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ABSTRACT 

Future energy systems must be clean, efficient and profitable. Previous cases have shown 

that incorporating local production into district heating networks is often unprofitable 

due to high temperature levels. This article suggests a new way of determining areas in 

existing networks suitable for low temperature district heating, which makes investments 

by real estate owners into local production profitable. A simulation of district heating 
network is used together with an investment optimization model to analyse the spatial 

potential of local production. The results show that some local production was profitable 

at current temperature levels, but it could be increased significantly if supply 

temperatures are decreased. This was shown to decrease losses and emissions of the 

system. Spatial optimization models are needed to increase knowledge on the effects of 

local production and lower network temperatures in district heating networks. 

Furthermore, new pricing models for customers have to be developed.  

KEYWORDS 

District heating, Spatial analysis, Smart energy system, Heat pump, Local production, 
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INTRODUCTION 

According to the European commission, half of the energy consumed in the European 

Union goes to heating and cooling of buildings [1]. According to Conolly et al. [2], the 

current market share of District Heating (DH) in EU’s building stock is only 13%.  

In addition, Werner and Constantinescu [3] states that the expansion of DH is possible 
and would decrease carbon dioxide emissions in the heating systems through improved 

energy efficiency. Also, Persson and Werner [4] noted that there is a possibility to 

increase this market share to cover more buildings and this could be done economically 

in many occasions. 
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Because the energy consumption of DH systems is so great, there is a high priority to 

make them more efficient. In the framework strategy for a resilient energy union, the 

commission states that there are huge efficiency gains to be captured in the DH sector [5]. 

There is also strong support from the commission for the smart cities and communities’ 

initiative that focuses on creating smart cities using telecommunications and digital 

networks to improve efficiency [6]. District heating and cooling networks must evolve 

with other systems to create smart cities. These smart energy systems are described by 

Lund et al. [7] as a system where electricity, thermal and gas grids are managed together 

to achieve optimal solutions for each separate grid and for the whole system. Furthermore, 

Lund et al. [7] state that the ability to incorporate several different sources of heat, such 

as waste heat and heat pumps, and increased efficiency of DH systems play an important 

role in the heating systems of tomorrow. The reduction in supply temperature is a key 

factor in decreasing network heat losses thus improving the overall efficiency of the 

heating. This also promotes the use of waste heat [7].  

In Finland, the construction of DH systems started after the 1940’s [8]. DH has 

evolved into the most common heating form of buildings especially in cities with a total 

market share of 46% [9]. However, the systems are still using quite high temperatures 

and would be categorized as 3rd generation DH networks according to Lund et al. [7].  

The temperatures in the 3rd generation networks are often below 100 °C but can be as 

high as 120 °C in the winter season. 

Lately DH networks have also been seen as platform for Demand Side Management 

(DSM) and the utilization of waste heat [7]. DSM is a technology where energy 

consumption of a building is altered without noticeable effect to the inhabitant. This is 

done by taking into account buildings’ thermal attributes and the weather forecast.  

For example, the peak hours of heat consumption can be shifted or the consumption 

profile flattened by taking advantage of the heat stored into the building mass. 

In the future, there will be a need for smart heating networks and they could even play 

a role in balancing the electricity networks as more intermittent renewable electricity 

production is increased [10]. Smart heating systems will connect the production and 

consumption sides into a system that is more efficient compared to the traditional one.  

In a smart heating network, the customers collaborate with the energy utility and even 

become prosumers who produce energy to the network. These developments require new 

business models and novel control methods for the system to benefit all parties.  

In addition, new technologies also have to be implemented in buildings, such as more 

efficient heat exchangers and online measurements. The modelling of areas more 

accurately will also be one requirement for smart heating systems. On the other hand, the 

smart heating system itself will produce more data for analysis than a conventional 

heating system. 

Studies have been done on cost formation for local production from spatial cost point 

of view [11]. In the study, a link between the location of the local production in relation to 

the consumption was found. In addition, marginal cost formation of DH has also been 

studied in Syri et al. [12] where significant savings for the production system were found 

when incorporating external heat producers. However, this study noted that heat 

distribution issues in networks and the spatial nature of production units was not taken 

into account. In Dominkovic et al. [13] marginal pricing of heat was studied and results 

indicated that total production costs and emissions decreased when waste heat was 

incorporated into the system. The study also noted that heat pump production might 

benefit from lower DH temperatures. 

Prosumers in DH networks have also been studied in Brange et al. [14] and their 

potential was considered significant. Although, this study noted the need of a closer 

environmental research into a specific area. Potential for excess heat delivery to DH 

networks have been studied in Sweden [15] and Japan [16] where significant potential 
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was found. In addition, excess heat potential mapping has been also done on a country 

level [17] and on a regional level [18]. In Denmark, sources of waste heat were found to 

be present near almost all studied DH networks and that they could play a significant role 

in the heating systems of the future [18]. However, the study mapped the proximity of the 

waste heat source in relation to the areas with DH networks but did not take DH network 

specific attributes into consideration. 

The sources of distributed production of excess heat to DH networks are usually 

coming from different types of buildings, such as industrial and domestic buildings, 

shopping centers, office buildings, hotels, indoor ice skating rinks and supermarkets. 

Utilizing this kind of local excess heat has been seen as beneficial since it decreases costs 

and reduces the use of combustible fuels and emissions [16, 19, 20]. In addition to waste 

heat utilization, DSM has been studied on a building level [21] as well as system level [22] 

in order to understand the potential and the effects of the actions. However, these studies do 

not fully take into account the spatial nature of the DH system and the challenges it brings. 

