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ABSTRACT 

Demand Response can be seen as one effective way to harmonize demand and supply in 
order to achieve high self-coverage of energy consumption by means of renewable 
energy sources. This paper presents two different simulation-based concepts to integrate 
demand-response strategies into energy management systems in the customer domain of 
the Smart Grid. The first approach is a Model Predictive Control of the heating and 
cooling system of a low-energy office building. The second concept aims at industrial 
Demand Side Management by integrating energy use optimization into industrial 
automation systems. Both approaches are targeted at day-ahead planning. Furthermore, 
insights gained into the implications of the concepts onto the design of the model, 
simulation and optimization will be discussed. While both approaches share a similar 
architecture, different modelling and simulation approaches were required by the use 
cases. 

KEYWORDS 
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INTRODUCTION 

Policy makers around the world pursue different strategies in order to successfully 
combat climate change and preserve our planet for future generations. Strategies such as
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the United States’ Climate Action Plan or the European Union’s Energy and Climate 
Package commonly feature targets concerning reduction of greenhouse gases, integration 
of renewable energy sources and improvement of energy efficiency. In order to achieve 
these goals, a combination of measures targeting energy production, storage, and use 
must be applied. Facing the challenge of integrating renewable energy sources, strategies 
to balance energy use and production are called for. Therefore, intelligent Demand Side 
Management and Smart Grids connecting energy suppliers and users are crucial for 
success. 

Demand Side Management is often defined as planning, implementation, and 
monitoring of utility activities designed to influence the customer’s use of energy [1]. 
According to Palensky and Dietrich [2], Demand Side Management measures can be 
distinguished into different categories according to their timing and impact. On one end 
of the spectrum, improvements in energy efficiency deliver permanent reductions and are 
therefore the most desired form of Demand Side Management. Dynamic Demand Side 
Management or Demand Response (DR) is designed to reduce the energy demands at 
certain critical times but may result in higher overall demand due to rebound effects and 
have a higher impact on the energy user’s processes. Nevertheless, facing the need to 
balance volatile renewable energy generation with modified load profiles, the demand for 
DR strategies is evident. Therefore, DR has become an emerging field of research in 
recent years with a rapidly growing number of publications [3]. However, despite a 
number of studies that have proven the positive impact of DR [4], market integration is 
still quite low [5, 6]. Kim and Shcherbakova [6] identifies a number of barriers for 
successful implementation. On consumer side these include, among others, availability 
of technology, consumer knowledge, and response fatigue due to frequently changing 
prices. These findings suggest that there is a need for technological solutions which 
enable consumers to participate in DR programs in a way that requires little or no human 
effort. According to Siano [7], these enabling technologies include demand reduction 
strategies optimized to minimize various objective functions and their integration into the 
building energy management system. 

Literature offers a number of solutions to the problem of demand reduction strategies 
for a wide range of application cases. Some interesting approaches include agent-based 
strategies [8], Model Predictive Control (MPC) of building climate control [9], linear 
programming approaches for intra-day demand optimization of small businesses [10], or 
simulated annealing approaches [11]. According to Deng et al. [12], most DR approaches 
share that they are usually formulated as an optimization problem and the user behaviour 
is mathematically modelled. Prívara et al. [13] stresses that the choice of model is a 
crucial part for a predictive control problem. This statement is transferable to many other 
simulation-based optimization problems, since modelling can be a tedious and 
time-consuming task. 

This paper presents two different concepts to integrate demand-response strategies 
into energy management systems in the customer domain of the Smart Grid. The first 
approach is set out to achieve load shifts by an optimized use and integration of thermal 
storage masses in buildings into the urban energy management. To realize this goal, a 
method based on MPC was developed. The goal of the second approach is to improve 
energy efficiency in industrial production by developing a simulation-based tool for 
monitoring, predicting and optimizing the energy and resource demands of 
manufacturing facilities. The tool will be integrated into industrial automation systems, 
such as Enterprise Resource Planning (ERP) or Manufacturing Execution Systems 
(MES), and will introduce energy demand as a steering parameter into the control centre. 
Considering time scales, both approaches are targeted at day-ahead planning and are 
designed to be fully integrated into the consumer’s automation system, and thus are 
potentially suitable for integrating communication flows with other domains of the Smart 
Grid, as intended, for instance, by the EU’s Smart Grid Conceptual Model (see [14]). 
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After describing the concepts, the two projects will be compared concerning implications 
on the system architecture, the model and simulation design, and the optimization 
algorithm. 

