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ABSTRACT 

Water and energy are two pivotal areas for future sustainable development, with complex 
linkages existing between the two sectors. These linkages require special attention in the 
context of the energy transition. Against this background, this paper analyses the role of 
water availability in the development of solar thermal and photovoltaic power plants for 
the case of the Drâa Valley in southern Morocco. Located in a semi-arid to arid 
mountainous area, the Drâa Valley faces high water stress – a situation expected to 
worsen due to climate change. At the same time, the region has one of the greatest 
potentials for solar energy in the world. To examine whether limited water availability 
could accelerate or delay the implementation of solar thermal and photovoltaic power 
plants, this paper compares regional water availability and demand in the Drâa Valley for 
different scenarios, paying particular attention to potential socio-economic development 
pathways. The Water Evaluation and Planning System software is applied to allocate the 
water resources in the study region. The water supply is modelled under the 
Representative Concentration Pathway 8.5 climate scenario, while the water demand for 
the Drâa Valley is modelled for a combination of three socio-economic and two energy 
scenarios. The climate scenario describes a significant decrease in water availability by 
2050, while the socio-economic and energy scenarios show an increase in water demand. 
The results demonstrate that during a sequence of dry years the reservoirs water 
availability is reduced and shortages in water supply can result in high levels of unmet 
demand. If this situation occurs, oasis farming, water for drinking and energy production 
could compete directly with each other for water resources. The energy scenarios indicate 
that the use of dry cooling technologies in concentrated solar power and photovoltaic 
hybrid systems could be one option for reducing competition for the scarce water 
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resources in the region. However, given that energy generation accounts for only a small 
share of the regional water demand, the results also suggest that socio-economic demand 
reduction, especially in the agricultural sector, for example by reducing the cultivated 
area, will most likely become necessary. 

KEYWORDS 

Water evaluation and planning, Water demand modelling, Hybrid concentrated solar 

power-photovoltaic systems, Scenario, Socio-economic development, Morocco. 

INTRODUCTION 

Concentrated Solar Power (CSP) is a promising renewable energy technology with 
the potential to become mainstream, like wind, hydro and Photovoltaic (PV) technologies 
[1]. Although, compared to an installed solar PV capacity of 300 GW the installed 
capacity of CSP worldwide is still low with 4.8 GW in 2016, but the International Energy 
Agency (IEA) expects that the capacities will be doubled by 2022 [2]. As consulted by 
Gauché et al. [3] or Brand et al. [4], CSP technology combined with thermal storage has 
the ability to become dispatchable, enabling to store solar energy during the day and to 
deliver electricity during the night compared to other technologies. Furthermore, thermal 
energy storage systems permit a flexible operation at high efficiencies and capacity 
factors while having the lowest storage costs as shown by Trieb et al. [5] who analysed 
the efficiencies and capacity factors of the CSP technology, by DLR [6] which likewise 
focused on innovative techniques for power generation and by experts for solar thermal 
electricity [7]. However, a key challenge for the development of CSP technology is its 
high level of water consumption compared to other renewable energy technologies [8]. 

Water consumption is particularly relevant in arid to semi-arid regions like 
Souss-Massa-Drâa and Tata in southern Morocco. On the plus side, however, these areas 
are characterised by high Direct Normal Irradiation (DNI) conditions that exceed  
2,400 kWh/m2 annually making them highly suitable for the implementation of CSP 
plants [9]. Morocco’s CSP potential is estimated to amount to 20,000 TWh/y [10]. 
According to the Moroccan Ministry of Energy, Mines, Water and Environment [11] and 
official policy papers [12], CSP has been identified as a promising element in Morocco’s 
ambitious strategy to increase its renewable share in the electricity mix from 8.7% in 
2012 to 42% by 2020 and 52% by 2030, to achieve a ‘low-carbon and climate change 
resilient development’ [13]. Renewable energy technologies will also help to meet the 
country’s increasing electricity demand (16 TWh in 2002 and 31 TWh in 2012 [13]), 
caused by a growing population and continued industrial development. Being an 
intermittent technology, solar energy technology only produces electricity during 
sunshine hours. To cover the country’s peak demand hours, large storage systems such as 
molten salt can ensure the electricity supply. CSP with thermal storage is especially 
suitable to provide energy during the country’s peak demand in the evenings and the 
annual peak, which has changed from winter peak to a summer peak due to air cooling 
demands according to the energy policy analysis conducted by IEA [13], the background 
paper of Morocco elaborated by Schinke et al. [12] and by the Moroccan Agency for 
Solar Energy (MASEN) [14]. Yet, despite these advantages the high water demand and 
the higher costs compared to PV lead to the question, if, to what extent and in which 
combination CSP can be implemented at specific sites in Morocco. According to some 
experts, the combination of PV and Solar Thermal Energy (STE) is the clear solution to 
provide base load in most days of the year [7]. 

According to the Moroccan Solar Plan (MSP), launched in 2009, MASEN plans to 
implement a sufficient number of large-scale utility solar complexes to produce  
2,000 MW solar energy by 2020 [15]. One of the project sites is Akka Ighane, located in 
the region of Tata, where a 600 MW solar facility (NOOR Tata) is planned as stated by 
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MASEN [14], the German Chamber of Industry and Commerce Abroad (AHK) [16] and 
the Moroccan-German Energy Partnership (PAREMA) [17]. As it is sited in one of the 
regions of greatest water scarcity in Morocco, the linkages between energy generation 
and water resources need to be carefully considered in the development of the NOOR 
Tata project. This paper therefore addresses the question how different solar technology 
development pathways can influence the sustainability in regards to water resources in 
the region. 

To date, a number of studies have addressed water consumption in the energy sector 
using an integrated approach in an attempt to find potential solutions by coupling the 
power and water generation sectors. Agrawal et al. [18], for example, analysed Long-range 
Energy Alternatives Planning System and Water Evaluation and Planning System 
(LEAP-WEAP) software climate change scenarios by forecasting water consumption and 
Greenhouse Gas (GHG) emissions from the power sector in Canada, while Valenzuela  

et al. [19] studied the integration of CSP and PV hybrid solar systems and seawater 
desalination in Chile and Bazilian et al. [20] presented a modelling framework that 
addresses the nexus with a focus on developing countries. Likewise, the literature has 
analysed water systems in arid to semi-arid mountainous regions in the Middle East and 
North Africa. Johannsen et al. [21] analysed the future of water supply and demand in the 
Middle Drâa Valley under the conditions of climate change and land use change, while 
Karmaoui et al. [22] applied a multidisciplinary approach to assess environmental 
vulnerability in the Upper Drâa Valley and Ben Salem et al. [23] modelled the Ziz basin in 
south-eastern Morocco under various water allocation scenarios. Droogers et al. [24] 
demonstrated that water shortages are mainly attributed to socio-economic factors, while 
López-Gunn et al. [25] found that water-saving measures can lead to rebound effects and 
increase the overall local water consumption. Yet, what is, however, still missing are 
integrated assessments that address the question of renewable energy development options 
and water resources in arid regions, which also take into account the potential 
socio-economic development pathways. This is especially critical as more and more 
renewable energy projects are deployed in water-scarce regions. This paper addresses this 
research gap by discussing potential technical configurations for NOOR Tata, considering 
the most sustainable development path regarding water resources for the region.  

