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ABSTRACT 

Offshore production of oil and natural gas with high carbon dioxide content and high 

gas-to-oil ratio entail stringent processing conditions that require innovations and 

first-of-a-kind designs, which bear uncertainties derived from the scarcity of 

commercial-scale projects, hindering to move along technology learning curves. 

Consequently, unpredicted scenarios and unachieved specifications cause economic and 

environmental losses. Such uncertainties force offshore plants to be designed under 

stochastic factors seeking best statistical performance. The Monte Carlo Method is 

suitable to such finality. This work proposes a computer-aided engineering framework 

‘MCAnalysis’ automatically applying a probabilistic environmental assessment of 

offshore gas processing. ‘MCAnalysis’ integrates HYSYS simulator with ‘Waste 

Reduction Algorithm’ to assess potential environmental impacts, whose most relevant 

categories were identified via Principal Component Analysis. An offshore plant 

processing natural gas with high carbon dioxide content was submitted to probabilistic 

raw gas flow rate under two scenarios of carbon dioxide content. The higher carbon 

dioxide content scenario presented the highest probabilistic potential environmental 

impacts, being the atmospheric category the most relevant.  

KEYWORDS 

Environmental assessment, Monte Carlo, Waste reduction algorithm, Principal component 

analysis, Offshore gas processing, Carbon dioxide rich natural gas. 

INTRODUCTION 

Offshore Natural Gas (NG) production has been experiencing continuous increase, 

especially in Brazil, where it is over 36.6 MM Nm3/d [1] as a result of recent discovery of 

huge oil and gas reserves in deep-water Pre-Salt fields with high Gas-Oil Ratio (GOR) 

from 250 to 500 Nm3/m3 and high Carbon dioxide (CO2) content in the associated NG.
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Exploration and Production of Pre-Salt fields are hence challenged by the 

environmentally friendly design decision of avoiding NG flaring, requiring large-scale 

processing of CO2 rich NG on the topside of Floating Production Storage and Offloading 

units (FPSO). Processing this stranded NG requires energy intensive operations for CO2 

removal, CO2 compression and re-injection, and compression of sale gas for export to 

onshore facilities by subsea pipelines. Additionally to the efficient CO2 removal, NG 

processing must include Water Dew Point Adjustment (WDPA) and Hydrocarbon Dew 

Point Adjustment (HCDPA) to avoid condensation of heavy hydrocarbons and hydrate 

formation along the pipeline, besides machinery and pipeline for re-injection of CO2 at 

very high pressures, creating technology and economic challenges of large  

magnitude [2].  

This scenario requires innovative processes on the topside of FPSO’s, resulting in 

First-Of-A-Kind (FOAK) design conceptions. FOAK technologies bear large 

uncertainties derived from the absence of prior commercial-scale projects that allow 

moving along the technology learning curve. Hence, they must be designed considering 

uncertainties in technologies for CO2 removal from huge fluxes of CO2 rich NG, WDPA, 

and HCDPA, with direct impact on critical variables defining project viability, namely: 

• Equipment area and weight;  

• NG sale specifications [e.g., Wobbe index, Water Dew-Point (WDP), 

Hydrocarbon Dew-Point (HCDP) and CO2 content];  

• Energy consumption;  

• Economic performance [Capital and Operational Expenditures (CAPEX and 

OPEX)];  

• Environmental performance quantified by several Potential Environment Impact 

(PEI) categories. 

Uncertainties of offshore natural gas processing and Monte Carlo simulations 

Many and severe uncertainties affect offshore processing of NG:  

• Variability of raw gas composition, pressure and flow rate [3]; 

• Sales gas price and consumer market, equipment and operational costs [4]; 

• Meteorological events in high seas and even high operational risks of subsea 

equipment and topside processes, among others. 

 Feed composition and flow rate, ambient temperature and pipeline pressure [5] are 

critical load conditions as their variations propagate effects [6] throughout the plant 

disturbing operating conditions and product specifications [7]. In industrial practice, 

uncertainties are usually compensated by the use of conservative decisions like 

over-design of process equipment and then retrofits to overcome operability bottlenecks, 

or overestimation of operational parameters caused by worst-case assumptions of 

uncertain parameters [4], which, despite making the design feasible, drastically decrease 

profitability [8]. 

Another relevant uncertainty concerns the impact of the CO2 re-injection in the 

reservoir for Enhanced Oil Recovery (EOR). Although EOR increases the efficiency of 

oil recovery and provides a safe destination for the large volume of CO2 removed from 

the NG, it results in a long-term increase of CO2 content in raw NG. In fact, up to 60% of 

the re-injected CO2 can be retained in the reservoir [9], meaning that 40% (or more) stay 

in the gas phase, rising its CO2 content, leading to incremental costs and risks throughout 

the lifetime of offshore NG processing. 