MODEL PREDICTIVE CONTROL OF HEATING AND COOLING 

The goal of the project presented in this chapter was to maximize the share of 
renewable energy sources for covering the energy demand in urban areas. Previous 
investigations had demonstrated that 100% coverage of the electrical energy demand in a 
city district by means of fluctuating renewables over a year is in principle possible [15]. 
The project sets out to converge to this goal by tapping load shift potentials through 
integration and optimized use of thermal, electrical and passive storage masses in 
buildings into the urban energy system management. In order to achieve this, a design for 
optimized control strategies, based on MPCs was developed. The predictive control 
algorithm was combined with accurate models and predictions of the development of 
energy demand, production, consumption, as well as weather-related forecasts into a 
simulation framework. In a subsequent step a hardware-in-the-loop application with the 
real building was implemented. 

An office building located in Vienna, which offers about 5,000 m² office space, was 
chosen as a reference object. The building, called EnergyBase, features a design, which 
renders it ideally suitable for the successful application of load shifting strategies. It is 
fulfilling the passive house standard and the innovative building design includes large 
Thermally Activated Building Systems (TABS). 

Figure 1 illustrates the structure of the Heating, Ventilation and Air Conditioning 
(HVAC) system for room conditioning. Two sources provide heating: a ground water 
operated heat pump and a solar thermal system on the rooftop. Ground water provides 
cooling energy as well. Heat and cold are injected into the rooms via thermally activated 
building systems (concrete cores), which are arranged along four lines, supplying the 
cores of all floors in each quadrant (NW, NE, SW, SE). The temperature is controlled by 
a state-of-the-art room temperature control, which generates set points for the desired 
TABS temperature for each floor and zone as a function of the current ambient 
temperature. Furthermore, the cooling power used for air conditioning is supplied by a 
desiccant cooling system regenerated by heat from the solar thermal system. 

The goal was to test the model predictive control approach in two steps, first by 
conducting a test-simulation of the reaction and behaviour of the controlled building, and 
second by integrating the MPC into the real building. Considering the given building 
structure, the thermal storage potentials of the TABS seemed promising to hold load shift 
potentials, but the electrical demand should be shifted. Therefore, the heat pump and the 
ground water well pumps, which connect these two systems, had to be targeted. Both 
components represent large electric consumers, their electrical load for heat and cold 
production could be shifted to convenient times using the relatively inert system of the 
concrete cores. A similar concept was already investigated by [16]. 

With regards to the implementation of the MPC, the installed building control system 
imposed some restrictions upon the feasible interfaces. The only possible point to 
influence the installed control system was to modify the set point temperatures of the 
TABS and water in the supply line to the TABS. Due to these system peculiarities, the 
control path depicted by the MPC’s model included three parts: the HVAC system, the 
building thermal dynamics itself, and the control logic used to control HVAC devices 
based on set point and measured temperatures. The resulting model shows nonlinear and 
switching behaviour caused by discontinuous controllers and equipment with nonlinear 
characteristics. Furthermore, system complexity and availability of construction data 
suggested that a white box modelling approach was the most feasible option. In order to 
match these model characteristics and provide high control performance, a Modular 
Model Predictive Control (MMPC) approach was developed. 
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Figure 1. Overview of heating and cooling system at the ENERGYbase building (taken from [17]) 
 

The MMPC concept is based on a detailed model of the nonlinear dynamic building 
system, which is explained in further detail below. It is also designed to fulfil the 
requirements of real-time application and direct integration into the existing building 
control system by providing TABS temperature set point trajectories, which allows for 
retrofitting the existing building control system. The MMPC concept obtains high control 
performance and robustness, while keeping the computational effort low in order to 
enable real-time control, by executing a three-step process. Exploiting the simulation 
results of the prediction model, the temperatures and heat flows of the building system 
are adjusted to optimize energy efficiency and thermal comfort based on a linear thermal 
model. Subsequently, using an efficient mixed-integer optimization step, the resulting 
heat flows are optimally mapped to the TABS temperature set point trajectories. 