The analysis of these types of complex systems, combining energy, hydrological, 
cultural and socio-economic aspects, requires an appropriate system model. WEAP 
software developed by the Stockholm Environment Institute is such a model, that has 
been used successfully for the simulation of climate, land use, population growth change 
and different management strategies as shown by Amin et al. [26] who applied the 
WEAP model to the Upper Indus Basin and by Rochdane et al. [27] who studied the 
Rheraya Watershed in Morocco. In this paper, the WEAP software is used to model 
different socio-economic development scenarios in combination with different energy 
technology options under the worst-case climate change scenario Representative 
Concentration Pathway (RCP) 8.5. The objective of this paper is to study the impact of 
climate change on the water availability and water demand in the Drâa Valley under 
different socio-economic and energy scenarios to see how adequate energy system 
configurations or changes in crop shares and better irrigation techniques could positively 
influence the local water system. The results may rise awareness of the water-energy 
demand and supply relationship among decision makers, thereby contributing to a 
sustainable development in southern Morocco. 

METHODS 

Scenario modelling has become a state-of-the-art tool to properly assess 
environmental issues that include social, technological, economic and demographic 
changes [28]. A scenario describes a possible future situation of a complex system with 
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different development pathways [29]. Scenarios can combine qualitative and quantitative 
analyses. This research makes use of scenarios to describe the potential developments of 
the water supply and demand in the Drâa Valley. By combining expert interviews and a 
modelling tool, qualitative and quantitative results are generated.  

In this paper, WEAP is used as an allocation tool for modelling future water supply 
and demand scenarios under the development of renewable energies. WEAP is an 
integrated tool that helps in water resources planning and supports management 
decision-making strategies [30]. Its integrated approach makes it possible to simulate 
water demand and supply for a specific region under certain assumptions, such as, e.g., 
climate change. WEAP can address demand-side patterns such as water use, efficiencies 
and consumption for energy generation, and combine these with the supply-side such as 
groundwater and reservoir availability, water runoff, climate and water management 
priorities. The energy production and its water consumption have to be added to the 
model exogenously. To calculate the energy production of the CSP plant, the following 
equation has been used [3]:  

 
� = � × � × �  (1)

 
where E is energy (kWh/y), I is irradiation (kWh/m2y), A is effective aperture area (m2) 
and η is overall efficiency. 

To calculate the PV energy production, eq. (2) has been used [31]:  
 

� =  
� × 	

� × 

 (2)

 
where E is energy (kWh/y), P is power (kW), G is global irradiation (kWh/m2y),  
I is irradiation at Standard Test Conditions (STC) (kW/m2) and Q is quality factor. 

The WEAP model is a useful tool for water modelling purposes, however, it must be 
considered that it has some limitations [26]. Lack in accuracy is encountered for the 
groundwater budgeting, the linkage between other models such as MODFLOW to 
WEAP could help to obtain certain quantitative results [21]. The applied discharge cycle 
approach is subject to uncertainties, but offers the advantage of a simple application that 
corresponds to the scope of the work presented here. WEAP shows as well a limiting 
function in the water-energy-forecast, because important parameters such as, e.g., 
efficiencies, specification in the dry cooling technologies, capacity factors cannot be 
taken into consideration. Thus, the study results regarding the water consumption in 
NOOR Tata are bonded with high uncertainties. A solution presents the combination of 
results from energy models such as System Advisor Model (SAM) from National 
Renewable Energy Laboratory (NREL) or ColSimCSP (Fraunhofer in-house tool) to 
allow more accuracy. Due to time constraints and limited access to these tools, the 
application of them could not be used for the present study purpose. However, despite 
these uncertainties, which exist in all approaches modelling the future, the results allow a 
more profound understanding of possible developments and potential critical trends 
associated with them.  

STUDY AREA 

The Drâa catchment comprises an area of about 34,609 km2 in the south east of 
Morocco  [32]. Figure 1 shows the administrative context of the Drâa catchment showing 
the city of Ouarzazate, Akka Ighane in the province of Tata, the Tiouine and Mansour 
Eddhabi dam and the oases along the Wadi Drâa {own Geographic Information System 
(GIS) creation – data based on [33-35]}. The Drâa catchment is classified as an arid and 
hot desert climate zone [36]. Precipitation is erratic, however, heavy rainfalls typical of 
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desert and steppe climates occasionally occur [37]. The actual evapotranspiration (ET0) 
sums up to 1,700 mm/y [38]. Akka Ighane, the proposed site for NOOR Tata located in 
the southern province of Tata, is characterised by an arid and hot climate with high levels 
of irradiation [9]. Figures 2a-c show climate diagrams of Ouarzazate (mean annual 
temperature of 22.3 °C and mean annual precipitation of 58 mm), Zagora (mean annual 
temperature of 22.2 °C and mean annual precipitation of 46 mm) and Tata (mean annual 
temperature of 23 °C and mean annual precipitation of 42 mm). DNI in Tata with daily 
average values of 6.7 kWh/m2 and Global Horizontal Irradiation (GHI) with daily 
average values of 5.9 kWh/m2 (2008) are shown in Figures 2d-e [9, 39]. Water 
availability is strongly dependent on the snow-covered High Atlas mountains [37], where 
the perennial river Wadi Dades originates, the river converges at the reservoir Mansour 
Eddhabi with the periodic river Wadi Ouarzazate into the river Wadi Drâa [36].  
The hydrology in the Drâa catchment is controlled by ‘lâchers’ (releases) of the Mansour 
Eddhabi dam, feeding the agricultural sites at the six oases of Mezguita, Tinzouline, 
Ternata, Fezouata, Ktaoua and Mhamid [37]. As the Mansour Eddhabi dam loses 0.7% of 
its storage capacity per year compared to its initial capacity in 1972 (583 million m3), its 
actual capacity is currently around 390 million m3 [40]. Due to strong siltation and high 
evaporation losses, an additional dam, the Tiouine dam, with a storage capacity of  
270 million m3 was built and has been in operation since 2015. The Tiouine dam mainly 
provides the city of Ouarzazate with drinking water, but also supplies water for 
agricultural irrigation in the region as well [40].  