This issue was also noted by Syri et al. [12] by stating that in a network that covers a large 

geographical area distribution issues have to be considered. Also Kontu et al. [22] noted 

the issues arising from the spatial nature of the DH network. 

These previously mentioned studies have all noted the benefits of either excess heat 

production or customer side activation in the form of DSM or prosumerism, but there is a 

need for closer analysis of the heat networks themselves in order to understand what 

drivers are there for maximizing local production. 

Local heat production is usually made with heat pumps from some kind of waste heat 

source, for example waste heat from cooling. The challenges regarding heat pump 

production into DH networks are usually economical. The local production has to be 

primed into higher temperatures so it can be utilized in the network and then it needs to be 

delivered to the location where energy is needed. This causes expenses in form of 

investments and operational costs. Mismatch between the waste heat temperature and the 

DH network temperature, which hinders utilization has also been recognized in  

Lund et al. [7]. 

Sometimes local heat pump production is not profitable because DH companies are 

buying the excess heat at a price level compared to their own production costs that can be 

quite low. For example, Combined Heat and Power (CHP) production with biofuels is 

subsidized in Finland and this leads to low heat production costs. DH companies then use 

only this price as a reference price for excess heat without taking into account the positive 

effect on the DH network.  

Sometimes the price is so low that real estate owners do not have incentive to invest in 

excess heat production, especially, if the required temperature levels are high compared 

to the economical production of the heat pump. However, the proliferation of heat pump 

technology utilization is driven by technological advances, increasing prices of energy 

and legislation regarding energy efficiency and environmental protection [23]. If the 

local production is static and heat is produced consistently around the year, the 

seasonality of DH in northern countries might be an issue, usually in the summer the heat 

demand is very low compared to the winter. 

Brand et al. [24] studied the effect of prosumers in a DH network concluding that 

when the locally produced heat is lower than the network temperature, the local 

production can harmfully affect the neighboring customers. 

Further research is required to better understand how the network topology in DH 

networks could be analyzed so that areas most suitable for distributed local production 

are recognized. If the reason for unexploited local production is indeed economic based 

on the current pricing models, price levels, DH temperature levels or the unprofitable 

investment into a larger heat pump for excess production a deeper understanding into the 

factors affecting such systems is needed. 
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Main research questions of this study are related to whether areas suitable for lower 

supply temperatures can be identified using traditional network simulation tools and what 

drivers make local heat pump production profitable. In addition, network heat loss and 

emissions impact of these actions is studied. 

Favorable locations for local distributed heat production and attributes that promote 

local production are investigated by simulating an existing DH network in the 4th largest 

city in Finland, Vantaa. The favorable locations are those where the reduction in supply 

temperature is the largest in all studied scenarios. In addition, actual technical building data 

is analyzed with real customer substation data to determine suitable areas for production 

and temperature levels in the network that would maximize local heat production. 

Customers’ motivation to participate in local heat production through heat pumps are 

analyzed through Net Present Value (NPV) analysis where the heat pump investment 

needed for local production is optimized using hourly prices for electricity, heat purchase, 

surplus heat sales, capital and operational costs and network supply temperatures.  

The profitability is compared to the underlying real estate investment return targets 

determined by real estate market information. 

It was found that by using the existing simulation tools available for the DH company 

favorable locations for local production can be found. In addition, by analyzing open 

source building data it is possible to determine areas which have suitable building stock 

for local production. It was also found that lower supply temperatures not only reduce 

emissions but also promote profitable local heat pump production significantly when the 

NPV of heat pumps in buildings is optimized. Local production was found to increase 

1,214 MWh which is 4.6% of the total annual heat consumption of the area. 

METHODS  

The methods in this article follow two steps. First, simulation of the DH network 

reveals areas with potential for low temperature networks. Static simulation of the DH 

network is conducted at key moments when production unit changes happen. Second, the 

profitability of investments into local heat production in the identified areas is 

determined by optimising the NPV of local heat pump production. 

Determining simulation periods 

Heat demand is seasonally oriented in heating networks, affecting the production of 

DH. DH systems usually have several production units, which are started based on their 

costs. This allows to divide the year into different time sets based on the production.  

The production data can be gathered into a duration curve, where distinct periods of 

production can be seen. The change in production scenarios affect the pumping areas 

since there is more energy to transfer and it is strongly affected by change in  

outside temperatures. 

Usually DH systems have different pumping areas that serve the heat demand of 

buildings in that area. Whenever the heat demand changes, the production has to 

accommodate to this new demand by increasing or decreasing heat production and 

pumping power. This changes the balance of heat supply in the network. 

To determine favorable locations for local production, the network transfer of heat 

was simulated in different outside temperatures with a Geographic Information Systems 

(GIS) model where every pipe, pumping station, production facility and customer DH 

substation have a geographical location. Also, the pipe characteristics are built into the 

model. This means that pipe size and length are also taken into consideration.  

The simulations were done with Trimble NIS. Trimble takes into account the DH pipe 

heat conductivity along with heat demand and outside temperature. For the calculations 

the Trimble program uses Neplan’s heating basic module as a computing engine [25]. 
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The DH water temperature from the production facilities is based on the needs of the 

customers. Each customers DH substation has to have a certain DH water temperature in 

the corresponding outside temperature. The customer’s geographical location set the 

need for certain temperature and flow from the production units. In this sense the 

customers on the edges of the network are critical in balancing the heat production. 

