heat emission from the occupants, which affects the temperature 

and humidity levels in an internal space. Furthermore, limited studies conducted tests of vision-

based deep learning methods in an actual office environment and assessed its performance in 

energy savings and indoor environment quality. Finally, the heat emission profiles generated 

can also be used as input for building energy simulation (BES) tools, increasing the reliability 

of results since unpredictability of occupant behaviour is one of the parameters that create 

difficulties for BES. 

Aims and Objectives 

The present work aims to address the research gaps by using a vision-based deep learning 

method that enables the real-time detection and recognition of multiple occupants’ activities 

within office building spaces. A faster region-based convolutional neural network (Faster R-

CNN) was used to enable training of a classification model which was deployed to a camera 

for detecting occupancy activities. This method can identify multiple occupants within an 

indoor space and the activities performed by each. Validation of the developed deep learning 

model is conducted by using a set of testing data, and the accuracy and suitability for live detection 

were also evaluated. Experiments are carried out within a case study office room to test the 

proposed approach's capabilities and accuracy. Using BES, the case study building was 

simulated with both ‘static’ and deep learning influenced profiles (DLIP) to assess the potential 

energy savings that can be achieved.  

METHOD 

The following section presents an overview of the research method with the corresponding 

details for each stage of the proposed framework to develop a vision-based method for 

detecting and recognising occupancy activities. 

Overview of Research Method 

Figure 1 presents an overview of the research method. It consists of three main sections. 

Section 1 (highlighted in green) is the formation and application of a deep learning model for 

occupancy activity detection and recognition. The model based on a convolutional neural 

network (CNN) was trained, validated and deployed to an AI-powered camera. Section 2 is the 

formation of the deep learning influenced profiles (DLIP) using the live occupancy detection 
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within the office space. The DLIP can be fed into a building energy management system and 

controls of the building heating, ventilation and air-conditioning (HVAC) system to make 

adjustments based on the actual building conditions while minimising unnecessary loads. 

However, for the initial analysis (yellow boxes), the DLIP profiles were inputted into building 

energy simulation to identify potential reductions in building energy consumption and changes 

within the indoor environment (Section 3).  Further details of the steps described in Figure 1 

are discussed in the next sub-sections. 

 

 
Figure 1. Overview of the proposed framework of a vision-based deep learning method to detect and 

recognise occupancy activities 

 

 

Deep Learning Method 

Deep learning is a class of machine learning technique utilised to implement object 

classification, speech recognition, vehicle and pedestrian detection with high accuracy. 

Compared with other shallow learning methods, deep learning techniques can lead to better 

performance in detecting and recognising objects. Many studies [31, 32] showed that deep 

learning models with a convolutional neural network (CNN) based architecture could perform 

computer vision tasks with high accuracy. Convolutional Neural Network (CNN) is a deep 

learning network class that is extensively used for image-based classification and recognition 

applications. Compared with other machine learning-based classification techniques, CNN 

requires input data in the form of videos or images and can directly feed the data in its original 

form into the framework model. Instead of performing complex pre-processing stages, the data 

can be used to derive directly and extract the acquired features from the selected parts of an 

image [33]. Therefore, CNN algorithm is selected in this study.  

In general, the CNN architecture consists of a feedforward network with the input data such 

as an image is processed through the network. The feature of the data from input images is first 

extracted within the convolutional layers, and then the spatial volume of the input data is 

reduced in the pooling layer. The fully connected (FC) layer is then used to classify images 

between different categories by training. A fully connected layer involves weights, biases, and 

neurons. The output layer then delivers the outcome of the calculations and extractions. For 

these layers, the configuration is presented in the form of groups, indicated as stacked modules 

to present the structure of a deep learning model. The rectified linear unit (ReLU) layer consists 

of advantages due to its simple function and sparse features, which can minimise training 

duration. Furthermore, the SoftMax layer provides further constraint to aid the training of the 

model. Both the ReLU and softmax layers are essential to building CNN architectures for 
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various applications. This includes vision-based applications such as object detection [34] and 

face recognition [35] and also data analysis and other programmatic marketing solutions [36].  

As detailed in [37, 38], the convolutional layers are the first layer to exact features from the 

input data. It plays a central role in the architecture by utilising techniques to convolve the input 

data (image). This performs the stages of learning the feature representations while extracting 

without manual work. Neurons located within each of the convolutional layers are arranged into 

feature maps. This enables convolution to preserve the relationship between pixels by learning 

image features using small squares of input data through a mathematical operation. It takes the 

image matrix and a filter or kernel and passes the result to the next layer through convolutional 

kernels stride over the whole image, pixel by pixel, to create 3-direction volumes (height, width 

and depth) of the feature maps. 

Then, the ReLU layer introduces nonlinearity into the output neuron. It is an activation 

function defined as a piecewise linear function that is used to enable direct output when the input 

was positive or otherwise as a zero output when a negative input is received. According to LeCun, 

[39], ReLU has become a default activation function for many types of neural networks because 

a model that uses it is easier to train and often achieves better performance. Through this, the 

volume size will not be affected while the nonlinear properties of the decision function will be 

enhanced during this process, resulting in an enrichment of the expressions of an image. 