 

 
(a) (b) 

 
Figure 1. Administrative context of the Drâa catchment (a) and system graph of the Drâa 

catchment in WEAP (b) 
 

The Middle Drâa Valley has a population of 306,905 and about 113,197 people live in 
the city of Ouarzazate [41]. The water availability per capita in the Drâa Valley is around 
360 m3/y, which is significantly lower than the national average of 700 m3/y [42].  
The Drâa Valley and its southern oases are economically marginalised [28].  
Economic activities rely mainly on agriculture and farming, the only other industry in the 
region apart from tourism is mining [43]. Farmers in the oases cultivate crops such as 
wheat, barley, date palms, alfalfa, melons, henna and vegetables, 26,118 ha are irrigated 
area [21, 37, 44]. 

The cultivation of crops depends heavily on water availability from the Mansour 
Eddhabi dam. In years of drought, farmers use mostly groundwater as compensation for 
surface water irrigation. This has resulted in a drop of the groundwater table and has 
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caused the water quality to decline due to salinization [45]. Livestock farming consists of 
cattle, sheeps, goats and camels which serve mostly for self-consumption [46].  
Tourism attracts 411,232 visitors per year (2010) and is economically important for the 
region [46]. 

 

 

 

 

 

 
 

Figure 2. Climate diagram: Ouarzazate (a); Zagora (b); Tata (c); DNI in Tata (d) and  
GHI in Tata (e) 
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SCENARIO INITIALIZATIONS AND MODELLING 

In this research, scenarios are applied to describe the potential developments of the 
water supply and demand in the Drâa Valley. The scenarios have been generated by: 
combining expert interviews to generate qualitative storylines and a WEAP model that 
simulates the impacts of certain driving forces under the assumptions of the given 
storylines that results in quantitative responses.  

To support the development of the scenarios narratives a total of 10 expert interviews 
have been conducted that had a semi-structured form. The experts are relevant 
stakeholders from the water and energy sector or work for development or research 
institutions in Morocco and Germany. A representative from the province of Tata was 
also interviewed to identify strategic development pathways on the political level. 
Some information was also gathered through informal background talks during a 
two-month research stay in Morocco.  

The WEAP model baseline scenario comprises the years 1984-2011, which is the 
current account year. From the baseline scenario, three main scenarios for the period from 
2012-2050 are constructed. The scenarios include different socio-economic changes under 
the assumption of climate change and the development of renewable energy (Figure 3). In 
the following, the different scenario components are described in detail. 

 

 
 

Figure 3. Scenario overview for this research study [Mansour Eddhabi Dam (MED)] 

Climate scenario 

The model refers to the assumption of climate change according to RCP 8.5 adopted 
by the Intergovernmental Panel on Climate Change (IPCC) in the fifth Assessment 
Report (AR5). The RCP describes the GHG concentration in the atmosphere in 
accordance with possible anthropogenic changes in the future. RCP 8.5 is the worst-case 
scenario and it assumes a steady rise of GHG emissions until 2100 and a radiative force 
of 8.5 W/m2. According to RCP 8.5, under regional extremes it is assumed that the study 
region will be characterised by a temperature increase of 1.8 °C and a reduction in 
precipitation of 12% by 2050 compared to the base year 2010 [47]. In the model, the 
statistical analysis shows that by 2050 the region is characterized by more extremes.  
Less normal years will occur, instead dry and very dry years will increase with unusual 
short wet periods.  

Socio-economic scenarios 

Three socio-economic scenarios have been adapted from the Moroccan case study of 
the Wuppertal Institute for Climate, Environment and Energy (WANDEL) project [48] 
and then adjusted based on the evaluation of the expert interviews. Agricultural 
development, demographic and social changes, economic and political transformations 
are considered in the different scenarios. Table 1 summarises the characteristics of the 
socio-economic scenarios. 
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Table 1. Summary of the socio-economic scenarios 
 

Topic S1 – Business as Usual S2 ‒ Economic Growth First S3 – Growing Sustainability 

Population 
Urban: 2.25% increase  
Rural: 0.45% decrease 

Urban: 3% increase 
Rural: 1% increase 

Urban: 3% increase 
Rural: 1% increase 

Agriculture 
Cultivated area remains  

the same 
Cultivated area:  

2% increase 
Cultivated area remains  

the same 

Livestock 
farming 

Annual decrease: 0.25% Annual decrease: 2.5% Annual decrease: 0.5% 

Irrigation 
efficiency 

Irrigation efficiency remains 
constant at 65% 

Irrigation efficiency increases 
up to 85% 

Irrigation efficiency increases 
up to 95% 

Reservoir 
siltation 

Storage capacity:  
0.7% decrease 

Storage capacity:  
1.5% decrease 

Storage capacity:  
0.5% decrease 

 
Scenario 1: Business as Usual.  Scenario 1 (S1), Business as Usual, describes the 

current socio-economic situation of the Drâa Valley and assumes it will remain constant 
in the future. As work is scarce, there is constant migration. Many people continue to live 
off money sent from family members who live abroad. The cities remain as areas of 
population concentration where the population continues to grow, whereas in the oases 
the population declines. People’s behaviour and awareness of water issues does not 
change significantly according to Agueniou [49] and Dahan and Grijsen [50].  
The tourism sector is concentrated in a few areas and hence, water exploitation remains 
high and uncontrolled [51]. With respect to agricultural development, the cultivated areas 
remain constant until water scarcity limits their expansion. The selection of cash crops 
leads to low water productivity (Figure 4a). As farmers continue to use groundwater for 
irrigation and the number of groundwater pumps increases moderately, the water quality 
– which is already low – continues to deteriorate. The irrigation techniques remain the 
same and, due to a lack of financial opportunities, the efficiency does not change. 
Livestock farming level, which is analysed as well by FAO [52] and Gleitsman et al. 
[53], decreases reducing alternative income generating activities and food security. 
Supportive policies and programmes do exist, but are not accessible to the majority. 
Reasons for this include a lack of funding, unresolved land right questions and a lack of 
technical know-how. Regional plans continue and the storage volume of the reservoirs 
continues to decrease at the same rate. 

 
Scenario 2: Economic Growth First.  In contrast to S1, Scenario 2 (S2), Economic 

Growth First, describes a situation of a strong, but unsustainable economic growth.  
The government and regional authorities invest in supportive programmes where the cash 
crop production and the tourism sector are prioritised. Due to increased employment 
opportunities, migration reduces and the rural areas experience a low level of steady 
growth. The urban areas continue to grow. The cultivation of cash crops leads to higher 
income for farmers. As a result, multiplier effects such as the services sector start to 
develop. Higher incomes lead to lifestyle changes, which in turn lead to higher water 
consumption per capita. Tourism continues to reach its peak in both the urban and oases 
areas. Water consumption in the tourism sector is high. The agricultural areas increase 
until water scarcity limits their expansion. The extension of drip irrigation is 
implemented, resulting in higher irrigation efficiencies. The crop share favours 
water-intensive cash crops for export, such as watermelons and dates (Figure 4b).  
This means that the water productivity increases, but the rapid exploitation of 
groundwater resources also grows significantly. In addition, the groundwater salinity 
levels become very high, leading in the long term to decreased yields. Livestock farming 
decreases, because the cash crop market generates more income. The storage volume of 
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the reservoirs decreases faster than in S1, because regional funds now invest more in soil 
activities that favour the cash crop production rather than in siltation prevention. 