Potential for local heat production 

The maximum potential for real estate owners to produce heat into the network was 

assessed with a calculator that optimizes the maximum heat pump installation  

(peak power) according to the profitability of the investment compared to real estate 

investor’s return target. The size of the heat pump was calculated for each property type 

(retail, residential, logistics and office) and the heat consumption for each property type 

was the aggregated consumption of all buildings in the observed area. The consumption 

profiles were derived from real consumption data in the area weighting also for the 

building construction years. 

The heat pump sizing optimization follows the method presented by Kontu et al. [26]. 

In the method, the current heat demand of a property (measured hourly over a year) is met 

with alternative heating solution (heat pump + electric boiler), and the size of the 

alternative solution is optimized so that the NPV of the investment is maximized.  

The annual net savings are calculated by deducting the costs of running the alternative 

solution from avoided DH costs. The paper presented the following equation for  

the optimization: 
 

NPV = −(HP + EB + EC) + ∑
∑ [𝐻dh × 𝑃dh𝑡

− (
𝐻hp

COP
+ 𝐻eb) 𝑃e𝑡

+ 𝐻open (𝑃open𝑡
−

𝑃e𝑡

COP
)] + 𝐿dh𝑡

− OPEX − 𝐸𝑡
8,760
1

(1 + 𝑟)𝑡

𝑡

1

 (1) 

 

where HP, EB, EC are respective capital expenses for heat pump, electric boiler and 

larger electricity connection. The net savings from using heat pump is calculated with the 

following parameters: Hdh is consumed DH energy, 𝑃dh𝑡
 is price [EUR/MWh] of DH at 

time t, Hhp is electricity required for HP, Heb is electricity required for EB, 𝑃e𝑡
 is price of 

electricity, Hopen is energy sold to Open DH, 𝑃open𝑡
 is price received for energy sold to 

Open DH, 𝐿dh𝑡
 is load demand cost for DH, OPEX is operating expenses of HP, Et is 

fixed annual electricity capacity costs and r is used discount rate. A more detailed 

description of the method can be found in Kontu et al. [26]. Since in this paper the heat 

that can be produced into the DH networks is analyzed more closely, the above method 

was altered so that the Coefficient of Performance (COP) changes when heat is produced 

into the network (in a higher temperature than needed for own consumption). 

Furthermore, basis scenario was calculated with one heat pump where if energy is 

produced into the DH network, the whole energy production for that hour is calculated 

with the lower COP (based on the DH supply water temperature). In the second scenario 

a second heat pump is installed (that increases the total capital expenses of the heat pump 

system by 25%) that allows producing the first 50 °C of water with the higher COP and 

the rest with the lower COP (based on the supply temperature). 

DATA 

The DH network examination consist of real measurement data from a DH network in 

Vantaa, Finland. The data was collected from a time span of one year from 2018.  

The data is actual hourly production data from each DH production unit, building related 

data, and customer substation measurement data. In addition to using this data the 

network was also modelled for simulations of heat losses in different production 



Penttinen, P., et al. 
How to Promote Local District Heat Production ... 

Year 2021 
Volume 9, Issue 2, 1080343  

 

Journal of Sustainable Development of Energy, Water and Environment Systems 6 

scenarios. Open source building data was used to assess the local heat production 

potential of buildings in selected areas. This data contains all buildings in the city and has 

information on the building properties such as purpose of use, year of construction, floor 

space and heating system. 

Along with the building data, the actual heat consumption was also analysed to 

determine lower temperature levels for the selected area. DH measurement data was 

collected from substations. This data includes hourly peak power, supply and return 

temperatures and water flow. All of the measurements are from the DH network side.  

No data was available from the building heating system side. 

Input data for the local production optimization tool is described in more detail in 

Table A3 (Appendix). 

Overview of the District Heating system 

The DH system consists of several production units. There are two CHP plants that 

have different production units. CHP 1 has one biofuel boiler and one coal boiler, each 

connected to their own steam turbine. There is also a gas turbine that is connected to a 

heat-recovery steam generator. CHP 2 has two waste-to-energy boilers that are connected 

to one steam turbine. CHP 2 also has a gas turbine that is connected to a heat-recovery 

steam generator. Both CHP plants also have heat storages that are used for balancing 

short term demand fluctuations. Heat Only Boilers (HOB) are used whenever the heat 

demand is high or when a CHP plant is offline. The HOB have gas as their main fuel and 

oil as a reserve fuel apart from HOB 2 that only uses oil. Peak power produced in 2018 

was 654 MW and annual production was 1,900 GWh. Length of the DH network was  

564 km in 2018 [9]. More detailed information about the production units and the DH 

network is displayed in Table A1 (Appendix). 

An overview of the DH system and the location of the production units can be seen in 

Figure 1. The locations of the CHP power plants are marked with red squares (CHP 1 and 

CHP 2), pumping stations in blue squares (P 1-7) and HOB in green squares (HOB 1-5). 

The black lines mark the different pumping zones in the network. 
 

 
 

Figure 1. Overview of the DH network and production units 
 

At every intersection of two pumping areas is a pumping station that has 

interchangeable pumping direction depending on the consumption and production of 

energy. The network is not built as a loop so the pumping areas do not change as the 

production is increased or decreased. However, some pumping stations are switched off 
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when the production is decreased significantly in the summer and less pumping power  

is needed. 

RESULTS 

This section presents the identified locations favourable for local heat production, 

building specific data analysis, building heating system analysis, annual heat losses, 

potential for local production and the heat loss reduction resulting from lower supply 

temperatures and the following reductions in emissions. 