Subsequently, the pooling layers enables the reduction in the spatial dimensions of the data (width, 

height) of the feature maps when the images are too large. For this, the most common spatial 

pooling type of Max Pooling was selected as it outperforms on processing image datasets [40]. It 

effectively selects the largest element within each receptive field from left to right, so the output's 

spatial size is reduced.  

Since several convolutional and pooling layers are formed in stacks to enable greater amounts 

of feature extraction, the fully connected (FC) layers follow on from these layers and interpret the 

feature representations and perform the function of high-level reasoning to flatten the matrix into 

a vector form. Combining the features together, the FC layers connect every neuron from one 

layer to every neuron in another layer. This forms the model, and along with the activation 

function of SoftMax, it enables the classification of the input images, which generates the 

classified output results of one of the following occupancy activities.  

The exceptional image classification performance of CNN [41], along with its flexibility 

[42] and popularity within the industry [43] influenced the selection of CNN over other neural 

network techniques when developing the vision-based occupancy detection and recognition 

solution. Derived from the understanding of the CNN, Figure 2 presents the CNN based deep 

learning model configured for the training of the model for occupancy activity detection and 

recognition. Further discussion of model configuration is outlined within the following sub-

sections. 

Since this approach is designed to be useful for wider applications to solve other problems 

related to occupant detection within buildings [44], the deep learning model (Figure 2) was 

developed and tested following the steps given in Figure 3 to provide a vision-based solution. 

Part 1 consists of the process of data collection and model training. Images of various types of 

occupancy activities are collected and processed through manual labelling of the images. 

Through the analysis of various types of deep learning models, the most suitable type of 

convolutional neural network-based deep learning model was selected. This was configured 

specifically for this type of detection approach to provide the model outlined in Figure 2. Next, 

the model was trained and deployed to an AI-based camera to allow the real-time detection and 

recognition of occupancy activities, as indicated in Part 2 of the workflow.  
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Figure 2. Convolutional Neural Network (CNN) based deep learning model configured for the 

training of the model for occupancy activity detection and recognition 

 

 

 
Figure 3. The workflow of the deep learning method for model development and application 

 

 

Data Preparation: Datasets and Pre-Processing.  As indicated in Figure 3, the initial stage of 

the development of the deep learning detection model was to collect relevant input data. Data 

in the form of images were selected to create large training and testing datasets. For the initial 

study, the selected data were limited to the most common activities performed in office spaces. 

The number of images within the datasets followed the rule of thumb and suggestion given by 

Ng [45]. Table 1 presents the number of images used within the initial development and the 

images categories based on the selected activity responses. Further development of the method 

will be carried out in future works by building larger datasets with greater responses and 

predictions.  

All images obtained were pre-processed to the desired format before enabling the data to 

become ready for model training. The images were manually labelled using the software 

LabelImg [46]. This is an open-source graphical image annotation tool which allows images 

to be labelled with bounding boxes to specifically identify the regions of best interest. For some 

cases, multiple numbers of labels were assigned to each image as this was highly dependent on 

each image. Hence, the number of labels given in Table 1 was greater than the number of 

images used. Figure 4 shows an example of the images located within the training and testing 
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datasets of various occupancy activities and how the bounding boxes were assigned around the 

specific region of interest for each image. 
 

Table 1. The number of images and labels per category 

 
 Number of Images Number of Labels 

Activity Training Testing Total Training Testing Total 

None 100 20 120 108 25 133 

Napping 100 20 120 100 20 120 

Sitting 100 20 120 146 26 172 

Standing 100 20 120 131 26 157 

Walking 100 20 120 177 35 212 

Total 500 100  662 132  

 

 

 
Figure 4. Example images of various occupancy activities used within the image dataset for 

training and testing, which were obtained from a relevant keyword search in Google Images; the 

images were prepared via the labelling of the region of interest (ROI) of each image 

 

 

Convolutional Neural Network-Based Model Selection and Configuration.  As discussed, the 

Convolutional Neural Networks (CNN) was selected as the main type of network architecture. 

CNN is designed to perform modelling for computer vision-related tasks (recognition, 

classification and detection) with image datasets [45] and have been extensively used for deep 

learning object detection projects.  

Following the selection of CNN as a suitable model, the model requires further 

configuration to provide an applicable framework for multiple occupancy activity detections. 

Suitable deep learning framework platforms that were previously used to form effective 

detection models were explored. Many deep learning framework libraries and platforms such 

as TensorFlow, PyTorch and Keras are highly popular and is recommended according to 

Google Trends (as of February 2020) [47]. Along with the comparison of deep learning 

frameworks by Fonnegra et al. [48], it suggests that TensorFlow is one of the most employed 
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tools used for deep learning due to its capabilities, compatibility, speed, and support it provides. 

