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ABSTRACT 

For remote underdeveloped and sparsely populated regions, the use of national power 

grids to provide electricity can be both unsustainable and impractical. In recent years, 

decentralised renewable power has gained popularity, endowing social benefits to the 

local inhabitants through clean rural electrification. However, power reliability and 

system autonomy are often the primary technical concerns as current systems are largely 

single source reliant. Hybrid power systems that utilise multiple complementary 

renewables can help to reduce the dependency on conventional unclean options. A few 

selected case studies for both single source and hybrid power systems are reviewed, 

analysing critical success factors and evaluating existing difficulties. The additional 

integration of the novel rain-powered kinetic-to-electric generator technology to the 

existing hybrid model is analysed. As with development in general, there is no 

one-size-fits-all solution to bringing power to remote communities and the most 

sustainable solution should be found through analysing local resources, environmental 

conditions and maximising local involvement. 
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INTRODUCTION 

In face of global climate change and pressing concerns for energy security, it is now 

accepted that a sustainable energy system is of paramount importance in energy 

development. According to [1], a sustainable energy system needs to adhere to the 

principles of an energy hierarchy: the most desirable being energy conservation, followed 

by sustainable production (renewable energy), and lastly degenerative energy depletion 

(fossil fuels). Under such contexts, the efficacy of traditional power grids are increasingly 

contested due to their inefficiency at delivering electricity to rural areas that are 

underdeveloped in terms of infrastructure and often too sparsely populated for the 

installation of power grids to be cost-effective. Decentralised energy, on the other hand, 

are better fitted for the sustainable model, in its ability to reduce generation and 

distribution inefficiencies and encourage the introduction of renewable modes of energy 

production.  

Decentralised energy systems, often referred to as standalone systems because they 

are not connected to the electric grid, have several important features. First, their 

operational capacity is matched to the demand of the region, which assumes top priority. 

These systems are therefore ideal for remote areas where the system is required to 
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function at low plant load factors. Second, these systems are likely to rely on renewable 

energy sources such as solar photovoltaic (PV), hence their exertion on local resources 

will be limited because of their small scale operation. On the other hand, it also means 

their operation is likely to be seasonal, depending on the availability of, for example, 

sunshine and rainfall. Consequently, the major downfall of decentralised energy systems 

is the extra battery and storage costs, in order to meet off-peak demands. Unlike 

grid-connected systems, standalone systems cannot feed excess energy back onto the 

grid, and they either have to be stored at extra cost or be wasted [2]. Because of this major 

drawback, the decision between grid-connected system and a standalone-decentralised 

system is often hedged on economic feasibility and load factors. 

A wide variety of renewable sources have all been considered for decentralised 

energy generation, including but not limited to biomass, solar energy, wind, and 

hydroelectric energy generations. Among them, decentralised PV systems are the most 

popular as the worldwide Solar Home Systems (SHS) installations have expanded 

rapidly in the last two decades with continuing growth of demand in the developing 

countries of Asia, South America and Africa [3]. However, the efficacies of such systems 

are reliant on the availability of solar irradiation at the locality and cannot be realistically 

expected to satisfy local electrical demands at all times. Consequently, energy generation 

from decentralised sources are often complementary to conventional power generation 

technologies (in most cases, kerosene and diesel). Alternative methods of decentralised 

energy generation are often tried as separate entities to PV and thus encounter much of 

the same problems faced by PV alone, producing less than satisfactory results.  

In order to ascertain higher proportions of clean energy in decentralised energy 

production, hybrid power systems, especially hybrid renewable power systems, should 

be given more consideration. By using case studies, this paper will highlight the 

limitations of PV systems as a standalone decentralised energy system in itself, and give a 

brief overview of current attempts at hybrid power systems in some regions. Further to 

the current renewable sources, this paper suggests the use of rain energy harvesting as a 

complement to hybrid systems, for certain applicable regions, and provides an initial 

theoretical analysis of this novel technique. 