Locating network areas of interest  

Simulation periods were determined according to the before mentioned method of 

analysing the changes in production over a year. During the year, three distinct periods of 

production were found. In one, during the coldest period of the year, all different 

production facilities are in use. In the second, only two main CHP plants are in use and in 

the warmest period of the year mainly one CHP plant is used. These three scenarios affect 

the pumping areas since there is more energy to transfer. The change in production occurs 

at outside temperatures of −26 °C, +0 °C and +14 °C. These are the three periods at which 

the DH network is examined more closely in the static network simulation. The duration 

curve can be seen in Figure A1 (Appendix). 

Validation of the simulation program was done in referencing the temperatures in the 

network given by the simulations to actual production temperatures from 2018 and the 

temperatures were during winter time. The result of this validation was that when 

temperatures were below freezing, the actual supply temperatures were between −4% and 

+5% of the value given by the simulation. In the summer time the temperatures were 

higher than in the simulation by about 10%. This can be due to heat transfer to the 

neighboring cities that use a higher DH temperature. 

The areas of interest can be seen in Figure 2. The temperature levels are indicated with 

colors blue, yellow and red. The temperature levels are different in each situation due to the 

different energy needs at that corresponding outside temperature. The temperature levels 

are < 80 °C (blue), 80-82 °C (yellow) and 82-83 °C (red) when outside temperatures are 

+14 °C. In outside temperature 0 °C, the same values are < 91 °C (blue), 91-93 °C (yellow) 

and 93-94 °C (red). The values for outside temperature of −26 °C can be seen in Figure 3. 

The other two simulations can be seen in Figure A2 and Figure A3 (Appendix). 
 

 
 

Figure 2. Areas of interest 
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Figure 3. Year of DH connection for studied areas 

 

In all three simulations same locations appeared to have maximal decrease in supply 
temperature which would seem to make these areas favorable places for local production. 

These areas are marked as Zone A, Zone B and Zone C. These locations are, as expected, 

on the edges of the network, but surprisingly fairly close to the production units. 

Especially the southern areas of the network seem to be ideal for local production since 

these areas have larger parts of the network in lower temperature in the winter when heat 

is in high demand. The other parts of the network that have higher heat losses are usually 

due to longer transmission pipe to a neighboring network, a small industrial area or only a 

few consumers that are further from the main network. 
One reason, according to Rämä and Sipilä [27] for the drop in supply temperature 

could be low heat density in the depicted areas, i.e., there is not much consumption in 

relation to the length of DH pipe. Especially when the heat consumption is very low in the 

summer, the flow of DH water in the pipes is also low. This leads to bigger heat losses in 

smaller pipes compared to large ones due to the smaller water volume. However, the 

increase in heat losses in the summer is a common problem for this type of heating 

networks in general. These areas offer an interesting possibility for the larger network if 

supply temperatures can be locally decreased, since this could give the possibility to 
decrease overall network supply temperatures. 

Analyzing area specific building data 

The building stock of the areas presented in Figure 2 was analyzed in order to assess 

the potential for lowering supply temperatures. The collected building data is presented 

in Table 1. The zone with the largest building mass was Zone A. This area also has the 

highest share of buildings that are not connected to the DH network. Zone A also has a 

fairly high share of residential buildings while there are also some retail and logistics 

buildings. Zone B has a more even division between residential buildings compared to 

other buildings and it also has the highest share of DH connected buildings. In Zone C 
almost all of the buildings are residential buildings and the percentage of DH connection 

falls between the two other areas. 

The improvement in energy efficiency of buildings has led to lower temperature 

needs on the secondary side temperatures (building side heating network). The 

recommended values reflect the buildings maximum values at the rated outside 

temperature of −26 °C for Southern Finland. For radiator heating for newly built 

buildings these are +45 °C and +30 °C degrees for supply and return temperatures, 

respectively [28]. The values have drastically dropped from previous rated temperatures. 
However, the system must always be rated as low as possible without compromising 

indoor conditions. Rated temperatures for Domestic Hot Water (DHW) heat exchangers 

are also presented, which are the same for all buildings. In the case heating network a 

minimum temperature of 65 °C is guaranteed to customers in order to achieve a DHW 

temperature of 58 °C. These values can be seen in more detail in Table A2 (Appendix). 

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

20s 10s 00s 90s 80s 70s 60s 10s 00s 90s 10s 00s 90s 80s 70s 60s
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Table 1. Buildings in selected areas 

 

 
Zone A [m²] Zone B [m²] Zone C [m²] 

All buildings 1,075,806 295,261 448,723 
Residential 797,532 150,197 407,901 

Office 18,738 3,993 0 

Retail 110,985 90,515 4,836 

Logistics/industrial 103,671 40,428 1,510 

Public 30,917 3,501 30,006 

Hotels 5,875 0 0 

Others 8,088 1,351 4,470 

Total buildings in DH 727,620 246,982 326,769 

Residential 544,174 131,321 291,061 

Office 18,620 3,993 0 

Retail 101,202 90,515 4,800 

Logistics/industrial 33,554 17,798 88 

Public 24,063 3,169 29,575 

Hotels 4,500 0 0 

Others 1,507 186 1,245 

Share of DH Zone A [%] Zone B [%] Zone C [%] 

All buildings 68 84 73 

Residential 68 87 71 

Office 99 100 0 
Retail 91 100 99 

Logistics/industrial 32 44 6 

Public 78 91 99 

Hotels 77 0 0 

Others 19 14 28 

 

Since the construction year of the building affects the rated temperatures for the 

heating system, the year of connection to the DH network was also studied and can be 

seen in Figure 3. Zone A has the oldest connections. Zone B has the highest share of 

newly connected buildings while Zones A and C are mainly connected in the 80s and 70s. 