TensorFlow is an end-to-end open-source machine learning platform [49], it provides an 

efficient implementation of advanced machine learning algorithms along with the ability to test 

novel configurations of deep learning algorithms and to demonstrate the robustness.  According 

to previous works, many choose TensorFlow as the desired platform for the development of 

solutions for building-related applications. This includes [50] where TensorFlow has been used 

as a platform to train the desired deep learning model. Vázquez-Canteli et al. [51] fused 

TensorFlow technique with BES to develop an intelligent energy management system for smart 

cities and Jo and Yoon [52] used TensorFlow to establish a smart home energy efficiency 

model.  

Additionally, the provision of pre-existing open-source deep learning-based models by 

TensorFlow, such as the CNN TensorFlow object detection application programming interface 

(API) [53] enabled researchers to use this framework as the base configuration for detection-

based applications. This includes the applications in [53-55] which effectively fine-tuned the 

model to improve accuracy and to adapt for the research desired detection purposes. This object 

detection model is part of the TensorFlow pre-defined model’s repository; it consists of 

incorporating high levels API’s and includes the ability to localise and identify multiple objects 

in a single image. Therefore, the TensorFlow platform with the CNN TensorFlow object 

detection API was employed for the development of a suitable model for occupancy activity 

detection.   

To train the convolutional neural network model, the general process requires defining the 

network architecture layers and training options. Through the influence of existing research which 

utilised the CNN TensorFlow Object detection API, a transfer learning approach was incorporated 

into the model configuration. Transfer learning is a learning method that leverages the knowledge 

learned from a source task to improve learning in a related but different target task [56]. This 

approach enables the development of an accurate occupancy detection model within a reduced 

network training time and requiring fewer amounts of input data, but still provides adequate results 

with high detection and recognition rates. For this occupancy detection model, the network 

architecture layers were not defined from scratch. Instead, the TensorFlow detection model zoo 

[57] provided a collection of detection models pre-trained on various large-scale detection-based 

datasets specifically designed for a wide range of machine-learning research. For object detection, 

R-CNN [58], SSD-MobileNet [59] and YOLO [60] algorithms were most commonly used. 

However, if computational time and resource is the priority, SSD would be a better decision. If 

accuracy is not the priority but the least computational time, is required then YOLO can be 

employed. Furthermore, the required size of the detection object can have an impact on the 

performance of the algorithms. According to the study by Alganci et al. [61] which evaluated the 

impact of object size on the detection accuracy, YOLO achieved the lowest accuracy for any 

object size in comparison to SSD and R-CNN respectively. Whereas, Faster R-CNN achieved the 

highest accuracy. The performance achieved for the three types of algorithms widens as object 

sizes increases. Therefore, to avoid results being dependent on object sizes which is important 

when detecting occupants, the R-CNN was selected in the present work.  

With the substantial benefits of leveraging pre-trained models through a versatile transfer 

learning prediction and feature extraction approach, an R-CNN model from the TensorFlow 

detection model’s zoo directory [57] was selected. The TensorFlow detection model’s zoo 

consisted of various forms of networks pretrained with the Common Objects in Context (COCO) 

dataset [62]. These pretrained models are based on the most popular types of R-CNN frameworks 

used for object detection. Generally, R-CNN works by proposing bounding-box object region of 

interest (ROI) within the input image and uses CNN to extract regions from the image as output 

classification. As compared with R-CNN, Fast R-CNN runs faster as the convolution operation is 

performed only once for each image rather than feeding a number of region proposals to the CNN 

every time. Both R-CNN and Fast R-CNN employ selective search to look for the region 
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proposals. With regards to this, it commends an effect on the model training computational time 

and the performance of the network. Faster R-CNN uses the region proposal network (RPN) 

module as the attention mechanism instead of using selective search to learn the region proposals 

[53]. Ren et al. [34] introduced the Faster R-CNN algorithm. This similar to Fast R-CNN 

whereby, it enables input image to feed into the convolution layers and generate a convolutional 

feature map. Then, the region proposals are predicted by using an RPN layer and reshaped by an 

ROI pooling layer. The image within the proposed region is then detected by the pooling layer. 

Overall, all algorithms are suitable to enhance the performance of the network. However, 

according to the comparison of different CNN-based object detection algorithms [34], Faster R-

CNN is much faster than other algorithms, which can be implemented for live object detection 

[63]. Furthermore, to improve such Faster R-CNN model, the inception module can aid towards 

the reduction of the required computational time [64] and improves the utilisation of the 

computing resources inside the network to achieve a higher accuracy [53]. Inception network is 

presented in many forms. This includes, Inception V1 – V4 [64, 65] and also Inception ResNet 

[66]. Each version is an iterative improvement of the architecture of the previous one.  