ESTABLISHED USES OF DECENTRALISED SYSTEMS 

Single renewable source systems 

 

Amazon, Brazil.  It has been estimated that approximately 1 in 6 households in the 

Amazon region lacks electric lighting and an estimated two thirds of the households are 

in demand for rural electricity [4]. One of the major attempts at decentralised energy 

production and distribution in the area is the PRODEEM initiative (The Energy 

Development Program in States and Municipalities - Programa de Desenvolvimento 

Energético de Estados e Municípios) implemented by the Ministry of Mines and Energy, 

with the express purpose of the electrification of rural areas that are otherwise 

unconnected by the main electric grid. Over 6000 photovoltaic systems were installed 

until the suspension of the project in 2003 [4], but over 80% of the planned systems failed 

to materialise [5]. Nonetheless, the amount of power involved exceeded 5.2 MW at peak 

operation, which ranked it amongst one of the larger PV based rural electrification 

programs amongst the developing countries of the world at the time [6]. 

Upon evaluation, several intrinsic weaknesses can be found: first, photovoltaic 

systems were the primary option invested in, despite the limited number of clear sunny 

days (partially cloudy being the most frequent) and season-dependent abundance of solar 
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irradiation [7, 8] in the area and the availability of other untapped environmental energy 

sources such the uniquely high levels of precipitation [9]. Secondly, nearly half of the 

systems were mislaid and a third reported operational failure soon after installation, 

severely undermining the success rate of the project. Lastly, all of the PRODEEM 

equipment were imported, hence national involvement were limited, providing very little 

technological knowledge to the local communities. By extension, lack of technologically 

competent personnel and difficulty in acquiring spare parts were part of the major 

problems faced by PRODEEM [4]. 

Following PRODEEM, three more projects were attempted in similar veins: 

PROEOLICA, PROINFA and PCH-HOM, which aimed at rural electrification through 

various technologies including wind, biomass and hydroelectric energy. Very few 

projects met their targeted output: PROEOLICA’s planned installation target was 1050 

MW and only a staggering 2.7% was actually achieved upon its termination and 

incorporation into PROFINA in 2004 [5]. While it appears PROFINA has met its 

deliverables, a significant portion of the reported power yield was borrowed from the 

relatively successful PCH-HOM projects. It is clear that the lack of coordination and 

evaluation between different programmes meant that advances are made sloppily and 

prior faults are not addressed properly before the objectives, targets and deliverables are 

mingled and substituted by other projects. 

 

India.  The Indian government has made several attempts at promoting the use of 

decentralised renewable energy, such as solar and biofuels, both in terms of legislations 

and execution. Integrated Energy Policy Report projects up to a third of the Indian energy 

mix might be made up of renewables by 2032 [10]. The pressing concern for clean energy 

in India is twofold: lack of electricity for lighting and appliances in some regions, as well 

as the use of traditional fuel that threatens the health and safety of rural Indians. However, 

the encouraged shift in consumption patterns toward energy produced from the bio-fuel 

plants have only shown moderate improvement in the overall effective energy efficiency 

[11]. Nevertheless, a four-fold increase in the annual growth rate of commercial 

establishments in the area was observed from 1996 to 1999 along with noticeable 

increase in job creations. 

To complement sustainability, solar lanterns such as those used in Sagardeep Island 

also achieved a degree of success [12]. For effectively regulated demand and load 

conditions, solar energy acts as an economically incentive and technologically viable 

option in contrast to the installation of main power grids for this remote region. Again the 

social impact of electrification is evident: aside from the ability to carry on work in the 

night, some of the hospitals on Sagardeep now have 24 hour electricity supply and the 

availability of street lights has made the island safer. The employment of PV powered 

mini-grid system in the vicinity rather than standalone PV also delivers more stable 

mains AC power, which enables the operation of small electrical machinery for the 

village industries. The availability of electricity at night also encouraged locals to 

participate in night-time entertainment, fostering domestic industry and boosting local 

economy. 