The MMPC is structured as depicted in Figure 2. In order to allow direct interfacing 
with the building’s existing automation system, the MMPC outputs TABS temperature 
set points Tset as control signals. According to its name the MMPC consists of three 
functional modules, which are executed at each sampling step. The first module is a 
simplified nonlinear model of the building and building services (SBUI/SBS) and 
provides a baseline prediction of temperatures T0 and heat flows ��� in the building. The 
second module (�� -adjustment) solves a Linear Time Invariant (LTI) MPC problem to 
adjust the heat flows, optimize the control objectives and obey control constraints. 
Finally, the third module (Tset-mapping) calculates the TABS set points by solving a 
mixed-integer optimization problem. This approach realized the optimized heat flows as 
close as the switching actuation behaviour caused by the control valves in the hydraulic 
distribution of the feed line allows. A more detailed description of the MPC can be found 
in [18]. 

The simplified model of the building itself (SBUI/SBS) was derived from plan data 
and simulation results of a more complex building model, which also served as a 
substitute for the real building in the MPC tests. The complex building model represents 
the building’s thermal zones by RC networks as proposed by the “Beuken-model” 
approach [19], which offers a good balance between model quality and simplicity. But 
still the degree of complexity of the model caused troubles with regards to the application 
in an online optimization problem. Therefore, additional simplifications were carried out. 
The number of thermal zones in the building was reduced by aggregating the zones of the 
complex model in every floor into larger surrogate zones. The acausal modelling 
approach used in the complex model to calculate heat flows in the building model and 
mass flows in the hydraulic system, was substituted by a simplified signal-based 
approach. 
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Figure 2.  Structure of the MMPC building integration (taken from [18]) 
 

To model the hydraulic system of the building services, a causal model mapping only 
the energy flows, was used. This approach eliminates the necessity to calculate the state 
of the fluid at every relevant system point of the hydraulic system but raises additional 
challenges. Temperatures at the relevant points, often used as feedback for control of the 
hydraulic system, are not calculated anymore. Alternative approaches to approximate the 
control strategies based on the temperatures of thermal capacitances integrated into the 
system (e.g. storage tanks, TABS) had to be developed. Applying the described model 
reductions decreased the number of non-trivial model equations by a factor of 1/20 from 
the complex to the simplified model and the simulation time shortened correspondingly. 
Detailed descriptions of the complex and the simplified model as well as the 
implementation and validation of results can be found in [17, 20]. 

For the implementation of the test-simulation and the hardware-in-the-loop 
application, a sequential co-simulation approach using MATLAB as a master was 
chosen. MATLAB initializes simulation runs of the simplified Dymola model 
(SBUI/SBS or module 1) when needed. After completing the simulation run over the 
prediction horizon (in this case 48 hours), a baseline prediction of temperatures T0 and 
heat flows ���, calculated by the simulation in Dymola, are returned to MATLAB where 
adjusted heat flows ��  and set-point temperatures Tset are calculated by modules 2 and 3. 
The set point temperatures for the next time step Tset,k+1 are then communicated by 
MATLAB to the building automation system. In order to calculate the baseline prediction 
of temperatures and heat flows, predicted weather and user behaviour data is used. 

The optimization problem, which calculates the heat flows �� , is presently oriented at 
minimizing the electric energy demand over the prediction horizon without violating the 
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thermal comfort. It would, however, be feasible to minimize not the electricity demand 
but the electricity costs by introducing a time-variant weight into the cost function. By 
implementing an interface to market or operator and regularly updating energy cost 
predictions (e.g. once a day to cater to the day-ahead market) similar to weather 
predictions, an entirely autonomously working DR system could be realized. 