In this study, the COCO-trained model of Faster R-CNN (With Inception V2) was selected to 

develop the model for the real-time detection and recognition of occupancy activities. This was 

chosen due to the performance of Inception V2 and its widespread use for the development of 

object detections models such as in [34, 66]. Alamsyah and Fachrurrozi [67] used the Faster R-

CNN with Inception V2 for the detection of fingertips. Accurate detections of up to 90 – 94% 

were achieved across all results, including small variations between fingertips. Hence, this 

suggests the capabilities of Faster R-CNN with Inception V2 to be able to carry out detection tasks 

even with small changes. Furthermore, the Faster-R-CNN with Inception V2 trained under the 

COCO dataset achieved an average speed of 58 ms and a mean average precision (mAP) of 28 

for detecting various objects from over 90 object categories [57]. Hence, the model summarised 

in Figure 2, with the configured architecture and pipeline of the selected CNN model was used 

for occupancy activity detection. Inputs from the CNN TensorFlow Object Detection API and the 

Faster R-CNN with Inception V2 model were also identified. 

Performance evaluation of the trained model is achieved by using the test images assigned 

from the test dataset (Table 1). A confusion matrix was used to summarise the detection results 

of the proposed algorithm, with true positive (TP) representing the correctly identified activity, 

true negative (TN) representing the correct detection of a different activity, false positive (FP), 

also known as predicted positive to represent the number of instances that the predicted activity 

was not true or another activity performed was wrongly identified as this specific activity. 

Furthermore, false negative (FN) represented the number of instances that the activity was 

predicted to be something else, but it actually wasn’t.  

Based on the created confusion matrix, evaluation metrics including, accuracy precision and 

recall, are used to evaluate the performance of the object detection algorithm. This is defined in 

eq. (1) – (3), respectively. Accuracy defines the proportion of the total number of predictions that 

were correct, while precision can be seen as a measure of exactness or quality. Additionally, recall 

is a measure of completeness or quantity. However, it is not sufficient to quantify the detection 

performance when precision and recall were separately used. With the consideration of a balance 

between precision and recall, the evaluation metric, F1 score was formed by combining these two 

measures and expressed as eq. (4).  

 

 

 

(1) 

 



Tien, P. W., Wei, S.,et al. 
Occupancy Heat Gain Detection and Prediction… 

Year 2021 
Volume 9, Issue 3, 1080378 

 

Journal of Sustainable Development of Energy, Water and Environment Systems 10 

 

(2) 

 

 
(3) 

 

 

(4) 

 

Despite the selection of a robust data-driven algorithm, difficulties in terms of accurate 

identification between several occupant activities could occur. To overcome these, continuous 

improvement and development of the deep learning network is necessary to provide a sufficiently 

accurate occupancy activity detection for demand-driven controls. Another drawback of using a 

vision-based method is that it could interfere with privacy concerns. The present approach will 

address this by developing a system that only output heat emission profiles instead of actual 

occupancy information, which can then be inputted into a control system. Further details are given 

within the next sections.  

   Application of the Deep Learning Model 

This section presents the methods required for the application of the deep learning model. 

It includes the details of the selected case study building and experimental setup, along with 

the process of live detection and recognition to form the real-time Deep Learning Influenced 

Profiles (DLIP).  

 

Case Study Building and Experiment Setup.  An office space located on the first floor of the 

Sustainable Research Building at the University Park Campus, University of Nottingham, UK 

(Figure 5a) was used to perform the initial live occupancy activity detection using the developed 

deep learning model. This case study building was also used for the initial performance analysis 

where the office space was modelled using BES tool IESVE [68] to further assess the potential 

of this framework and the impact towards building energy loads. 

Figure 5c presents the floor plan of the 1st floor of the building, with the desired office 

space highlighted. The selected office space consists of a floor area of 39 m2 with internal 

dimensions of 9.24 m × 4.23 m and a floor to ceiling height of 2.5 m. Figure 5b presents the 

experimental setup with the ‘detection camera’ located on one side of the room to enable the 

detection of occupancy situated on the opposite side. The camera used to generate results for this 

present study was a 1080p camera with a wide 90 degree field of view. This was connected to a 

laptop which was operated using the trained deep learning model. 
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Figure 5. Sustainable Research Building at University Park Campus, University of Nottingham, 

UK: photo (a); experimental set up (b); 1st floor plan (c) 

 

 

The building operates between the hours of 08:00 to 18:00. This formed the selected hours to 

perform the experimental occupancy activity detection using the deep learning model. The 

building is equipped with natural ventilation (manually operated), along with a simple air-

conditioning system to provide an internal set point temperature maintained at 21 °C. The 

Nottingham, UK weather data was inputted into the building energy simulation model. Based on 

CIBSE Guide A [69], standard occupancy profiles with a sensible and latent heat gain of 70 

W/person and 45 W/person was assigned. For the air exchanges, the infiltration rate value was 

set to 0.1 air changes per hour.  