The main setback for solar is its seasonal availability: during monsoon seasons the 

power output is reduced to four hours due to cloud cover and the highest loss of load 

hours occurred [12]. Additionally, the ideal silicon-based PV operational condition is 

well known to be that of a relatively cold and sunny environment rather than the hot and 

humid climate of the region. It is clear that while the utilisation of solar energy is more 

sustainable, it will likely fall short to be the primary energy source in meeting the 

ever-rising rural demand. 
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Bangladesh.  In 2010, 91% of domestic cooking in Bangladesh still relies on 

traditional ‘unclean’ biomass and around half of the population is without access to 

electricity [13]. As the average daily solar irradiation in Bangladesh amounts to 4 

kWh/m
2 

to 6.5 kWh/m
2 

[14] during sunny months, compared to the global average of 

3.61 kWh/m
2 

to 7.96 kWh/m
2 

[15], PV systems as a form of decentralised energy has 

encouraging potentials. As of 2013, an estimated 2 million systems have been installed in 

the country [16]. The critical success of these programmes owed much to the microcredit 

institution of Grameen Shakti, which sold PV systems on credit to rural households, as 

well as NGOs such as The Centre for Mass Education in Science and The Bangladesh 

Rural Advancement Committee, which promoted the technology [14]. Not only does the 

private sector, such as IDCOL, sponsor household SHS systems, but solar irrigation 

pump projects and mini-grid projects are also attempted to provide cleaner energy to 

communal buildings (schools, hospitals) and agricultural lands [17]. The joint efforts of 

both the public and private sector in the dissemination of PV systems are paramount in 

ensuring the success of the SHS system in Bangladesh. 

However, Bangladesh shares similar seasonal monsoon and high temperature issues 

as its Indian neighbour of West Bengal. Hydroelectric power is severely limited in 

Bangladesh due to the flatness of the terrain and the contentious issue of downstream 

water sharing with India. Wind turbines are only applicable in coastal areas where strong 

winds immediately preceding and after the monsoon season may be harnessed to 

complement existing or other forms of generation [18]. 

Hybrid power systems 

Current attempts at utilising hybrid power systems largely rely on a hybrid system of 

both renewable and non-renewable (conventional) energy generation: diesel power is 

often the choice complement to renewable energy systems because of its low initial price 

of installation and easy fuel storage. NREL’s HOMER software (a renewable energy 

modelling software) has been a popular tool to estimate and aid real implementations in 

attempting to converge multiple energy sources into a more efficient mutually 

complementary system. A few combinations of such systems are outlined below: 

 

Photovoltaic-diesel systems.  A 50 kW PV-diesel hybrid system has been installed in 

the village of Campinas, of the scarcely and sparsely populated Amazonas state of the 

North region of Brazil since 1996, providing adequate power for a total of 120 

households [19, 20]. A further PV system of 20 kW was added to the existing diesel 

generator of the village of Araras of the nearby Rondonia state in the same region of 

Brazil, in 2001. The economic feasibility were simulated [21] to be dependent on the 

increase of costs of diesel fuels: without subsidies, a 15% increase in diesel price means 

the substitution of 50 kW diesel system into hybrid becomes economical; while at a 45% 

increase in diesel price in some regions, 100 kW systems could be economically 

converted into hybrid systems. 

Similarly, another simulation study [15] has proposed a potentially viable hybrid 

system of 4 kW PV system together with 10 kW diesel system and a battery storage of 3 

hours of autonomy for use in hot regions such as Dhahran, Saudi Arabia. It was found 

that the percentage of fuel saving compared to diesel-only systems are 19%, with a total 

reduction of carbon emission up to 2 tons per year. 

 

Photovoltaic-wind-diesel systems.  The Tamaruteua village in Para State of North 

Brazil have utilitised the photovoltaic-wind-diesel system since 1999 and its power 
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output was doubled when upgraded in 2005. The system features a PV system of 3.84 

kWp, a combined wind turbine power of 15 kWp and a diesel generation of 36 kW [20]. 