Based on these findings, Zone B was taken as a priority due to newest buildings stock. 

Excess heat production potential is higher retail, logistics and industrial buildings than in 

residential and office buildings due to the lack of heat emitting processes in office and 

residential buildings. However, residential and office buildings can utilize heat pumps to 

recover waste heat from ventilation and waste waters. Commercial buildings can recover 

waste heat from cooling and other heat intensive processes. 

Assessment of lower temperature levels 

The measured average temperature levels in the network vary between 76 °C and 

109 °C on the supply side and between 29 °C and 51 °C on the return side. The absolute 

minimum temperature level in existing networks in Finland is defined by the heating of 

DHW which has to be 58 °C to avoid Legionella bacteria. Lower levels are possible but 
require additional heaters on the DHW side. In addition, the flow restrictions of existing 

networks and customer heat exchangers limit lowering the temperatures at lower outside 

temperatures. Since the minimum temperature guaranteed in the existing network is 

65 °C, this is taken as the lowest supply side temperature.  

Reducing the supply temperatures in an existing DH networks has been widely 

recognized in Finland [29]. However, the progress seems slow even though newer 

buildings can utilize lower temperatures more efficiently as was also shown in the rated 

values of heat exchangers. The main issue is that normally networks contain new and old 
buildings in the same areas. However, areas of new buildings could be separated with a 

shunt connection or a heat exchanger to create new low temperature networks. Connecting 

a low temperature network to an existing network has been studied by Volkova et al. [30] 

on small networks. Dalla Rosa et al. [31] studied separate low temperature networks 

(supply temperature 60 °C) with a shunt connection and found that a separate network was 

approximately 4% more expensive compared to the more traditional network (supply 

temperature 90 °C), but due to lower operational costs, the end user tariff was almost the 

same. Mostly due to long distribution distances in conventional DH networks, the supply 
temperature has to be higher than the need of all customers to ensure the heat delivery for 
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everyone in the network. This is one reason why low temperature DH networks need a 

separate connection to the conventional DH network. 

Comparing the actual supply temperatures to the recommended supply temperatures 

by the local energy company [32], it is estimated that supply temperatures can be 

decreased, especially in the summer. In addition, since the minimum guaranteed 

temperature is 65 °C, the summer temperatures can be decreased further when 

temperatures are above 10 °C and heating is used only for DHW. These three different 

supply curves can be seen in Figure 4. These three scenarios are called Base, Lower and 

Summer. The return temperature was assumed to decrease the same amount as the supply 

temperature in Lower and Summer in outside temperatures below 5 °C compared to Base. 

In Lower at outside temperatures over 5 °C same return temperature was used as in Base. 

In Summer this was done at outside temperatures over 10 °C. The temperature levels can 

be seen in Figure 4. 
 

 
 

Figure 4. Supply temperature curves 

Areas of large annual heat loss 

The simulation results were earlier presented in Figure 3. In closer inspection of the 

marked areas, the heat load and losses were simulated with Trimble. The simulation 

results can be seen in Table 2, where Zone A is the western most area in the network. 

Correspondingly, Zone B is in the middle and Zone C in the east. 
 

Table 2. Momentary heat load and heat losses of studied zones at simulated temperature 

 
Heat load and loss +14 °C [kW] 

 
Zone A Zone B Zone C 

Power 7,780 1,207 2,130 

Heat loss 1,620 169 455 

Sum 9,400 1,376 2,585 

Heat load and loss 0 °C [kW] 

 
Zone A Zone B Zone C 

Power 24,651 3,824 6,750 

Heat loss 3,554 331 1,016 

Sum 28,205 4,155 7,766 

Heat load and loss −26 °C [kW] 

 
Zone A Zone B Zone C 

Power 57,494 9,563 15,743 

Heat loss 6,891 708 2,153 

Sum 64,385 10,271 17,896 
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The simulation was verified regarding Zone B with actual consumption data from 

2018. The actual measurement data corresponds well to the simulation results. 

Amount of profitable local heat pump production 

The amount of local heat pump production increased in all real estate types as the 

supply temperature decreased being at maximum 1,214 MWh or 4,6% of the total annual 

heat consumption. The results of the heat pump investment optimization are presented for 

all real estate types in Table 3. 
 

Table 3. Amount on increased local production 
 

Property type Retail 
Number of heat pumps 1 2 

Scenario Base Lower Summer Base Lower Summer 

Excess energy produced [MWh] 91 717 760 67 495 527 

Property type Residential 
Number of heat pumps 1 2 

Scenario Base Lower Summer Base Lower Summer 
Excess energy produced [MWh] 41 313 344 29 242 270 

Property type Office 
Number of heat pumps 1 2 

Scenario Base Lower Summer Base Lower Summer 
Excess energy produced [MWh] 2 17 18 2 13 14 

Property type Logistics/industry 
Number of heat pumps 1 2 

Scenario Base Lower Summer Base Lower Summer 
Excess energy produced [MWh] 11 86 92 7 46 50 

Total produced energy [MWh] 145 1,133 1,214 104 796 862 

 

Already at current temperature levels investments into local heat production would be 

reasonable with a total amount of production being 145 MWh with a single heat pump 

installation. Production in total increased 782% compared to Base scenario using 

temperature levels from Lower scenario. This increase was 839% compared to Base 

scenario using temperature levels from Summer scenario. These increases were similar 

with installations of two heat pumps but the total produced energy was smaller. 