 

Live Detection and Deep Learning Influenced Profile (DLIP) Formation.  Using the developed 

deep learning model, a typical cold period was selected to perform the live occupancy activity 

detection and recognition to assess the capabilities of the method. A range of activities was 

performed by the occupants. This includes the selected desired detection response types of 

walking, standing, sitting, and none for when no occupants are present. During the real-time 

detection, the output data for each of the detected occupants were used to form the occupancy heat 

emission profiles (DLIP). The profile consists of values corresponding to each detected activity 

and coupled with the heat emission data-based value for an average adult performing the different 

activities within an office space given in Table 2.  
 

Table 2. Selected heat emission rates of occupant performing activities within an office [69] 
 Rate of Heat Emission 

Activity Total (W) Sensible (W) Latent (W) 

None 0 0 0 

Napping 105 70 35 

Sitting 115 75 40 

Standing 130 75 55 

Walking 145 75 70 

 

Figure 6 shows an example of the process of DLIP formation for the live detection of 

occupancy activities within the select office space. It presents several snapshots of the recorded 

frame indicating the detected occupancy activity condition and the percentage of prediction 
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accuracy. A DLIP was formed for each of the detections. This suggests a total of four DLIP 

would be created for this individual experiment conducted.   

As indicated in Figure 5b, the selected office space was designed to accommodate eleven 

occupants as eleven office workstations were present. However, for the selected experimental test 

day, only three occupants were present for the majority of the time. This was achieved based on 

the number of DLIP generated. Effectively, this method not only recognises the activities 

performed by occupants in forming the desired DLIP but can also obtain data on the number of 

occupants present in the desired detection space. This could be useful for other types of 

applications. Further discussion of the detection and recognition of each detection A, B, C and 

D, along with the detection of each specific activity, is analysed within the corresponding 

results section. 

 

 
Figure 6. Process of forming the deep learning influenced profile from the application of the deep 

learning approach for occupancy activity detection and recognition 

 

Building Energy Simulation.  A building energy simulation tool was used to model the office 

space with the conditions given above. Building energy simulation consists of using a dynamic 

thermal simulation of the heat transfer processes between a modelled building and its 

microclimate. Heat transfer processes of conduction, convection, and radiation between each 

building fabric were modelled and included in the modelling of air exchange and heat gains 

within and around the building's selected thermal space. The equations are fully detailed in our 

previous work [70, 71]. The DLIP building occupancy profile was compared with three other 

profiles; the actual observation profile, and two conventional fixed schedule profiles, Typical 

Office Profiles 1 and 2. A comparison between the results obtained from these different occupancy 

profiles enables the analysis of the potential impact of the DLIP profile on the building energy 

demand. The Actual Observation Profile was formed for the assessment of the accuracy of the 

DLIP. This profile represents the true occupancy activity performed during the experimental time, 

enabling verification of the results obtained for the DLIP.  

Table 3 summarises the simulation cases and the associated occupancy and building profiles 

used for the simulation and analysis. The different variations in occupancy profiles were created 
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to compare the DLIP to evaluate the impact of the use of control strategies, informed by real-time 

multiple occupancy activity detections, on building energy performance. Case 1 and 2, follows 

current building operational systems based on using static or fixed control setpoints. Typical office 

1 assumes that the occupants are sitting most of the time during the selected period (sedentary 

activity), and Typical office 2 assumes that the occupants are walking most of the time during the 

selected period. For the simulation cases, maximum sensible and latent occupancy gains of 75 W 

and 70 W were assigned. This enables representing all activities performed within the office space, 

with walking being the maximum at 100%, followed by standing at 79%, sitting at 64%, napping 

at 50%, and none activities would present 0%. Furthermore, occupancy density of one was 

assigned to each of the DLIP and actual observation profiles. However, for the typical office 

profiles, it was acknowledged that a maximum number of occupants present within the room on 

the selected day would be three, so this was assigned as the maximum occupancy density for these 

cases.  

 
Table 3. Summary of the occupancy and building energy modelling profiles 

 

Name 
Profile 

Description 

Occupancy 
Heating Ventilation 

Internal Gains [69] 

Max. 

Sensible 

Gain 

(W/person) 

Max. Latent 

Gain 

(W/person) 

Standard 

constant 

heating with 

the setpoint 

at 21 °C 

 

Standard 

constant 

ventilation 

following a 

typical office 

schedule 

Typical 

Office 1 

Constant sitting 

between 09:00 

– 18:00 

70 45 

Typical 

Office 2 

Constant 

walking 

between 09:00 

– 18:00 

75 70 

Actual 

Observation 

Based on actual 

observation of 

Detection A, B, 

C, D 

75 70 

Deep 

Learning 

Influenced 

Based on DLIP 

Detection A, B, 

C, D 

75 70 

 

RESULTS AND DISCUSSION 

This section presents the initial model training results and the analysis of the experimental 

results. The section evaluates the application of the real-time occupancy activity detection 

using the vision-based deep learning approach and the formation of the Deep Learning 

Influenced Profiles for each of the detected occupants. As detailed in Figure 1, the generated 

DLIP was intended to inform a demand-driven HVAC control system to optimise building 

energy performance and conditions. However, prior to the development of such a system, an 

initial analysis of the feasibility of this method was carried out using BES analysis.    