Simulated results [22] suggest the combination of these three energy sources increase 

the overall reliability of the system, as well as reducing CO2 emissions significantly. In 

the case of Algeria, Saheb-Koussa et al. has outlined the complementary nature of PV 

and wind systems, as days without sunshine often coincides with days with high wind 

velocity at the site. For sites tested, not only household demands are met but surplus 

energy are also available several months of the year, allowing extra energy expenditure in 

the area [23]. 

 

Wind-photovoltaic systems.  The Joanes Village of Para state, North Brazil have 

employed a PV system of 10.2 kWp and a total wind turbine generator standing at a 

capacity of 40 kWp to act as a complementary system to the grid during consumption 

peak times, as well as a standalone system, to 170 families in the region [20]. A 

simulation-based study has demonstrated that under reasonable energy, battery and load 

conditions, hybrid power systems are able to noticeably enhance energy supply stability 

over single PV or wind systems [24]. 

Understandably, the main concerns underlining hybrid power systems, and 

decentralised power systems in general, are system reliability, its level of autonomy and 

the availability as well as the abundance of the specific sources of renewable energy at 

the chosen site. As a result, diversifying energy sources would increase system autonomy 

and cater for the instances where one source of renewable energy falls short, such as 

cloudy days or monsoon seasons for PV systems. It is with these implications in mind 

that this paper proposes the introduction of the relatively under-explored rain energy to be 

included in future designs for decentralised hybrid power systems. 

RAIN ENERGY AS A COMPLEMENT TO HYBRID SYSTEMS 

In regions with high levels of rainfall, harvesting raindrop energy can be an additional 

alternative option and can be employed to help promote the availability of decentralised 

energy for either small electronics such as remote and wireless telecommunication 

devices on an individual device-level, or the deployment of an array of rain energy 

harvesters to complement conventional decentralised renewable power generation 

solutions. The remote northern regions of the Brazilian Amazon and isolated islands of 

east India and Bangladesh are examples of potential candidates that receive an abundant 

level of seasonal rainfall while conventional infrastructural connectivity to the national 

power grid can be both challenging and uneconomical [13].  

Figure 1 presents a few selected examples of most rain abundant developing regions 

of the world compared to other regions that receive relatively moderate amounts of 

rainfall [25]. 

 

 

 
Figure 1. Precipitation data for a few selected regions (data based on [9, 25]) 

Rain abundant developing regions 

rerereregions 

 

Regions with relatively 

moderate rainfall 
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Figure 2 illustrates the level of electrification in these respective developing regions 

[26]. For instance, approximately half of the Bangladeshi population still lack access to 

the national grid. Potential employment of solar and wind sources to fill some of this gap 

are limited by seasonal dependency: solar irradiation peaking between March and May, 

and wind speeds peaking during June and August [27]. Furthermore, of the average 

annual rainfall of 1.35 trillion cubic metres that Bangladesh receives, 80% occurs during 

the Monsoon season between the months of June and October [18, 28]. Therefore, the 

addition of rain to the hybrid mix of renewables helps to promote the seasonal 

interchangeability and continuality of the various environmental energy sources. 

 

 
 

Figure 2. Electrification for selected rain abundant developing regions (2010 data based on [26]) 

Kinetic energy of the rain 

As rain droplets fall through the atmosphere, kinetic energy builds up until the 

terminal velocity is attained. Upon impact, non-elastic collision takes place and the 

energy is released. Energy can be harvested either from the instantaneous impact of the 

individual droplets or through the collection of rainwater at an elevated platform and 

realising flow induced generation of the collected water mass. The later scenario is 

analogous to a mechanical winding mechanism where small mechanical energy can 

accumulated to a large kinetic release and parallels can be drawn from hydroelectric 

generation techniques. 