In terms of excess heat production and profitability in all real estate types, the 

production system with one heat pump appears to be better. This is due to the smaller 

investment. The largest potential of excess heat production was in retail buildings. 

The heat pump production was largest in winter between November and February most 

likely due to higher prices paid for the surplus heat coinciding with low electricity prices. 

However, this is beneficial for the DH system, since heat demand is largest in the winter. 

The optimization results are displayed in more detail in Table A4-Table A7 (Appendix). 

Heat loss reduction 

Hourly heat losses were estimated based on the network information using the actual 

supply and return temperatures. The change in heat losses were assessed with a network 

model consisting of actual network data on pipe dimensions and lengths. The values used 

in the heat loss calculations can be seen in Table 4. The reduction in heat loss was 

significant decreasing 16.6% and 22.1% in the two studied cases compared to the current 

base scenario.  
 

Table 4. Heat losses of different scenarios 
 

Scenario Heat consumption [MWh] Heat losses [MWh] Heat losses [%] 

Base 26,678 2,008 7.5 

Lower 26,678 1,674 6.3 
Summer 26,678 1,565 5.9 



Penttinen, P., et al. 
How to Promote Local District Heat Production ... 

Year 2021 
Volume 9, Issue 2, 1080343  

 

Journal of Sustainable Development of Energy, Water and Environment Systems 12 

Emission reduction 

The reduction in heat loss and local production also reduces emissions from the 

overall heating system. Heat loss reduces the need for all production, but it is assumed to 

decrease DH production. The local heat pump production also replaces DH production 

but causes emissions because of increased electricity use. However, this will reduce 

overall emissions because of heat pump efficiency and smaller emission intensity of 

electricity. Emissions reduced due to smaller losses were 82,498 kg CO2 and  

109,421 kg CO2 in scenarios Lower and Summer, respectively. The maximum emission 

reduction from excess heat production was 170,020 kg CO2 in Summer scenario with one 

heat pump installation. The total emissions of the area in Base case were  

7,085,269 kg CO2 so the overall emissions reduction from reduced losses and excess 

production was 4%. Emission factor for produced district heat in 2018 in Vantaa was  

247 g CO2/kWh [33]. The increased electricity consumption of heat pumps was 

calculated with an emission factor of 107 g CO2/kWh [34]. 

Also overall production cost is likely to decrease even though the prosumers are 

compensated from their production if the pricing of excess heat from prosumers is 

correctly priced from the energy producer. However, this aspect was not thoroughly 

investigated in the article. 

CONCLUSIONS 

Understanding the basic fundamentals of DH networks is the first step in developing 

more efficient and cleaner energy systems. As distributed production that is not based on 

burning is becoming a necessity, it is imperative to make the most profitable investments 

first. Two key elements are required for this, the most favourable location and the value 

of the action. This paper focused on how to evaluate the location for these 

implementations and the profitability of customer participation in the depicted DH 

network. The results show that using common network planning tools and open source 

building data, favourable locations for local production can be found. In addition, when 

combining real estate investment logic with reduced supply temperatures in a low 

temperature DH network, profitable local production can be increased by 1,214 MWh 

which is 4.6% of the total annual heat consumption of the area. These actions also lead to 

large emissions reductions on a system level. 

The goal of this study was to determine drivers for profitable local heat production. 

One limitation in the calculations of this study is the amount of maximum production. 

More research should be done on the limit of excess production in a certain area of a DH 

network. The investment optimization model was a simplification of a complex issue of 

real estate investment logic into local heat production. 

The spatial balancing of the DH network can also lead to savings in energy production 

on the larger network level. These savings would amount to greater value of local 

production in certain locations of the heating network compared to other locations. 

More research has to be conducted in combining the production and transportation 

costs of energy in the DH networks. This would aid the assessment of the required 

magnitude of local production in order to achieve a well-balanced DH network.  

This involves further research into separating low temperature networks from existing 

DH networks, as has already been studied and found to be a reasonable investment.  

The impact of heat storages, especially seasonal storages, should also be taken into 

consideration when assessing the value of distributed local production. Storages could 

also help balance the short term need for heat. 

Pricing models of customers and customer centric investments require more research 

from the DH networks perspective, can customers help in creating new production and 

balancing the network if the pricing incentive is correct? In order to have holistic pricing 
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for different situations one should consider the value of local production in different 

temperatures and locations in the DH network, the magnitude, duration and location of 

DSM measures, seasonal storages (distributed or central) and also the pricing for large 

scale heat transfer between networks. In addition, prosumers have to make decisions on 

how and when to produce energy into the network, based on profitability, emissions or 

balancing the network. This could be done by a multi-objective optimisation on a  

local level. 

Improving the capabilities of the DH network to utilize local production, waste heat 

and DSM should be studied more closely. The reduction of the network supply 

temperature would allow for wider temperature range of production possibilities to be 

utilized. In addition, the impact and value of DSM actions on a local level by different 

buildings should be studied further as this is an important part of a smart heating system. 

This is especially important because maximum flows are related to maximum power 

which is usually reached at the coldest period of the year. This could be mitigated by 

using DSM to avoid peaks caused by DHW heating. 

The restrictions related to reducing supply temperatures has to be understood better. 