Deep Learning Model Training Results and Performance Evaluation 

The initial deep learning model was trained using the graphics processing unit (GPU) 

NVIDIA GeForce GTX 1080. The training approximately took 6 hours 45 minutes for the total 

losses to reach the level indicated in Figure 7. These training results were obtained using 

TensorBoard during the training process. 
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Figure 7. Deep learning model training results using the Faster-R-CNN with InceptionV2 model over 

the 6 hours 45 minutes training duration: total loss against the number of training steps (a); total 

classification loss against the number of steps (b) 

 

 

Using the Faster-R-CNN with InceptionV2 as the training model, the results provided 

training for 102,194 steps from a loss of 3.44 to a minimum of 0.01007. Observations made 

for this proposed approach can be used to compare the performance of different modifications 

applied in future works. This includes the input of more training and test data and to variations 

of the type of models for training. Greater amounts of images will be implemented for testing 

purposes as the framework is developed further. 

Based on the images assigned to the test dataset (Table 1), Figure 8 presents an example 

of the confusion matrix. It shows that majority of the images were correctly classified, showing 

the suitability of the model for occupancy activity classification. Furthermore, Table 4 presents 

the model performance based on evaluation in terms of the different evaluation metrics. 

Overall, it suggests that the classification for ‘none’ (when the occupant is absent) achieved 

the highest performance and ‘standing’ achieved the lowest. This perhaps is due to the 

difficulty in recognising the occupancy body form and shape, as it may be confused with the 

activities of both standing and walking. Nonetheless, an average accuracy of 97.09% was 

achieved and an F1 Score of 0.9270.  

Since this model performance evaluation is based on using still test images assigned in the 

given testing dataset, therefore, the following experimental detection and recognition results 

can provide more valuable analysis as occupants progressively move, so the detection 

evaluation is based on a more realistic scenario, including the background conditions, 

environment setting and realistic occupants behaviour and actions.  
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Figure 8. Example of the confusion matrix for occupancy activity classification model 

 

 
Table 4. Model performance based on the application of images from the testing dataset 

 
Class Activity Accuracy Precision Recall F1 Score 

1 Napping 96.88% 0.9474 0.9000 0.9231 

2 None 98.94% 0.9524 1.000 0.9758 

3 Sitting 95.88% 0.8636 0.9500 0.9048 

4 Standing 95.88% 0.9444 0.8500 0.8947 

5 Walking 97.89% 0.9500 0.9500 0.9367 

Average for all activities 97.09% 0.9316 0.9300 0.9270 

 

Experimental Detection and Recognition Results 

 

Figure 9 presents example snapshots at various times of the day of the experimental test of 

the detection and recognition of occupants within the selected office space. Based on the set up 

indicated in Figure 5b, it shows the ability of the proposed approach to detect and recognise 

occupants. Up to four output detection bounding boxes were present during this experimental 

detection, and the accuracy for each detection was also presented above the output bounding 

boxes. As given by the snapshots in Figure 9, these bounding boxes' size and shape varied 

between each detection interval. It depends on the size of the detected space, the distance of 

the camera with the detected person, and it is also dependent on the occupant's activity. In 

practice, these images will not be saved within the system but real-time data (for example, 1 

minute intervals) of occupancy number and activities (heat gains) in the form of numerical and 

text-based is outputted by the system.  
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Figure 9. Example snapshots at various times of the day of the experimental test of the detection and 

recognition of occupants within an office space using the deep learning occupancy activity detection 

approach 

 

Figure 10 presents the overall detection performance of the proposed approach during 

the experimental test.  The results showed that the approach provided correct detections 

97.32% of the time, 1.98% of the time to achieve incorrect detections and subsequently, 

0.70% of the time with no detections. It should be noted that the occupants were asked to 

carry out their typical office tasks. Overall, this indicates that the selected model provides 

accurate detections within the desired office space.  
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Figure 10. Overall detection performance during the experimental test, identifying the percentage of 

time achieving correct, incorrect and no detections 

 

 

Figure 11 shows the results of the detection performances for a) each of the bounding 

boxes within the camera detection frame and b) for each of the selected response outcome of 

detected activities. Figure 11a suggests an average detection accuracy of 92.20% for all 

activities. The highest detection accuracy (98.88%) was achieved for Detection D, and the 

lowest was observed for Detection A with an accuracy of 87.29%. To provide a detailed 

analysis of the detection performance, the detections frames from the live detection were 

identified as Detection A, B, C and D. The results also indicate the ability to identify specific 

activities which were performed by each occupant during the detection period. However, 

detection performance cannot be solely be based on the comparison between the results for 

Detections A – D as not all activities were performed by the detected occupants. Further tests 

are necessary to fully assess its performance. 