 
Scenario 3: Growing Sustainability.  Scenario 3 (S3), Growing Sustainability, 

describes a scenario that emphasises the valorisation of the local culture and regional 
heritage. It assumes that the governmental strategy creates programmes and funds to 
protect the oases and forests. New initiatives boost the productivity, and the region is 
characterised by less migration due to improved living conditions and information 
centres. The agricultural sector focuses less on water-intensive crops (Figure 4c) and the 
government introduces laws for the mandatory introduction of efficient irrigation 
techniques. Livestock becomes an integrated part of farming, animals provide fertilizer in 
form of manure. The concept of sustainability becomes an important lifestyle component 
with the result that water consumption is decoupled from lifestyle changes and remains 
stable. Water saving measures are an element of a strong resources management strategy, 
which enhances the water quality in households and in the hotel industry. The tourism 
sector embraces eco-friendly tourism focusing more on environmentally-sensitive 
tourists who come to the region to visit, e.g., the solar power plants NOOR.  
The sedimentation of the reservoir decreases less than in the other two scenarios, because 
policies invest strategically into sedimentation removal such as, e.g., hydrosuction [54] 
or inflated dams.  

 

  

 
 

Figure 4. The crop share of the different socio-economic scenarios: S1 (a); S2 (b) and S3 (c) 

Energy scenarios 

The two energy scenarios: Hybrid CSP-PV system, and PV system – describe 
hypothetical developments in the study catchment. Different technical configuration 
options are examined and analysed. 
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Hybrid CSP-PV system.  The hybrid CSP-PV system designed for NOOR Tata 
consists of a 180 MW CSP and 420 MW PV power plant. According to MASEN, future 
CSP projects in Morocco are obliged to use air-cooled technologies, owing to lessons 
learnt from NOORo Ouarzazate and the water scarcity in Morocco. Hence, the design of 
the CSP plant uses an indirect dry cooling system (Heller system). The design opts for a 
solar tower, as the power block has higher efficiencies and lower specific water 
consumption (m3/kWh) than parabolic trough technologies. According to experts, it also 
has advantageous life cycle costs compared to other CSP technologies. 

As the DNI for Tata is 2,488 kWh/m2 (in 2008) [9], by applying the eq. (1) the annual 
energy production of NOOR Tata CSP is 788 GWh. The overall efficiency for this 
configuration is set to 20% considering thermal storage. The PV power plant produces 
around 1,313 GWh annually, according to eq. (2). It is assumed that NOOR Tata PV uses 
polycrystalline silicon modules with an efficiency of 18% [55]. 

 
PV system.  The PV system energy scenario assumes that NOOR Tata will have a 

capacity of 600 MW, consisting solely of a PV complex. The same modules and 
efficiencies are used as in the hybrid system scenario. In this configuration, the PV power 
plant produces with 2,171 kWh/m2 of GHI (in 2008) [9] 1,875 GWh annually. 

Model input data 

The WEAP schematic is based on the imported shapefile that has been generated in 
ArcGIS. Products from SRTM 90m Digital Elevation Model have been projected and 
masked over the Drâa catchment in southern Morocco [33-35]. The WEAP model 
consists of seven demand sites for Ouarzazate city and other households in the oases, six 
agricultural and husbandry sites in the oases and two solar complexes – NOORo 
Ouarzazate (active from 2016 on) and NOOR Tata (active from 2020 on). Seven main 
crop types are farmed in the oases. The water is supplied by the upstream reservoirs of 
Tiouine and Mansour Eddhabi and six aquifers at the oasis sites. The six oasis household 
sites are solely supplied by the aquifers, whereas the city of Ouarzazate is exclusively 
supplied by the reservoirs. The solar power plant NOORo Ouarzazate is supplied by the 
Mansour Eddhabi dam. NOOR Tata is supplied for different scenarios either by the 
Mansour Eddhabi or the Tiouine dam. It is assumed that all the water is consumed by the 
demand sites and does not return into the system. The simulations are run on a monthly 
basis. The current account year is 2011 and the historical dataset from which the 
scenarios are created is from 1984-2011. 

 
Climate data.  Daily temperature and precipitation data between 1980-2018 for the 

site of Zagora has been taken from NASA’s MERRA 2 Re-Analysis (Modern-Era 
Retrospective analysis for Research and Application) with a spatial resolution of 50 km 
[39]. According to RCP 8.5 [47], compared to the base year 2010 by 2050 the 
temperature will increase by 1.8 °C and precipitation will decrease by 12% for the region 
of south Morocco which was analyzed as well by De Jong et al. [32] and Busche [36]. 
The data for long-term mean precipitation has been calculated for 2030 and 2050 and 
then interpolated in WEAP. By applying the Water-Year-Method embedded in the 
WEAP software [30], a statistical analysis of precipitation data has been carried out to 
identify the sequence of dry and wet years. The same climate scenario is applied to all 
socio-economic and energy scenarios.  

It must be considered that MERRA 2 is a global reanalysis product that leads to lower 
climate data accuracies for the study region in this paper.  

 
Households.  Population data has been obtained from Haut Commissariat au Plan 

(HCP) [41]. The data has been extrapolated in a linear manner until 2050. The annual 
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households water demand is defined per capita as 20 litres per day in rural areas and  
50 litres per day in urban areas [21]. 

 
Agriculture and irrigation.  A total irrigated area of 26,118 ha distributed across the six 

oases has been simulated (Figure 5) [46]. Seven different crop types – wheat, barley, 
alfalfa, henna, vegetables, melons and dates – are planted on the agricultural sites. The 
crop factors (Kc values) are taken from Busche [36] and FAO [56].  

The irrigation efficiency in the current account year is 65%. According to experts, the 
Drâa Valley uses in big extension flood irrigation. 35% of the irrigated water cannot be 
used by the crops and evaporates. In WEAP, the transmission links from the river to the 
oases represent the irrigation channels and the links from the groundwater nodes to the 
oases represent the household water supply. The flow requirements reflect the oases in 
which the oases receive irrigation water. Mhamid, as the last oasis, has top priority and 
consequently Mezguita, as the first oasis, has the last priority. 