Physics of raindrops 

The precise shape of a falling raindrop primarily depends on its size. Assuming the 

absence of stochastic variables such the effect of wind, a spherical model can be adopted 

for a relatively small (≤2 mm in diameter) falling raindrop [29, 30]. This assumption 

derives from the surface tension of water, which holds the raindrop together against air 

drag. With increasing size, air pressure overcomes surface tension and deforms the 

droplet until a rip takes place to break it into smaller spherical droplets again [31]. 

Typically a single water drop larger than 6 mm does not survive the ripping effect of air 

drag during free fall on earth. For the purpose of this analysis, the spherical 

approximation is adopted as shown in Figure 3 and Equations 1-4 can be observed. 

 

 
 

Figure 3. Forces acting on a free falling droplet, assuming spherical shape (accuracy diverges for 

diameter >2 mm) 
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where, Fweight is the gravitational force exerted on the raindrop, m is the mass of the 

raindrop and g is the acceleration due to gravity, ρwater is the density of water (1000 kg/m
3
 

at 277.15 K for pure water), V is the volume of the raindrop and r is the radius of the 
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Fair_drag is the resistive force exerted by the air pressure and ρair is the air density (1.225 

kg/m
3
 at 288.15 K and 1 atm), A is the cross-sectional surface area of the falling object, 

Cd is the drag coefficient (0.47 for a sphere) and v is the velocity. At terminal velocity vt, 

Fweight equals Fair_drag. 
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Terminal velocity under 1 atm is around 3 m/s for 1 mm droplets and approximately 

10 m/s for 5 mm or larger droplets [32]. Kinetic energy is directly related to the squared 

of velocity. 

Harvesting the kinetic energy of rainfall 

The conversion of kinetic energy to electrical energy can be achieved via a number of 

transduction mechanisms, including electromagnetic, piezoelectric and electrostatic [33]. 

The few rare existing literature on harvesting rainfall energy has opted for piezoelectric 

material as the primary transducer [29, 30, 34]. Piezoelectric material yields an electrical 

charge polarisation when mechanical strain is induced, and vice versa. Popular 

piezoelectric material for energy harvesting include lead zirocnate titanate (PZT), 

polyvinylidene fluoride (PVDF) and aluminium nitride (AlN) in descending order of the 

piezoelectric strain constant, which can be measured in coulomb charge polarised per 

newton force applied. Therefore, upon direct kinetic impact onto these materials, 

electrical energy can be generated. 

Assuming a mass-spring-damper model for the kinetic-to-electric energy conversion, 

Equation 5 can be observed. 

 

)(tymkxxcxm            (5) 

 

where, m is the seismic mass, c is the damping constant, k is the spring constant, x is the 

relative displacement, y is the excitation displacement.  

 

)cos()( 0 tYty            (6) 
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where, Y0 is the excitation force applied and ω is the forcing frequency. Total power 

dissipated P(ω) by the damper system is given by Equation 7. 

 

22

332

0

)]/(2[)/(1[

)/(
)(

nn

nYm
P







          (7) 

 

where, ζ is the damping ratio (damping by critical damping) and ωn is the natural 

frequency of the structure. Critical damping is given by mk2 . At resonant frequency

mkn / , fundamental mode of direct resonant power Pr can be observed in Equation 

8. Resonant response can act as a form of further mechanical amplification to promote the 

conversion efficiency. 
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Electrical power is extracted through applying electrical damping, which in turn 

forms part of the total damping. Therefore, this power parameter contains both electrical 

power output and parasitic power dissipation. Electrical damping representing power 

output can be observed in Equation 9. 
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where, ζe is the electrical damping ratio and ζT is the total damping ratio. Maximum 

electrical power at resonance can be achieved when impedance matching equates 

electrical damping to the sum of parasitic mechanical damping. Further parameters not 

taken into account by viscous damping include forward and backward coupling between 

the mechanical and electrical domains during the kinetic-to-electric energy conversion 

cycle of the piezoelectric material, which will have a bearing on the overall damping 

factor. 

Technique I: instantaneous impact-based generation 

This relies on direct impact induced kinetic-to-electric energy transfer via piezoelectric 

material [29, 30]. This mechanism is illustrated in Figure 4. 