Figure 11b presents the detection performance based on the selected activities. Individual 

detection accuracies for each activity includes walking with 95.83%, standing 87.02%, sitting 

97.22% and none (when no occupant is present) achieved an accuracy of 88.13%. This shows 

the capabilities of the deep learning model to recognise the differences between the 

corresponding human poses for each specific activity. There is some similarity between the 

action of standing and walking than there is for sitting. Therefore, this suggests the reason to 

achieve higher accuracy for sitting as compared to standing and walking.  

This section highlights the importance of achieving high accuracy for all activity detections 

to enable an effective detection approach for building HVAC system controls. Since the 

following accuracy achieved were only based on small sample size, further model training and 

testing should be performed to achieve higher detection accuracy for the given occupancy 

activities to enable further applications of multiple occupancy detection and recognition of a 

greater number of occupants within different types of office space environments. 

 



Tien, P. W., Wei, S.,et al. 
Occupancy Heat Gain Detection and Prediction… 

Year 2021 
Volume 9, Issue 3, 1080378 

 

Journal of Sustainable Development of Energy, Water and Environment Systems 18 

 

 
Figure 11. Detection performance based on: each of the bounding boxes within the camera detection 

frame of Detection A, B, C and D (a); each of the selected response outcomes of detected activities; 

walking, standing, sitting and none (b) 

 

 

Figure 12a presents the number of detected occupants in the office space within the office 

space during the test. Figure 12b shows the number of detected and recognised occupants’ 

activities during the test. This provides a better understanding of the occupancy patterns 

compared to the data shown in Figure 12a, which highlights the potential of the proposed 

approach.  
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Figure 12. The number of detected occupants in the select office space (a); the number of detected 

occupants performing each activity during the one-day detection period using the deep learning 

occupancy detection model (b) 

 
 

Deep Learning Influenced Profile Results  

Following the approach detailed in Figure 1, the data obtained from the live detection and 

recognition of the occupants were used to generate the DLIP. Figure 13 presents the formed 

DLIP from the experimental activity detection test results. The formation of the profile 

corresponds to the process indicated in Figure 6, with the activities of Detections A – D. The 

initial results showed that the DLIP could enable the detection of various activities and provide 

the identification of times when there are an increase and decrease of activities performed 

resulting in variation of occupancy heat gains. The DLIP were plotted against the Actual 

Observation Profile. This defines the ‘actual’ occupancy activities performed, which assess the 

accuracy of the DLIPs.  From the comparison of the DLIP and the Actual Observation Profile, 

an average error of 0.04% was achieved. This indicates the DLIPs would still alternate between 

the different activities due to the occurrence of prediction error, which suggests the 

opportunities for further improvements to enhance the accuracy, reliability and stability of the 

detection model. 
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Figure 13. Generated Deep Learning Influenced Profile (DLIP) based on the occupancy activity 

detection results with the corresponding actual observation for the selected one-day detection 
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Figure 14 presents two static occupancy profiles typically used in HVAC system 

operations and in building energy simulations to assume the occupancy patterns in building 

spaces. Both occupancy profiles were formed assuming that there was constant occupancy in 

the building spaces and fixed values for occupant internal heat gains. Typical Office 1 

represents the average heat gain by a sitting person (115 W). Typical Office Profile 2 represents 

the average heat gain by a walking person (145 W). During the detection period, there was a 

37.38% and 50.25% difference between the Typical Office Profiles 1 and 2 and the Actual 

Profile. Hence, a large discrepancy between the true occupancy activities performed within the 

building spaces and the scheduled occupancy profiles can be expected.  

 

 
Figure 14. Two static occupancy profiles; Typical Office 1 (sitting) and Typical Office 2 

(walking) 
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Building Energy Performance Analysis 

The following section provides an analysis of the impact of the proposed deep 

learning activity detection approach on building energy consumption during a typical 

winter working day. The generated DLIPs are compared with the static scheduled profiles 

in Figure 14.  

Figure 15 presents the building energy simulation (BES) results of the occupancy 

sensible and latent gains. Typical office 1 and 2 results followed the assigned static 

scheduled occupancy profiles (Figure 14). Based on the simulated conditions, it can be 

observed that the typical office profiles over predicted the occupancy heat gains within 

the room.  

The DLIP results provided a better estimation of the occupancy internal heat gains. 

The occupancy heat gains were high from 09:00 – 10:00 when there was an increase in 

activity movement in the space. Lower occupancy heat gains were observed between 

13:15 – 13:30 as most of the occupants had left the office space during this time. This 

shows the potential of the deep learning method in providing a more accurate estimation 

of the internal heat gains. Additionally, Figure 15b shows the predicted latent heat gains. 

The accurate prediction of the latent heat gains is important for the estimation of the 

required dehumidification load and can further reduce unnecessary energy usage. This is 

important for buildings located in tropical or humid climates as it can lead to heavy usage 

of air-conditioning systems. The method should be further evaluated by incorporating it 

into buildings with different climates.  