 

 
 

Figure 5. Agricultural area by crop type and six different oases [21] 
 

Hydrologic parameters.  As a baseline serves historical data from 1984-2011 provided 
by Agence du Basin Hydraulique (ABH), Ouarzazate [40] and University of Bonn 
(IMPETUS project) [28] on river discharge, groundwater resources, reservoir inflow, 
reservoir evaporation, reservoir volume and dam capacity. The data was used on a 
monthly basis as a cycle projection until 2050 by assuming a discharge reduction of 20% 
[57] and an increase in reservoir evaporation of 6%. The reference ETo was taken from 
the Food and Agriculture Organization’s (FAO) Wapor [38]. By using the 
Blaney-Criddle-Method [56], the future increase in ETo could be defined as 6% in 2050 
compared to the base year 2010. For simplicity reasons and missing data all catchments 
are assumed to have the same climate data. For all scenarios the yearly groundwater 
recharge is set by a reduction of 1% as a consequence of climate change [58].  

The reservoir capacity decreases in all scenarios (Figure 6). Compared to a storage 
capacity in 1972 of 560 million m3, the Mansour Eddhabi dam will have by 2050 in 
Scenario 1 (Business as Usual) a capacity of 316 million m3, in Scenario 2 (Economic 
Growth First) 216 million m3 and in Scenario 3 (Growing Sustainability) 347 million m3 

(parameters based on [43, 54, 59, 60]). To guarantee drinking water supply a minimum 
threshold of 35 million m3 is assumed in all scenarios [21]. The Tiouine dam, which 
started its operation in 2015, has an initial storage capacity of 270 million m3, by 2050 
this decreases in Scenario 1 (Business as Usual) to 211 million m3, in Scenario 2 
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(Economic Growth First) to 159 million m3 and in Scenario 3 (Growing Sustainability) to 
226 million m3. 

 

 

 
 

Figure 6. Reservoir storage capacity by number of years: Mansour Eddhabi dam 1972-2050 (a) 
and Tiouine dam 2015-2050 (b) 

 
Energy parameters.  Two power plant demand sites are integrated into WEAP. 

MASEN’s solar complex NOORo (Ouarzazate) consists of four power plants: NOORo I 
and II use parabolic troughs, NOORo III uses a solar tower and NOORo IV is a PV 
complex. The power plant’s capacity is 580 MW. NOORo comes into operation in 2016 
and is linked to the Mansour Eddhabi dam, which supplies the power plant with 2.19 
million m3 of water annually for cooling and cleaning purposes according to MASEN’s 
[61] and Capitals 5’s [55] information.  

The configuration of NOOR Tata is still not defined and the supply source is also in 
the evaluation phase. The model is based on two possible configurations and two supply 
sources. The configurations assumed are: a hybrid CSP-PV system with 180 MW CSP 
and 420 MW PV capacity and a 600 MW PV complex. The supply sources assumed are: 
the Mansour Eddhabi dam and the Tiouine dam. For both power plants, the supply 
priority for the energy production comes after drinking water (top priority) and irrigation 
(second priority). 

RESULTS AND DISCUSSION 

The results section has been separated into five parts: reservoir and groundwater 
storage, water demand in the oases, households and for potential solar energy system 
NOOR Tata and the unmet water demand in the oases, households and in NOOR Tata.  
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Reservoir and groundwater storage 

The graph in Figure 7a shows the accumulated monthly storage volume of both 
reservoirs by scenario. The graph shows a general negative trend, which fits with 
assumptions made about changing precipitation patterns, discharge reductions and 
sedimentation in the reservoirs. Although, less precipitation is expected in the future, the 
variability of precipitation will be more extreme [24].  

In the first model decade 2011-2020, the reservoirs’ storage is low to empty in the first 
half – for a simulated drought – and refills after two very unusually wet years. By end of 
the second model decade (2021-2030) the reservoir’s storage is again low to empty due to a 
simulated sequence of two dry and very dry years that occur in model year 2028 and 2029. 
Although, the following model year is a normal year, the reservoirs are not able to recover 
immediately and cannot meet the water demand. The lower storage levels in the reservoir 
in S2 reflect its higher water demand. The third model decade (2031-2040) is characterised 
by more normal years where the reservoirs are able to refill, but do not reach peaks such as 
in the first decade, as wet years do not occur in a sequence. The end of the third model 
decade and the beginning of the last model decade (2041-2050) are characterised by a 
simulated drought of four years. S2 with an overall higher water demand shows here the 
worst conditions regarding the reservoirs’ storage: the storage volume remains at lower 
levels for several years. Only S3, with its more sustainable water use (higher irrigation 
efficiencies and lower water use per capita), maintains steady storage levels a few longer. 
The last model decade is characterised by two consecutive wet to very wet years, which are 
indicated by peaks in the storage graph. These peaks enable the reservoirs to store water, 
which will then be depleted over the subsequent dry years. S2 shows also in the last model 
decade the worst conditions due to overall water stress caused by large cultivated areas and 
high household water demand, whereas the highest storage capacity is simulated in S3.  

Figure 7b illustrates the monthly groundwater storage by socio-economic scenario.  
It shows a negative trend which is found as well in Johannsen et al. [21] for the Middle 
Drâa Valley and in Droogers et al. [24] within the whole Middle Eastern and North African 
region. After a drought period from model years 2014-2015, the water levels in the aquifers 
decline followed by an improvement in the subsequent wet model years in 2016 and 2017. 
The model shows that groundwater resources act as a buffer for irrigation purposes when 
low reservoir inflow impedes irrigation, as found by Johannsen et al. [21] as well. The high 
fluctuations reflect the reservoirs’ filling during the wet years. In wet years the aquifers 
recover well, because the outflow from the Mansour Eddhabi dam enables water 
infiltration into the aquifers [21]. A sequence of two wet or very wet years, as shown in 
model years 2016-2017 and 2044-2045, favourably affects the following years: the water 
levels in the aquifers remain stable for longer compared to the impact that one wet year has 
(such as in model year 2024 or 2034). S2 puts the greatest pressure on the aquifers, 
showing them to be depleted by model year 2039, followed by a light recovery before they 
are finally and fully depleted in model year 2049. In S3 the aquifers reach their limit by 
model year 2050, whereas in S1 there is still water stored in the aquifers by then. S3, which 
is supposed to describe the most sustainable socio-economic development, shows a less 
positive result than S1 for the long-term future. The reasons for this might be found in the 
geographical conditions [21]. Higher irrigation efficiencies and lower water demand lead 
to a slower aquifer recharge, because in arid or semi-arid regions the recharge from 
precipitation is very low. The aquifers mainly recharge through river-bed infiltration or by 
channel/flood irrigation infiltration. S3 needs in absolute numbers less water, which 
explains the lower groundwater storage compared to S1, because of lower infiltration rates. 
In the first half of the second model decade, the aquifers recover the best in S2, because 
irrigation fields are extended leading on one hand to more water use, but on the other hand 
to higher infiltration rates. This scenario shifts in the middle of the second decade, as the 
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exploitation of water is higher than the recovery of the groundwater table. S3 shows the 
best aquifer storage in the second half of the same decade, as the impact of the wet model 
year 2024 lasts for longer. S1 shows the worst conditions at first, but from the third model 
decade, the aquifers have the greatest capacity in response to low irrigation efficiencies and 
low or declining population growth in rural areas, which are supplied by groundwater. 