INDUSTRIAL ENERGY MANAGEMENT 

The manufacturing industry is one of societies’ largest energy consumers and 
promises major potentials concerning demand reduction and load shift. Paulus and 
Borggrefe [21] estimates that Demand Side Management stemming from large-scale 
industrial plants might provide approximately 50% of capacity reserves for the positive 
tertiary balancing energy market in 2020. The authors of the study, however, also 
emphasize that industrial contribution to negative reserves (e.g. by shutting off 
equipment) is not feasible, due to potential disruption of production processes. Though it 
may be difficult to contribute negative reserves within the short time span required by the 
balancing energy market, a longer planning horizon (e.g. targeted at the day-ahead 
market) could open the possibility to schedule processes according to energy market 
requirements. 

Therefore, in the second project the idea to develop a software solution enabling 
companies to integrate energy-related planning into their operative business emerged. 
Outlining the research question quickly showed that a tool chain has to possess certain 
features in order to present a feasible solution to the problem. Firstly, it has to integrate 
both ecological as well as economical parameters as optimization targets because in the 
end economic success is always the critical factor in a company. Secondly, a 
comprehensive approach addressing all parts of the system has to be chosen because the 
determining factor is the energy demand of the whole company, not only of subsystems. 
Thirdly, since the aspired solution should introduce energy considerations into the plant’s 
operational planning, it has to be linked to the existing automation systems. And finally, 
if a prediction of the energy demand should be made and optimized, some sort of 
mathematical model and an optimization algorithm have to be included. 

Finding a suitable method for model development was one of the core challenges. 
This is because although the tool chain may be an almost entirely reusable software 
solution, the model within the software tool chain represents a unique plant. Such a plant 
must be modelled from scratch for every specific instance and the modelling process 
represents a considerable effort. Only a certain degree of model reusability can reduce 
this effort. 

Reusability can be achieved through decomposition and modularization approaches 
at the model design level. Such approaches seem to be a promising solutions for medium 
to large scale simulation models [22-24]. Similar design principles are applied in 
object-oriented software engineering, where encapsulation and information hiding play 
an important role in addition to modularization and decomposition. With encapsulation, 
communication between individual parts of a model only takes place via interfaces. This 
hides internal details from the external, only providing necessary functionalities and 
properties. As long as the interfaces remain unchanged, the resulting models of system 
parts can be exchanged without affecting the overall system behaviour [25]. These 
findings suggest that developing a modelling approach based on decomposition and 
encapsulation could lead to an efficient modelling framework for our task. 

From the system analysis perspective, the chosen method must be designed to address 
the high system complexity and heterogeneity. The system modules serve to organize the 
knowledge base for individual modelling tasks by providing a concept for depicting 
elementary parts of a manufacturing system that contribute to its resource balance and 
their possible structural relationships. 
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Therefore, the chosen approach relies on basic modules that compose the system. In 
the project’s context the modules are called “cubes”. Cube boundaries bundle balances in 
terms of energy, material, cost and information flows. Although cube boundaries are 
imaginary, in most cases they will coincide with some sort of physical representation. A 
cube can be, for instance, an assembly robot, a gas heater, a conveyor belt, the production 
hall or a utility system. By specifying these modules, the system can be decomposed into 
observable parts. Defining the cubes by a boundary specification enables encapsulation 
and information hiding and therefore a combination of different modelling approaches 
and degrees of model abstraction. It furthermore ensures the compatibility of simulation 
models across various domains (production machines, building, energy supply, etc.) of 
the plant and applicability in various industrial sectors.  

Figure 3 shows the overall system architecture. On the lower right, the real system, 
decomposed into imaginary cubes, is shown. The real system and the plant’s automation 
system interact via sensors and actuators, which produce measurement data and apply 
control actions. Additionally, the automation system routes data from sensors, Enterprise 
Resource Planning (ERP) or Manufacturing Execution Systems (MES) to the software 
tools and the real system, therefore integrating the tool chain into the control centre. 

The tool chain is designed to support production planning processes. Similar to a 
production planning and scheduling system, the planner can import upcoming orders to 
be scheduled as well as energy related data, such as weather forecasts or energy prices. 
Monitoring data from the real system supplies initial values. The tool chain calculates 
optimized production schedules and infrastructure operation strategies, such as ideal time 
slots for energy storage charging. These optimized production and operation strategies 
have to be confirmed by the user to be put into operation. The tool chain itself produces 
the results via interaction of an optimization algorithm and the simulation model based on 
cubes. The implementation of both is explained in more detail below. 