 

 
 

 
 

(a) Mechanism (b) Exploded view of a typical piezoelectric harvester plate 

 

Figure 4. Direct impact-based rainfall energy harvesting using piezoelectric transducers 
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The recoverable instantaneous power densities have been experimentally reported to 

range from 10
-5

 W/m
3
 to 10 W/m

3
 for small drizzles (mostly 1 mm droplets at 2.8 m/s) to 

heavy downpours (mostly 5 mm droplets at 5.7 m/s) respectively [30]. The several orders 

of magnitude higher energy density for rainfall with higher kinetic energy demonstrate 

the fast increasing energy conversion efficiency at higher excitation levels. This is 

partially due to a higher percentage of parasitic leakage from the transducers at lower 

piezoelectric polarisations. 

Pros: 

 The kinetic energy build-up is transferred directly to the transducer; 

 Mechanism is simple and straightforward, which is important for mass production; 

 Small on-board solution is possible, for integration with remote and wireless 

electronics such as self-sustaining sensor motes for monitoring and early-warning 

applications. 

Cons: 

 Individual impacts only release small energies. Conversion efficiency is poor for the 

small voltage output. Optimal power output is only achieved for large downpour of 

rain; 

 Energy dissipation from inelastic collisions further reduces the conversion 

efficiency; 

 Upon attaining terminal velocity, the kinetic energy of the raindrops no longer 

increases. Therefore, there is no difference in power output between harvesting 

rainfall on ground level or at a higher elevation where terminal velocity has already 

been attained. 

Technique II: potential energy collection-based generation 

A collection mechanism can be employed to build up a reservoir of water from 

rainfall catchment at a higher than ground level elevation. The gravitational energy 

accumulated over time can then be released and channelled through a fluidic flow 

mechanism to drive a kinetic-to-electric transducer. This enables a larger instantaneous 

driving force on the transducer than that achievable from direct impact, which allows 

electrical operation at a higher efficiency. The basic outline of the mechanism is shown in 

Figure 5. 

Watermill or turbines are traditional designs for harnessing hydroelectric power. Both 

electromagnetic generators and piezoelectric plucking transducers can be employed at 

the core of these rotational generators. The inclusion of a reservoir acts as an energy 

buffer and allows a more continuous and less time-varying operation of the subsequent 

transduction mechanism. A piezoelectric watermill driven from a water tank has been 

estimated to yield average energy densities in the order of 10 W/m
3
 to 100 W/m

3
 [34]. 

Rotational generators require a certain flow rate to overcome the inertia and operate at 

an optimal speed. Water can also be channelled to enable a direct vibrational excitation 

on a piezoelectric generator [35, 36]. This linear alternative is less susceptible to the 

inertia issue and depends more on the pressure induced by the fluidic channels. The linear 

generator design iteration illustrated in Figure 5b operates with impact induced plucking 

of a cantilever beam, which can be electrically coupled to either a piezoelectric or 

electromagnetic transducer. This mechanism is similar to human motion harvesting from 

plucking of piezoelectric beams [37]. 

Pros: 

 Large kinetic energy release is possible from the potential build-up to achieve 

higher electrical efficiency for the transducers; 
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 Conventional electromagnetic hydroelectric generation technology can be 

incorporated; 

 Although the power efficiency of electromagnetism does not scale well downwards, 

piezoelectric generator turbines can be employed to retain the power efficiency at 

smaller decentralised scales. 

Cons: 

 The kinetic energy accumulated by the raindrops through its free fall is lost; 

 Amount of energy releasable depends on elevation achievable; 

 Large-scale mechanism is required to maximise rainfall catchment. 

Both direct-impact and collection-based mechanisms can be simultaneously 

employed to complement each other. Rainwater following direct impact on piezoelectric 

surfaces can then be channelled to a collection reservoir. 