 

 

 
 

Figure 7. Monthly storage volume by scenario: in the reservoirs (a) and in the  
groundwater (b) 

 
In summary, none of the scenarios indicate the sustainable use of water. In all 

scenarios, the aquifers will be depleted in future. To achieve water savings, methods should 
focus on efficiency in order to cope with dry years in the Drâa Valley. Johannsen et al. [21] 
suggest using only the groundwater in dry years, to give the aquifers time to recover. This 
could, however, intensify water stress because the given water demand cannot be met by 
surface water. A measure to tackle this problem, could be cultivated area reduction, as the 
largest proportion of the water is used by this sector and reasons for the water storage 
decline are found mainly in the agricultural sector. Also, the crop choice is an important 
factor to consider. Crops such as watermelons and dates require the most water, however, 
these crops are intended mostly for the export market. The declining water quality is a 
decisive factor on the crop choice and dates being highly salt tolerant are being prioritized 
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for the crop cultivation. The crop choice should focus on the one hand on the water 
productivity and on the other hand on the guarantee of the farmer’s income [21]. However, 
with the majority of farmers being subsistence farmers or rely on their farm to provide for 
their livelihoods [21], this could have extensive socio-economic consequences, which 
would need to be assessed by in detail by further research. The integration of farmers in the 
energy sector by employment in upcoming energy industries could be a measure. The 
energy sector itself has a low overall impact on the reservoir or groundwater storage levels. 
However, as the potential for water shortages is high, impacts on the power sector can be 
expected in the form of unmet demand for cooling or cleaning purposes.  

It must be considered that WEAP lacks in groundwater modelling accuracy and is, 
therefore, bonded with high uncertainties. It cannot be taken into account important 
parameters such as aquifer characteristics, interactions, soil properties, etc. Thus, in 
future studies, other models like MODFLOW could be linked to WEAP in order to 
achieve more certain quantitative analysis which is also suggested by Johannsen et al. 

[21] and by Amin et al. [26]. 

Water demand in the oases and households 

The total annual water demand of the Drâa Valley and the city of Ouarzazate by 
scenario and demand site is shown in Figure 8. Figure 8 points out the future trend of the 
water resources demand in the Drâa Valley which is similar for the different scenario 
combinations. Figure 8a shows solely the results for the CSP-PV NOOR Tata system 
supplied by the Mansour Eddhabi dam, as the water demand percentages of the different 
sectors show negligible differences in the different scenario combinations. In the model 
year 2011, around 306 million m3 of water is required to meet the demand of the Drâa 
Valley and the city of Ouarzazate. In the first operational year of NOORo Ouarzazate 
(model year 2016) the total water demand is around 318 million m3 in S1. Of the total water 
demand, 0.94% is required for domestic use and livestock farming needs 0.2%.  
The largest proportion (98.18%) of the water demand is used for agricultural purposes 
other than livestock farming. The energy sector consumes in 2016 0.69% (S1), 0.58% (S2) 
and 0.78% (S3) of the total water demand. Until model year 2050, the water demand differs 
hugely in the three different socio-economic scenarios. The largest water demand is shown 
in S2 where, due to the annual increase in cultivated land, the water-intensive sector 
consumes 458 million m3 (out of 467 million m3 of total water demand) in model year 2030 
and 630 million m3 (out of 643 million m3 of total water demand) in model year 2050. S1 
shows a slight increase in total water demand, because population growth increases at a 
lower rate in the urban areas and declines in the rural areas. Furthermore, S1 assumes 
constant irrigation efficiency in the agricultural sector. Hence, in S1 by model year 2050 
the total water demand is expected to be almost 340 million m3. Only S3 shows a steady 
decline in the total water demand, reducing to 238 million m3 in model year 2050. This is 
due to the implementation of irrigation technologies with high efficiencies assuming an 
annually overall increase in irrigation efficiency of 0.75%. In addition, the crop share in S3 
reduces water demand in general, as fewer water-intensive crops are planted (Figure 4). 
The reduction in date cultivation, which needs more than twice the amount of water than 
wheat, combined with a significant reduction in watermelon cultivation, reduces the water 
demand in agriculture. Population growth in the cities has greater impact on water use than 
in the rural areas. The urban population consumes 50 L/day in S2 and S3, in rural areas the 
water use is 30 L/day in both scenarios. Nevertheless, the water consumption per capita 
remains lower in southern Morocco compared to other regions of the country [50] and also 
lower or at the threshold of 50 and 100 litres of water per person per day which are needed 
to ensure that most basic needs are met according to the World Health Organisation 
(WHO) [62]. 
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Figure 8. Annual total water demand by scenario (a); water demand by demand sites for: S1 (b); 
S2 (c) and S3 (graphs by demand sites do not include demand for NOOR Tata) (d) 
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Water demand for potential solar energy system NOOR Tata 

With regards to the water demand in the energy generation systems, the results show 
that the proportion of water used in this sector is in general very low, amounting on 
average to between 0.58% (S1), 0.4% (S2) and 0.74% (S3) of the total water demand. 
The water authorities have already assigned 1 million m3 for the water use per year for 
NOOR Tata to MASEN. In this paper, the system design calculates the water 
consumption for the average case. However, the power plant’s capacity is set in the way 
that even with higher water consumption the assigned threshold is not passed. 

Considering the water demand of the different solar technology option, a solar tower 
with Air Cooled Condensers (ACC) cooling technology uses around 80% (0.7 L/m2) of 
the total water consumption for mirror cleaning [63]. It is assumed that the CSP plant has 
61 cleaning cycles and the PV plant 24. The proposed hybrid CSP-PV system with ACC 
would use 597,434 m3 of water, which would still be within the assigned threshold. 
According to experts, the water use range for a solar tower with dry cooling technology in 
southern Morocco lies between 0.2-1 m3/MWh with simulation uncertainties of +/−20%. 
In comparison, a wet cooling technology in CSP plants consumes approximately 90% of 
the total water consumption only for cooling purposes. Specifically, the water rate in wet 
cooling technologies ranges between 1.8-5 m3/MWh depending on the site and CSP 
technology [1]. 