 

 
 

Figure 3.  System architecture for the proposed tool chain (taken from [17]) 
 

The generalized interfaces ensure the cubes’ general applicability and therefore offer 
a lot of advantages, however also causes one of the biggest challenges. In order to 
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represent economic and ecological parameters, energy flows, which are continuous by 
nature, and value streams, which are described as discrete entities, must be integrated into 
one cube. This leads to hybrid cube models, which combine discrete-event and 
continuous simulation aspects, i.e. they are described by differential and algebraic 
equations as well as state machines. In order to be able to integrate both simulation 
models in each model module (cube), an approach for integrated hybrid simulation 
instead of using e.g. co-simulation (like in the MPC approach) is pursued. A more 
detailed description of the modelling method has been published in [17]. 

After evaluating different formalisms and descriptions for hybrid simulation, Discrete 
Event and Differential Equation System Specification (DEV&DESS) [26] as a hybrid 
Discrete Event System Specification DEVS formalism [27] based on Parallel DEVS 
(P-DEVS) [28] provided a suitable choice. The formalism is on the one hand open and 
established and on the other hand generic enough to allow incorporating different 
domains of engineering. Furthermore, a formal and complete description of hybrid model 
components and subsystems and transparent implementation of the simulation engine for 
handling events and equations is possible. Especially the second aspect is crucial in order 
to be able to include simulation functionality into the tool chain without having to rely on 
third party or proprietary software. 

Using this formalism, simulation models are developed to represent the different 
aspects of the system under consideration. The models are used to make predictions 
about future energy demand of different operation scenarios. Furthermore, the simulation 
can also be used for complementary tasks such as the determination of a product 
footprint, as described in more detail in [29]. 

The simulation is coupled with an optimization algorithm, which is divided into two 
parts. In the first part, the production strategy of the considered plant is optimized. The 
degree of freedom for this optimization part is the production plan, i.e. the scheduling of 
the production plan for the different products that are going to be manufactured in the 
considered timeframe. Because of the hybrid model, on which the simulation is based, 
additionally to the conventional objectives such as costs, delivery reliability and the 
utilization of machines and storage, the energy consumption of the production plant for 
any given production plan can be considered for the target function. 

In the second part, the energy system of the building is optimized. As the production 
plan of the facility is optimized in the first step, it is fixed for this part of the optimization. 
This means that the energy demands of the production are fixed and only the demand of 
the energy system itself is variable, a fact that can be exploited for the design of the 
optimization algorithm. 

The degrees of freedom for this part of the optimization depend heavily on the model 
of the energy system. Typically this would mean that after modelling the system, the 
modeller would have to define them. But the cube concept enables a more automated 
way, as every cube used in the model can define its own Degrees Of Freedom (DOF), 
which can be congregated into the DOF of the overall model. Of course not every 
instance of a cube will have the same set of DOF, so it is important that the cube 
definition contains the maximum set of DOF for all applications and the active DOF for 
the particular instance of the cube can be enabled for the optimization. Possible degrees 
of freedom for some cube classes are: 

• Energy networks and storages; 
o Set point level of energy storage; 
o Prioritization of energy sources; 

• Energy converters; 
o On/Off-State of the machine; 

• Thermal zones; 
o Set point temperature of the thermal zone. 
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As a small example consider a cooling network that is supplied by several chillers. 
Typically, such a system features a protected control algorithm supplied by the 
manufacturer which is integrated into the automation system of the operator, so the direct 
control of the chillers is not possible and therefore has to be disabled as a degree of 
freedom. Therefore, only variables accessible by the company’s automation system, such 
as set point temperatures or prioritization, can be chosen as DOF. Considering only the 
prioritization of the chillers as sources for the cooling network, the number of different 
configurations gets very large as the number of chillers increases. This shows that the 
optimization algorithm has to be carefully designed in order to ensure maximum 
efficiency. 