 

 
 

 
 

         (a) Mechanism (b) Design iterations of collection-based rain harvester 

 

Figure 5. Potential energy collection-based rainfall energy harvesting. Release of reservoir as large 

kinetic energy can be fed to either linear or rotational kinetic-to-electric transducers 

Simulated response of kinetic loading of a piezoelectric plate by rain droplets 

Unlike the conventional electromagnetic generators that rely on higher 

displacement/velocity to maximise power output, piezoelectric material focuses on strain 

maximisation. Simulated COMSOL Multiphysics solid mechanics models are presented 

in this subsection to better understand the resultant strain from the kinetic loading of a 

piezoelectric plate from rainfall. The piezoelectric material chosen is the popular 

PZT-5H, which has a relatively high piezoelectric strain constant and the plate dimension 

is 50 mm by 50 mm and constrained on the four perimeter edges. A 5 mm diameter 

raindrop is assumed, which results in approximately 6.42 × 10
-4

 N of force and 32.7 N/m
2
 

of pressure assuming evenly distributed spherical raindrops. 

Figures 6 and 7 show the displacement and first principal axis strain response from a 

single droplet loading at the centre of the plate and uniformly distributed loading by 

evenly spread droplets across the entire plate respectively. It can be seen that apart from 

straining the vicinity surrounding the loading point, there are also strain effects near the 

edges of the anchor. This effect is further amplified from the accumulated 

super-positioning of the evenly spread raindrops across the plate. Figure 7b illustrates 



Journal of Sustainable Development of Energy, Water  
and Environment Systems 

Year 2014 
Volume 2, Issue 3,  pp 243-258  

 

Page 253 

strain concentration near both the centre and the edges. This is due to the maximisation of 

both bending strain near the more flexible plate centre and volumetric strain from the 

Poisson’s effect near the less flexible anchored edges. 

 

  
(a) Displacement (b) First principal strain 

 

Figure 6. Loading at the centre of the piezo plate by a single 5 mm rain droplet (~ 6.42 × 10
-4

 N) 

 

  
(a) Displacement (b) First principal strain 

 

Figure 7. Uniformly distributed loading on the piezo plate by 5 mm raindrops spread evenly over 

the plate (assuming 32.7 N/m
2
 of pressure) 

 

Figure 8 further presents the strain response from a single 5 mm diameter droplet 

loading at various locations on the plate and its respective effects on the anchor strain. It 

can be seen that the anchor strain is universal regardless of the position of the loading. 

 

  
(a) Near the plate corner (b) Between plate corner and centre 

  

  
(c) Near plate edge (d) Between plate edge and centre 

 

Figure 8. Strain response (related to power output) from loading of the piezo plate by a single 5 mm 

rain droplet (assuming 6.42 × 10
-4

 N of force) at various locations off centre 
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Figure 9 illustrates the strain energy density achievable from the single droplet and 

evenly spread rainfall loading of the plate. The same accumulated edge strain effect can 

be observed for the distributed raindrop model, amounting to several orders of magnitude 

higher energy density over the single direct impact points. Typically, energy dissipation 

from anchor loss is problematic in many sensing applications, but in this scenario, energy 

can be harnessed near the anchors to exploit this phenomenon. Therefore, multiple arrays 

of small edge-anchored plates would fare significantly better than a single large plate 

anchored at far edges. 

 

  
(a) Single droplet at the centre (b) Uniformly distributed raindrops 

 

Figure 9. Strain energy density induced from the kinetic loading of the piezo plate 

DISCUSSION 

Table 1 illustrates a basic comparison of power density achievable from rain harvesting 

reported in the previous section against typical power density values of solar and wind 

generators. 

 
Table 1. Comparison of typical power density values between rain, solar and wind energy.  

 

Source Power density Assumption 

Rain 10 to 100 W/m
3*

 1 to ~10 m/s rain velocity 

Solar 10 to 100 W/m
2**

 100 W/m
2
 to ~1 kW/m

2
 irradiance 

Wind 10 to 100 W/m
2***

 1 to ~10 m/s wind velocity 
* Based on values estimated for potential energy collection-based generation. 