There is a need for data collection from building side heating systems in existing 

networks in order to understand critical limits and also to optimize the overall energy 

system. For example fault detection could be used to determine local critical substations. 

In addition, more research needs to be conducted on the network itself and the effects on 

it when prosumers change from consuming to producing energy. 

Reducing supply temperatures and heat losses in the DH network might also be 

possible with a heat pump connected to the DHW system. This way the DH network 

temperature could be lowered and the DHW would still hold at the required  

temperature level.  
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http://www.nordpoolspot.com/
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APPENDIX 

 
 

Figure A1. Duration curve of DH production 

 

 
 

Figure A2. DH network temperatures in +14 °C 
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Figure A3. DH network temperatures in +0 °C 

 

Table A1. Production unit information [9] 

 

 
Bio [MW] Coal [MW] Gas [MW] Heat storage [MWh] 

 
Production units  

(CHP 1) 
126 230 90 800 

 

 
Waste [MW] Gas [MW] 

Heat storage 

[MWh]   

Production units  

(CHP 2) 
140 200* 600 

  

 
HOB 1 [MW] HOB 2 [MW] HOB 3 [MW] HOB 4 [MW] HOB 5 [MW] 

Production units 

(HOBs) 
92 92 145 200 80 

* Max heat achieved in combination with waste and gas CHP 

 

Table A2. Rated maximum temperatures of heat exchangers in existing buildings [28] 
 

Recommendations for new connections in 2013 Supply [°C] Return [°C] 

Heat exchangers of heating, radiator heating 45 30 

Heat exchangers of heating, radiator heating, exceptions 60 30 

Heat exchangers of heating, underfloor heating 35 30 

Comfort underfloor heating for wet rooms 30 25 

Heat exchangers for ventilation 60 30 

Recommendations for new connections in 2003   

Heat exchangers of heating, radiator heating 70 40 

Heat exchangers of heating, underfloor heating 45 - 

Recommendations for new connections in 1992   

Heat exchangers of heating, radiator heating 70 40 

Heat exchangers for ventilation 60 40 

Renovated buildings (pre 1992), radiator heating 80 60 

DHW heating Hot water [°C] Cold water [°C] 

Heat exchangers for DHW 58 10 
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Table A3. Input values for the HP optimization 

 

Parameter Residential Office Logistics Retail Reference 

Discount rate (property yield) [%] 4.5 6.8 11.0 5.2 [35] 

Investment cost, sum [EUR/kW] 1,300 900 900 900 
 

Long-term (pump and bore well),  

70% [EUR/kW] 
910 630 630 630 [36, 37] 

Short-term (compressor and project),  

30% [EUR/kW] 
390 270 270 270 [36, 37] 

Electric boiler [EUR/kW] 45-80 35-65 35-65 35-65 [38] 

Maintenance cost [EUR/kW] 5.9 5.4 5.4 5.4 [36, 37] 

Operating lifetime 
     

Long-term  

(pump, bore well, boiler) [a] 
30 [36, 37] 

Short-term  

(compressor and project) [a] 
15 [36, 37] 

DH price increase (in real terms) [%] 2.5 [41] 

Electricity price increase (in real terms) [%] 2.5 [41] 

Total building area [sqm] 131,321 3,993 17,798 90,515 [44] 

Annual heat consumption [MWh] 13,813 372 2,268 7,769 [45] 

Annual electricity consumption  

(other than heating) [MWh] 
5,726 408 2,192 13,913 [45] 

Average annual COP to cover own heat needs 

(up to 50 °C) 
3.5 3.6 4.0 3.6 [36, 37] 

Average annual COP for excess heat  

(from 50 °C onwards) 

50 °C: 3.25, 60 °C: 2.81, 70 °C: 2.46, 80 °C: 2.10, 90 °C: 1.77, 

100 °C: 1.44 
[36, 37] 

Monthly excess heat purchase price,  

1: Jan, 2: Feb, etc. [EUR/MWh] 
1: 37, 2: 34, 3: 26, 4: 15, 5-9: 12, 10: 16, 11: 30, 12: 34 [31] 

Electricity demand charge according to the pricing of Vantaa Energy [39] 

Electrical connection increase according to the pricing of Vantaa Energy [39] 

Electricity price 2018 spot-price + spot-premium + electricity transfer + electricity taxes [39, 42, 43] 

DH price according to the pricing of Vantaa Energy [40] 

 
Table A4. Optimization results for retail buildings 

 

Property type Retail 

Number of heat pumps 1 2 

Scenario Base Lower Summer Base Lower Summer 

HP energy use [MWh] 7,769 7,769 7,769 7,769 7,769 7,769 

Excess energy produced [MWh] 91 717 760 67 495 527 

Electrical boiler consumption [MWh] 130 130 130 416 416 416 

Maximum power of heat pump [MW] 2.7 2.7 2.7 2.2 2.2 2.2 

Maximum consumption [MW] 4.3 4.3 4.3 4.3 4.3 4.3 

Increase in electricity connection 

[MW] 
0.7 0.7 0.7 −0.2 −0.2 −0.2 

NPV [EUR] 1,557,430 1,681,166 1,689,978 1,799,704 2,031,009 2,041,894 

IRR [%] 9.7 10.0 10.1 10.3 10.8 10.9 

Return [EUR] 192,958 200,353 200,815 173,995 186,126 186,697 

Return [%] 7.8 8.1 8.1 6.9 7.3 7.4 

Average price of HP energy 

[EUR/MWh] 
29 28 28 27 25 25 

Capital cost of HP [EUR/MWh] 24 24 24 25 25 25 

Total cost [EUR/MWh] 53 52 52 51 50 50 

Annual heat pump energy coverage 

[%] 
98.3 98.3 98.3 94.6 94.6 94.6 

Average price of DH energy 

[EUR/MWh] 
58 58 58 58 58 58 

Capital cost of DH [EUR/MWh] 0.4 0.4 0.4 0.4 0.4 0.4 

Total cost [EUR/MWh] 58 58 58 58 58 58 

Increased electricity consumption 

[MWh] 
2,312 2,681 2,700 2,484 2,630 2,640 
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Table A5. Optimization results for residential buildings 