For the target function, different outputs of the simulation are considered: 
• Total energy consumption; 
• Total Carbon dioxide (CO2) emission; 
• Total energy costs; 
• Share of renewable energy; 
• Machine utilization; 
• Share of heat recovery; 
• Efficiency factor of the different energy types. 
Depending on the use case, the weights of the components of the target function can 

be adjusted. Furthermore, constraints for the optimization must be generated. Examples 
for such constraints would be the requirement, e.g. that a certain room temperature has to 
be maintained for the comfort of the workers. 

For the design of the optimization algorithm, multiple candidates exist. One notable 
restriction is that the algorithm has to be derivative-free since the simulation cannot 
return derivatives of the target function. The variables of the optimization of the energy 
system can be classified into two different classes: 

• Continuous variables, such as target temperatures and levels as well as switching 
times for the machines; 

• Scheduled variables, such as the prioritization of the sources for the energy 
networks. 

For the scheduled variables, a graph-based algorithm can be considered, which would 
result in another division of the optimization algorithm, because the continuous variables 
would have to be optimized separately. Another possibility that enables the simultaneous 
optimization of the two variable types would be to map the scheduled variable on a set of 
continuous variables, where the sorted list of those variables defines the scheduling. 

In practice, a combination of the two approaches looks feasible. Especially in systems 
where the demand from the production system (which is constant throughout the 
optimization) is very high, an initial tree search that is stopped at a certain level and a 
following optimization of the remaining scheduled variables and the continuous variables 
looks promising. 

DISCUSSION OF METHODS 

Although the two examples for simulation-based DR strategies target fundamentally 
different application fields (heating and cooling of an office building and industrial 
energy management) and levels of specification (one single application case vs. universal 
applicability to a certain sector), they show some similarities and highlight some 
implications the nature of the problem has on the mathematical models behind the 
optimization task. 

Upon close examination of Figure 2 and Figure 3, it can be seen that both approaches 
rely on the same basic structure (see Figure 4), as do many other examples found in 
literature, such as [3, 10, 12]. The automation system links the real system and the 
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modelling and simulation unit, transferring e.g. sensor data for model initialization in one 
direction or control signals to the system. The simulation generates a prediction of the 
system behaviour using a model of the system. The solution is evaluated concerning 
certain criteria by a target or cost function. Based on the evaluation result, the 
optimization algorithm generates a new set of parameters with which the simulation is 
restarted. This iteration is repeated until convergence criteria are fulfilled. The link to the 
Smart Grid (be it the operator or the market) is modelled into the target or cost function, 
where certain amounts of energy consumed at certain times can be penalized or 
rewarded. Depending on the frequency of the execution of the optimization, the system 
dynamics and also the calculation speed of simulation and optimization, different 
planning horizons can be targeted. 

 

 
 

Figure 4. Generic system architecture 
 

Another characteristic both approaches share at least at top level, is that a white box 
model turned out to be feasible. For the domain of building MPCs, Prívara et al. [13] 
supports the finding that physical models are preferable at least for simpler buildings. 
Similarly, building performance simulation tools fuse deductive modelling approaches at 
system level with inductive approaches at component level [30]. This approach reflects 
that components, although of varying characteristic according to type and manufacturer, 
are representations of the same basic concept, which can be implemented through 
inductive models, because they can depict an infinite number of variations by altering the 
parameterization. On the other hand, each system configuration is usually a unique 
solution and therefore the deductive approach fits well. Reflecting this system 
characteristics in the modelling method leads to a higher efficiency in model generation. 

A distinguishing element of the two projects is the simulation implementation. While 
the MPC project was targeted at a single implementation, the energy management project 
is designed to lead to a software tool chain applicable to many instances. This difference 
in life span leads to different interests concerning modelling and simulation. For a project 
with one single application, an inherent interest to reuse pre-existing models and 
simulation tools exists in order to reduce modelling effort. Accordingly, a co-simulation 
architecture was chosen to accommodate these interests. The tool chain has a 
considerably longer life span and needs to be highly modular, in order to be able to 
assemble new instances with limited effort, because every use case calls for a new model. 