 

 

 
Figure 15. Occupancy heat gains within the office space during the detection period of 09:00 – 

18:00: sensible heat gains (a); latent heat gains (b) 

 

(a) 
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Figure 16 presents a summary of the total sensible and latent occupancy heat gains. 

Based on the simulated conditions, the occupancy heat gains predicted by using the 

Typical Office 1 and 2 profiles suggests an overestimation by 22.9% and 54.9% as 

compared with the Actual Observations. This is equivalent to 83.2 kWh and 199.8 kWh. 

In comparison, there was a 1.13% (4.1 kWh) difference between the DLIP method and 

Actual Observations.  

 

 
Figure 16. Comparison of the total occupancy heat gains achieved using the deep learning 

approach in comparison with the different typical occupancy schedules 

 

 

Figure 17 shows the heating demand of the office space during a typical cold period 

in the UK, comparing the simulation results of the BES model with different occupancy 

profiles. Figure 17a presents the heating load across time, and Figure 17b compares the 

total heating loads for the selected day. The predicted heating load for the model with the 

DLIP profile was 375.5 kW and was very similar as compared to the Actual Observation 

profile. While the model with Typical Office 1 and 2 profiles had a heating load of 372.0 

kW and 371.8 kW. As expected, the DLIP and actual heat gains in the space were lower 

than static profiles, which assumed constant activities in the space, and hence the heating 

requirement will be higher in order to provide comfortable indoor conditions. 
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Figure 17. Heating load across time (a); total heating load for a selected typical cold period 

based on the assignment of the different forms of occupancy profiles – static profiles of Typical 

Office 1 and 2, ‘true’ Actual Observation and the use of the deep lear ning activity detection 

approach (b) 

 

CONCLUSION  

The study develops a deep learning vision-based activity detection and recognition 

approach to enable the generation of real-time data. The data can inform building energy 

management systems and controls of an HVAC system to make adjustments based on the 

actual building conditions while minimising unnecessary loads. For the real-time 

detection and recognition of the common occupancy activities within an office space, a 

faster region-based convolutional neural network (Faster R-CNN) was developed, trained 

and deployed towards an AI-powered camera. 

(a) 
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For the initial analysis, an experimental test was performed within an office space of 

a selected case study building. The detection provided correct detections for the majority 

of the time (97.32%). Average detection accuracy of 92.20% was achieved for all given 

activities. Higher accuracy was achieved for sitting (97.22%), as compared to standing 

(87.02%) and walking (95.83%). This is due to the similarity between the action of 

standing and walking. Hence, it is important to further develop the model and enhance 

accuracy for all activity detections and enable the provision of an effective occupancy 

detection approach for demand-driven systems.  

The deep learning detection approach provides real-time data which can be used to 

generate a Deep Learning Influenced Profile (DLIP). As compared with the actual 

observation of the occupancy activities performed, a difference of 0.0362% was observed 

between actual and DLIP. Furthermore, results suggest that the use of static or scheduled 

occupancy profiles currently used in most building HVAC systems operations and in 

building energy modelling and simulations presents an over or underestimation of the 

occupancy heat gains. Based on the initial BES results and set conditions, a difference of 

up to 55% was observed between DLIP and static occupancy heat gain profiles, this is 

equivalent to 8.33 kW.   

LIMITATIONS AND FUTURE WORKS 

Occupancy behaviour and actions are unpredictable, so the results achieved in this 

present study cannot be entirely used for all buildings and office spaces. Since the 

detection results were only based on a selected period within a small office space and a 

limited number of occupants, a series of tests within different types of buildings would 

be conducted in future studies to verify the feasibility of the approach in a diverse range 

of indoor environments. Furthermore, factors such as the position of cameras and the 

room environmental conditions, including obstruction and lighting conditions, would 

have an effect on the detection accuracy. Hence, the impact of these will be further 

investigated via the consideration in seeking solutions to improve the model and to adapt 

with all environmental settings to provide an effective approach used in various building 

spaces.  Moreover, continuous development towards the formation of the most effective 

occupancy detection method will be conducted. This includes the increase in the number 

of images located within the model’s image datasets, changes towards the model 

configuration for training purposes and along with tests applied with the performance of 

various models selected for training. Moreover, other object detection models used for 

training would be explored and compared with the current model to provide greater 

insights on selecting and developing a proposed detection method for effective building 

energy management and optimisation.  
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NOMENCLATURE 

Abbreviations 

AI Artificial Intelligence 

API Application Programming Interface 

BES Building Energy Simulation 
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COCO Common Objects in Context 

CNN Convolutional Neural Network 

DLIP Deep Learning Influenced Profile 

FC Fully Connected 

FN False Negative 

FP False Positive 

GPU Graphics Processing Unit 

HVAC Heating, Ventilation and Air-Conditioning 

IoT Internet of Things 

PIR Passive Infrared 

R-CNN Region-based Convolutional Neural Network 

ReLU Rectified Linear Unit 

ROI Region of Interest 

SSD Single Shot Detector 

TN True Negative 

TP True Positive 

UK United Kingdom  
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