 
Property type Residential 

Number of heat pumps 1 2 

Scenario Base Lower Summer Base Lower Summer 

HP energy use [MWh] 13,813 13,813 13,813 13,813 13,813 13,813 

Excess energy produced [MWh] 41 313 344 29 242 270 

Electrical boiler consumption [MWh] 226 226 226 417 347 344 

Maximum power of heat pump [MW] 2.8 2.8 2.8 2.6 2.7 2.7 

Maximum consumption [MW] 4.9 4.9 4.9 4.9 4.9 4.9 

Increase in electricity connection [MW] 1.1 1.1 1.1 −0.3 −0.3 −0.3 

NPV [EUR] 3,507,953 3,382,910 3,393,152 3,949,405 4,092,707 4,103,676 

IRR [%] 10.6 10.4 10.4 10.5 10.6 10.6 

Return [EUR] 334,317 329,320 329,492 321,003 334,027 334,884 

Return [%] 8.9 8.7 8.7 7.5 7.6 7.6 

Average price of HP energy [EUR/MWh] 43 43 43 40 38 38 

Capital cost of HP [EUR/MWh] 19 19 19 22 23 23 

Total cost [EUR/MWh] 62 63 63 62 61 61 

Annual heat pump energy coverage [%] 1 1 1 1 1 1 

Average price of DH energy [EUR/MWh] 62 62 62 62 62 62 

Capital cost of DH [EUR/MWh] 0.3 0.3 0.3 0.3 0.3 0.3 

Total cost [EUR/MWh] 62 62 62 62 62 62 

Increased electricity consumption [MWh] 4,154 4,414 4,430 4,256 4,279 4,285 

 
Table A6. Optimization results for office buildings 

 
Property type Office 

Number of heat pumps 1 2 

Scenario Base Lower Summer Base Lower Summer 

HP energy use [MWh] 372 372 372 372 372 372 

Excess energy produced [MWh] 2 17 18 2 13 14 

Electrical boiler consumption [MWh] 16 16 16 23 23 23 

Maximum power of heat pump [MW] 0.1 0.1 0.1 0.1 0.1 0.1 

Maximum consumption [MW] 0.2 0.2 0.2 0.2 0.2 0.2 

Increase in electricity connection [MW] 0.1 0.1 0.1 0.0 0.0 0.0 

NPV [EUR] 122,171 121,663 121,783 151,230 156,322 156,602 

IRR [%] 15.7 15.7 15.7 17.6 18.0 18.0 

Return [EUR] 8,530 8,497 8,505 8,143 8,473 8,491 

Return [%] 8.0 8.0 8.0 7.6 7.9 7.9 

Average price of HP energy [EUR/MWh] 33 33 33 28 27 27 

Capital cost of HP [EUR/MWh] 25 25 25 25 25 25 

Total cost [EUR/MWh] 58 58 58 53 52 52 

Annual heat pump energy coverage [%] 1 1 1 1 1 1 

Average price of DH energy [EUR/MWh] 74 74 74 74 74 74 

Capital cost of DH [EUR/MWh] 0.0 0.0 0.0 0.0 0.0 0.0 

Total cost [EUR/MWh] 74 74 74 74 74 74 

Increased electricity consumption [MWh] 117 129 129 121 124 125 

 

Table A7. Optimization results for logistics/industry buildings 

 
Property type Logistics / Industry 

Number of heat pumps 1 2 

Scenario Base Lower Summer Base Lower Summer 

HP energy use [MWh] 2,268 2,268 2,268 2,268 2,268 2,268 

Excess energy produced [MWh] 11 86 92 7 46 50 

Electrical boiler consumption [MWh] 91 91 91 194 194 194 

Maximum power of heat pump [MW] 0.6 0.6 0.6 0.5 0.5 0.5 

Maximum consumption [MW] 1.1 1.1 1.1 1.1 1.1 1.1 

Increase in electricity connection [MW] 0.4 0.4 0.4 0.0 0.0 0.0 

NPV [EUR] 102,188 95,383 95,615 166,170 177,115 177,837 

IRR [%] 13 13 13 15 15 15 

Return [EUR] 55,690 54,983 55,007 48,742 49,879 49,954 

Return [%] 10 10 10 9 9 9 

Average price of HP energy [EUR/MWh] 31 31 31 28 27 27 

Capital cost of HP [EUR/MWh] 29 29 29 30 30 30 

Total cost [EUR/MWh] 60 60 60 57 57 57 

Annual heat pump energy coverage [%] 96 96 96 91 91 91 

Average price of DH energy [EUR/MWh] 60 60 60 60 60 60 

Capital cost of DH [EUR/MWh] 0.0 0.0 0.0 0.0 0.0 0.0 

Total cost [EUR/MWh] 60 60 60 60 60 60 

Increased electricity consumption [MWh] 646 712 715 715 727 729 
 