The option to implement a PV only complex would save almost 520,000 m3 of water. 
The total annual water consumption for cleaning purposes at the PV complex amounts to 
80,640 m3 with the same cleaning cycle assumed. Figure 9 compares annual water 
consumption and energy production for both hypothetical solar power plant 
configurations: hybrid CSP-PV system with 180 MW CSP and 420 PV capacity and  
600 MW PV system. 

 

 

 
 

Figure 9. Annual water consumption and energy production of different power plant configurations
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The results show that the water demand for the energy production sector has a very 
small impact on the water demand in the Drâa Valley, compared to the agricultural sector. 
However, differences are visible in the different cooling technologies of the CSP plants. 
These differences may seem negligible at first sight, but the implementation of the most 
water-saving CSP cooling technology can make an impact in very water-scarce regions. 

Unmet water demand in the oases and households 

Unmet demand is defined as the water amount that cannot be satisfied by water supply 
sources to cover a water demand site properly. The model results show that the way that 
water is used now and in the future could result in high unmet demand which can lead to 
water stress and water scarcity which was found for the region as well in Johannsen et al. 
[21] and in Droogers et al. [24]. Figures 10a-d show the results for the case of the hybrid 
CSP-PV NOOR Tata system and a Mansour Eddhabi dam supply while Figures 10b-d do 
not include the results of the unmet water demand in rural households and NOOR Tata. In 
all the model decades, the reservoirs cannot cope with long droughts as their storage 
volume steadily declines which results in unmet demand (Figure 10). The groundwater 
reserves are the highest by end of the first model decade and at the beginning of the second 
model decade, and are capable to buffer water demand for the oases. By the middle of the 
first model decade (2011-2020) and by end of the second model decade (2021-2030), the 
unmet demand increases as a consequence of a lack of surface water. The greatest impact 
can be seen in S2, due to its higher water demand throughout all model decades and its 
increasing size in irrigation area. The model decade between 2031-2040 is characterised by 
unmet water demand mainly in S2, in S1 and S3 the last years of the same decade and the 
beginning of the last decade show some peaks in unmet demand as a result of consecutive 
dry years that cause stress, in particular in S2.  

 

  

  

 
 

Figure 10. Total unmet demand by scenario (a); unmet demand by demand site for: S1 (b); S2 (c) 
and S3 (d) 

 
The highest unmet demand (487 million m3) is in model year 2042 for S2, caused by 

an extremely low inflow into the reservoir. In this model year, both the groundwater and 
reservoirs storage areas are empty in S2. After a refill of the reservoir by the middle of the 
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last decade due to large precipitation events, the unmet demand is reduced in all other 
scenarios, but in S2 the unmet demand shows peaks again. 

The unmet demand reflects the high demand in the cities and in the oases. The highest 
unmet water demand is in the Ktaoua oasis, which is the largest and requires more water 
for irrigation. Mhamid is the southernmost oasis and its cultivated area is the smallest due 
to climatic conditions. As a result, it has the lowest unmet water demand in all scenarios. 
Comparing the ratio between water demand and unmet water demand, for S1 shows 27% 
of water demand being unmet, for S2 63-66% and for S3 22-24%.  

In summary, high unmet demand can be attributed mainly to irrigation in agriculture. 
The greatest impact is shown by the cultivated area size and its crop share which was 
found as well in Johannsen et al. [21]. In order to tackle the high unmet demand in 
agriculture, subsidies for the introduction of better irrigation techniques could help to 
reduce the overall water demand, as seen in S3. El Hwary and Yagoub [64] suggest 
skipping irrigation at certain plant growth stages and this option should also be studied 
for the Drâa Valley. 

Unmet water demand in NOOR Tata 

In the case of the power plants unmet demand would have to be compensated by lower 
water use in agriculture. In examining the energy scenarios more closely it becomes clear 
that the probability of unmet water demand differs mainly due to the different solar 
technologies options. In the assumptions, NOOR Tata could be either a hybrid CSP-PV 
power plant or a PV only power plant. The supply sources also vary: the power plant is 
supplied by either the Mansour Eddhabi dam or the Tiouine dam. The results show that 
there is a negligible difference in unmet demand by supply source. However, variations are 
clearly shown for the use of different solar energy technologies. The worst-case scenario 
would be a hybrid CSP-PV system with water supplied by the Tiouine dam.  

Figure 11 allows for greater examination of the different supply sources and solar 
energy technology options. It compares the unmet water of the potential hybrid CSP-PV 
system (Figure 11.1) for the two different supply sources Mansour Eddhabi or Tiouine dam 
and three socio-economic scenarios S1 (Figure 11.1a), S2 (Figure 11.1b) and S3  
(Figure 11.1c), and the unmet water demand of the PV system under the different supply 
sources and socio-economic scenarios (Figure 11.2a-c). The blue lines stand for the 
Mansour Eddhabi dam supply source, the red lines for the Tiouine dam.   

The highest unmet demand for NOOR Tata occurs in S2 with 59% when the Tiouine 
dam supplies the water, whereas a supply by the Mansour Eddhabi dam can lower the 
unmet demand to 56%. In S1, 22% of the water demand is being unmet for NOOR Tata in 
both supply source cases. In S3, 20% of the water demand is being unmet in all cases and 
combinations, except for an implementation of a PV only system and a supply source of the 
Mansour Eddhabi dam which lowers the unmet demand to 17% and presents itself the best 
solution. The results show that there will be supply shortages for the energy sector in 
particular in years where the surface water is low. This is the case for some years in the 
second and last model decade, which are visible in all three socio-economic scenarios.  
In addition, a supply by the Tiouine dam increases the number of years of unmet demand as 
shown in the model years 2033 in S2 and 2028 in S3 for the case PV system and Tiouine 
dam supply.  