In this case the reusability of pre-existing models is less of an interest than the internal 
reusability of model parts or modules within the software tool chain. Therefore, for the 
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second project an alternate approach, with very rigid decomposition into formalized 
modules is chosen. This eliminates the possibility for reuse of previously existing models 
or tools almost entirely and even calls for programming a tailored simulation 
environment. This effort only pays off because of the long life span and the gained 
internal reusability. Hence there is always a trade-off between reusability of existing 
elements and internal reusability, which must be reflected in the chosen modelling 
approach. 

Concerning the design of the optimization, similar problems were encountered. In 
both approaches, the models used to predict the system behaviour raise certain 
challenges. In order to depict the system with sufficient accuracy, models of certain 
complexity are needed. Suitable optimization algorithms must be applied in order to deal 
with non-linear model behaviour or lack of available derivatives. For the MPC this 
problem is even more critical since it has to meet real-time requirements, which in this 
case means that one simulation and optimization cycle has to be concluded within  
15 minutes. Therefore, only a limited number of simulation and optimization runs can be 
performed in order to calculate optimal results. In order to solve this problem, a specific 
MPC approach was developed. For the industrial energy management this problem is not 
as critical, since scheduling and planning usually takes place several days in advance and 
can take up more time, thus more time consuming meta-heuristic approaches can be 
applied to solve the optimization problem. However, in both cases it turned out to be 
beneficial to divide the whole optimization problem into parts. 

A further point that caused considerable trouble in both projects was the 
determination of the degrees of freedom, or in other words the influencing factors on the 
automation system. Due to technical reasons, it is often not possible to actuate the desired 
equipment directly. In order to achieve the desired impact, secondary variables, such as 
set points, have to be influenced. These workarounds can have considerable impact on 
the model design, especially on which parts of the system have to be integrated into the 
model. Therefore, it is highly advisable to determine this interaction point in advance. 
Last but not least, a determining factor for the success of the integration of many 
sophisticated control and automation systems is the user acceptance, which should be 
ensured in early stages of the project. 

For future work, expanding the targeted time frame for DR from day-ahead to 
shorter-term markets could be targeted. With the MPC approach this is possible in 
theory; for the industrial energy management tool, however, the challenge is steeper. 
Presently, due to the nature of the tool as a planning instrument, the targeted time span for 
DR must correlate with the planning horizon of the production and the reaction 
capabilities of the staff in charge. These constraints eliminate shorter target periods than 
day-ahead, as found in the requirement definition with industrial partners. Shorter-term 
DR would require different strategies, which: 

• Do not touch the production processes; 
• Operate in a more automatic fashion.  
To solve this problem and target the short-term DR, the present system could be 

expanded into a multi-stage optimization. Maybe a fusion of the two approaches is a 
feasible solution. 

CONCLUSIONS 

This paper presents two different approaches enabling customers of Smart Grids to 
participate in demand response programs. They both include simulation-based demand 
control strategies optimized to meet different objective functions and their integration 
into the building energy management system of customers in the Smart Grid. The first 
concept presents a model predictive controller for heating and cooling of an office 
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building and realizes load shifts in the building’s electrical energy demand. The goal of 
the second example is to improve energy efficiency in industrial production by 
developing a simulation-based tool for monitoring, predicting, and optimizing the energy 
and resource demands of manufacturing companies. Both approaches are based upon 
simulation and optimization methods and are targeted at the day-ahead market. 

The examples show some similarities and highlight some implications the nature of 
the problem has on the mathematical models behind the optimization task. They share a 
similar basic structure of interaction between simulation and optimization, interface with 
the automation system and the Smart Grid via target or cost function. Furthermore, both 
models are a combination of deductive and inductive modelling techniques reflecting the 
system’s characteristics of a unique solution assembled from generic components. They, 
however, are designed for different life spans and therefore, call for different simulation 
and modelling approaches. The structure of the models and the interaction with the 
automation system require specific properties of the optimization algorithms and the 
degrees of freedom. There is also still an extensive demand of research concerning 
reduction of modelling effort, development of interfaces between systems supporting 
demand response on the customer side and the Smart Grid as well as the tapping of 
intra-day and regulation market DR potentials. 
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