**Values based on ~10% conversion efficiency. Factors such as angle of irradiation, unintentional shading as well as the 

size of the mounting frame further reduce the volumetric power density. 

***Values based on power density = 0.5 × density of air × velocity3. Inclusion of turbine size and required vertical 

elevation further reduce the overall volumetric power density. 

 

It can be seen that rain energy fares reasonably and serves as a valid potential 

candidate as a part of the hybrid power mix. However, these are instantaneous power 

values under ideal loading conditions. Therefore, the accumulative and average power 

output for a specific region still requires a case study based analysis in order to compare 

the available power for each of the energy sources in order to determine the practical 

feasibility of adapting such a hybrid solution. 

Figure 10 illustrates how different sources of alternative energy can be integrated 

together to offer a more robust hybrid system, either simultaneously or in an alternating 

fashion. Depending on the location or seasonal availability/abundance of a particular 

energy source, harnessing additional energy sources can help to promote the energy 

autonomy of the decentralised system. The development of smart power conditioning and 

power management subsystems are crucial to help to regulate and maintain the 

load-dependent peak power conversion and storage efficiencies. The generated power 

can either be directly used by individual devices and applications such as monitoring 
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systems or fed back into a local mini electric grid or energy storage to contribute to the 

power supply of the local community. 

 

 
 
Figure 10. Integration of multiple complementary alternative energy generation technologies 

 

Potential issues surrounding rural electrification can be divided largely into three 

categories: economic, policy and institutional [38]. High cost, lack of financing, and the 

lack of credit on the user end are the main economic concerns, whereas the lack of 

institutional capacity and technical knowledge, coupled with donor dependency, 

unrealistic political commitment, improper use of subsidies and a lack of policy and legal 

framework are often problems faced in the policy and institutional area. While the 

reliability of system output and autonomy may be tackled through technological 

advances, careful considerations should also be made on an institutional level to facilitate 

the expansion of decentralised electrification programmes, enabling local involvement 

and economic growth. 

Policy implications 

 Projects for diversifying renewable energy sources should be implemented 

alongside with each other rather than in sequence of each other; 

 Geographical realities must be taken into account and case-by-case selections of 

renewable sources may work better than a one-size-fits-all solution. Where possible, 

hybrid systems that complement each other should be considered: wind turbines to 

cover for cloudy days where PV input is low, and rain harvesters for areas with 

heavy seasonal rainfall, for instance; 

 For decentralised programmes, to maximise positive social impact a bottom-up 

approach is preferred with ample local involvement. Foreign knowledge transfers 

should enable local participation rather than create dependency, and should allow 

employment opportunities and help foster domestic industry, creating a cascading 

effect;  

 Education and information dissemination is crucial in increasing participation of 

decentralised systems at the user-end level. The long term economic benefits should 

be made clear especially when the initial setup cost of the decentralised system may 

seem off-putting to many households; 

 Steps should be taken to lessen the initial economic burden of decentralised systems 

via government subsidies or microcredit institutions. A mixture of private and 

public sector efforts may complement each other where coherent planning and 

distributive mechanisms are lacking;  
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 Systems should be linked with productive use of the energy to foster local economic 

growth and flow. It should also support the user’s ability to pay for the programme 

in the long run. 

CONCLUSION 

This paper has highlighted the difficulties in practically realising decentralised power 

systems through relying on single renewable power source. Instead, hybrid power 

systems that are sensitive to local conditions should be considered. The potential 

employment of rain energy harvesting has been proposed as a complement to current 

renewable technologies in order to reduce reliance on main electric grid, diesel 

generators and unclean traditional power sources. The power density potentially 

achievable from the energy of rainfall is comparable to that of its solar and wind 

counterparts, and further experimental investigation and case study analysis are required 

to assess the feasibility of this novel approach. On an implementation front, careful 

policy and institutional mechanism should be introduced to ensure successful realisation 

of decentralised power for sustainable development of remote areas. 
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