The unmet demand for all demand sites, including households, agriculture and energy 
sector, in S1 is 27%, when NOOR Tata is supplied by the Tiouine or the Mansour Eddhabi 
dam, in S2 66% of the water demand cannot be met for all demand sites, when the Tiouine 
dam is the supply source, in S3 24% of the water demand is unmet demand, when NOOR 
Tata is supplied by the Tiouine dam. If the Mansour Eddhabi dam supplies the water for 
NOOR Tata, S2 has 63% of unmet demand for all demand sites and S3 22% of  
unmet demand. 
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Figure 11. Different water supply options and socio-economic scenarios: 11.1 ‒ Unmet demand 
for NOOR Tata as a hybrid CSP-PV system and 11.2 ‒ Unmet demand for NOOR Tata as a  

PV system 
 

From a technology standpoint, the best-case scenario would be the application of a 
PV only system. However, with the application of a PV system the unmet demand will 
still occur according to the model results. To tackle water shortages, particularly in dry 
years, alternative supply sources should be taken into account. According to some 
experts, one measure could be the transportation of water in tanks from the coast. As the 
construction of seawater desalination plants are already an element of the Moroccan 
water strategy, water tanks from these desalination plants could be an option to supply 
energy sites in water-scarce regions. However, this strategy could generate conflicts as 
other sectors and, for instance, farmers would also suffer from the water shortages. 
Therefore, further research in form of a cost-benefit analysis could help to evaluate this 
option and as well the question, if desalinated water could supply all other remaining 
sectors as well, could be studied. Further options could be to build PV panels on the 
reservoirs which could lower evaporation losses of the dams and increase the PV cells 
efficiency due to a cooling effect of the water or to combine PV with agriculture in form 
of agrivoltaics which is emphasized as well by Dinesh and Pearce [65], who studied the 
potential of agrivoltaic systems, by Majumdar and Paqualetti [66] who applied this 
approach to Phoenix and by Malu et al. [67] who analysed this system for an Indian case 
study. Apart from that agrivoltaic systems have the capacity to increase the land 
productivity, PV arrays could act as rainwater and irrigation runoff channel. Using PV in 
conjunction with a sprinkle irrigation system, the water sprinkled on the PV modules 
could have a cleaning effect and drain off on the crops for irrigation and increase the 
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water usage efficiency [65]. Therefore, on-going and further research on panel and mirror 
cleaning is essential. It can be expected that the water amount for cleaning will decrease 
in future, as e.g., electrodynamic screen cleaning methods [68], collecting dust fences 
and mirror sensors show promising alternative water use-efficient ways according to 
experts. All these methods could contribute to a successful reduction in unmet demand 
for future solar power plants in water-scarce regions.  

It must be pointed out that certain energy parameters (e.g., temperature increase that 
affect the solar modules efficiencies and the energy generation output) cannot be 
considered in WEAP, but have to be integrated exogenously. Therefore, the results for 
the water consumption in NOOR Tata are subject to high uncertainties. However, the 
results still give a profound understanding of possible future trends. 

CONCLUSIONS 

The results show that the development of solar energy in southern Morocco could be 
put at risk by water scarcity under severe global climate change conditions. In addition, 
farming in the Drâa catchment, which is already at risk today, could be affected even 
more severely in the future. The WEAP model shows that the population in the Drâa 
Valley is strongly dependent on the surface water supply originating from the High Atlas 
Mountains. Groundwater resources can solely compensate for a short period and will 
become exhausted, as the groundwater table is declining and recharges cannot 
compensate for the excess in water pumping.  

The results of the model also indicate that the way that water is used now and in the 
future, either for energy production or farming, could lead to high unmet demand 
resulting in water stress and water scarcity. According to some experts, these 
consequences are already leading to tensions within the local population manifested in 
the form of protests. Implementing a new power plant that consumes water could 
intensify water problems and alternative supply sources must be assessed to overcome 
potential conflicts.  

The modelled scenarios already include water saving and conservation measures like 
better irrigation techniques, reservoir siltation control, crop choices and different solar 
energy technology options with dry cooling technology. Higher irrigation efficiencies 
such as drip irrigation for example would reduce the overall water demand in agriculture, 
which is the highest water consumer. Crops such as watermelons or dates intended for the 
export market, require the most water. Though, dates are a traditional crop and have a 
higher salt tolerance, which is a decisive factor in a region with decreasing water quality, 
the choice of crops should focus on water productivity and guaranteeing farmer’s 
income. The option to skip irrigation at certain plant growth stages is suggested as well 
by experts and should also be examined for the Drâa Valley.  

Regarding the development of renewable energy in southern Morocco, where water 
has a high value, the results show that solar energy uses the least water, if PV technology 
is applied. However, the highest energy generation outputs are given, if the hybrid 
CSP-PV technology is implemented. As long as PV cannot meet the energy demand 
during the evening peak hours and batteries have a high cost, the hybrid CSP-PV systems 
that is highly dispatchable and able to quickly ramping up presents itself as the better 
option. With the overall share of water consumption for the energy generation being low 
independent of the solar technology option technology costs, efficiencies and capacity 
factors of different technologies will most likely be the decisive factors for the power 
plant configuration. However, in the future this low water demand for energy production 
may also compete with other sectors such as agriculture.  

In order to show possible solution pathways to reduce the high unmet demand for the 
different sectors under severe climate change conditions, further research needs to be 
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conducted, for example on bringing desalinated water inland and on what impacts further 
dam constructions could have on the water system in the Drâa Valley. PV panels on the 
reservoirs or agrivoltaics could be considered as well, because, these concepts combine 
the water, energy and agricultural sector, with an integrative approach. However, these 
PV concepts should be analysed within storage solutions, because, according to experts, 
PV should be only increased, if storage solutions are added to this concept. These options 
should be studied for the Drâa Valley following both participative approaches and 
technical methods. In order to safeguard a sustainable development, the upscale of solar 
power plant should take the needs of the communities in which they are sited into account 
and ensure their participation. The results of this study could be transferred to discuss the 
development in other water-scarce regions in Morocco that could become potential 
large-scale CSP sites.  
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NOMENCLATURE 

A effective aperture area [m2] 
E energy [kWh] 
ETo actual evapotranspiration [mm] 
G global irradiation  [kWh/m2y] 
I irradiation  [kWh/m2y] 
Kc crop factor  [-] 
P power [kW] 
Q quality factor [-] 

Greek letters 

η efficiency [-] 

Abbreviations 

ABH Agence Du Basin Hydraulique 
ACC Air Cooled Condensers 

AR5 Assessment Report 5 
ArcGIS Arc Geographic Information System 
CSP Concentrated Solar Power 
DNI Direct Normal Irradiation 
FAO Food and Agriculture Organization 
GHG Greenhouse Gas  
GHI Global Horizontal Irradiation 
HCP Haut Commissariat Au Plan 
IEA International Energy Agency 
IPCC Intergovernmental Panel on Climate Change 
LEAP Long-Range Energy Alternatives Planning System 
MASEN Moroccan Agency for Solar Energy 
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MERRA Modern-Era Retrospective Analysis for Research and Application 
MSP Moroccan Solar Plan 
NOOR Solar Energy Projects in Morocco (From Arabic: ‘Light’) 
NREL National Renewable Energy Laboratory 
ONEE Office National De l’Electricité Et De l’Eau Potable 
PAREMA German-Moroccan Energy Partnership 
PV Photovoltaic 
RCP Representative Concentration Pathway 
SRTM Shuttle Radar Topography Mission 
STC Standard Test Conditions 
STE Solar Thermal Energy 
WEAP Water Evaluation and Planning System 
WHO World Health Organization 
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