Such uncertainties recommend using decision-making techniques under influence of 

stochastic factors. A classic and powerful technique for decision under non-deterministic 

scenarios is the Monte Carlo (MC) method. Given advances in computer-aided 

engineering [10], MC is an adequate technique to estimate the probability of process 
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designs to accomplish all specification or targets within defined stochastic scenarios of 

interest. MC method is based on obtaining realizations of the proposed process 

(responses) under stochastic scenarios randomly sampled according to Probability 

Density Functions (PDF) of the non-deterministic factors that influence process  

response [11]. 

Environmental impacts and sustainability assessment of processes 

Currently, the process industry is moving towards the design of innovative and more 

sustainable processes that show improvements in both economic and environmental 

factors [12]. Corporations worldwide are realizing that sustainability makes good 

business sense and is fundamental to their survival and growth [13]. Especially, concerns 

about the impacts of Oil and Gas (O&G) exploitation on the wellbeing of the 

environment and society have led to increasing pressures for the O&G industry to move 

towards more sustainable processes [14].  

For designing more sustainable processes, besides multiple metrics [15], ‘ad hoc’ 

criteria [16] and tools for quantifying sustainability, statistics algorithms for evaluating 

performance metrics and for supporting decision making have been developed [17].  

In the procedure of achieving superior environmental performance, several alternative 

process flowsheets are generated by combining multiple unit operations, rendering 

performance assessment of alternatives cumbersome. Therefore, it is beneficial the use of 

Computer-Aided Engineering (CAE) methods to evaluate all possible alternatives for 

defining the most sustainable option [12]. 

The present work 

It is presented a CAE tool (MCAnalysis) which automatically integrates the process 

simulator HYSYS (Aspentech) for obtaining chemical process responses with MATLAB 

(Mathworks) for generation of graphical statistical analysis using the Waste Reduction 

(WAR) algorithm (US Environmental Protection Agency) [18] for obtaining statistics of 

PEI’s. In this application, ‘MCAnalysis’ manages process uncertainties and generates 

sustainability performance [19] as the result of multiple MC samples of the process 

responses. ‘MCAnalysis’ is herein applied to an FPSO plant processing CO2 rich NG 

under uncertainties in order to assess the environmental pillar of sustainability, using 

WAR to evaluate PEI’s [20] and PCA to identify the most relevant ones [21].  

The assessed process is submitted to probabilistic uncertainties affecting raw NG 

conditions: flow rate and %mol CO2, both following normal PDF’s. Two scenarios of 

CO2 content were compared to evaluate the environmental impact of the increase 

of %mol CO2 in raw NG.  

This analysis consubstantiates an original work and has potential use for probabilistic 

sustainability assessments of FPSO gas-oil plants, which are well-known very risky 

systems operating at very special conditions in terms of safety concerns and exposition to 

hazards. The developed CAE tool ‘MCAnalysis’ is also an original achievement as it is 

reliable, robust and flexible computing resort allowing building several different 

scenarios of analysis. In the present work, it was configured for environmental 

assessment of complex offshore gas plant with CO2 rich NG, but it can also be used for 

technical, profitability, reliability and safety studies. 

METHODS 

This section discusses the theoretical aspects and methods pertinent to this work, such 

as NG processing uncertainties, specification and process design, Monte Carlo method, 

Waste Reduction Algorithm (WAR), PCA and architecture of the computational tool 

‘MCAnalysis’. 
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Offshore processing of carbon dioxide rich natural gas 

Offshore processing of raw NG with high CO2 content is supposed to occur on oil-gas 

FPSO platforms. Raw NG is first separated from oil and water and then goes to the gas 

plant at given flow rate, composition, temperature, and pressure. The raw gas is saturated 

in water (from 2,000 to 3,500 ppm) and its most critical variables are the flow rate and the 

high content of CO2. The gas plant is normally designed for a given gas flow rate and CO2 

content, but both variables change along the FPSO campaign, the former because the oil 

flow rate can change for several reasons at constant GOR, while the latter changes 

(increases) along the campaign due to continuous injection of CO2 in the reservoir for 

EOR. Evidently, several other variables associated with the raw gas can affect the 

process, but the flow rate and CO2 content can seriously impact the processing if exceed 

the design condition. In this work, only the raw gas flow rate and the CO2 content are 

considered as relevant process input factors subjected to uncertainties. 

 

Specifications of NG for commercialization.  Sales NG is specified in Brazil according 

to the National Agency of Oil, Gas and Biofuels. The most relevant NG specifications 

considered in this work are maximum WDP of −45 °C at 1 atm, maximum HCDP of 0 °C 

at 45 bar, maximum 3%mol CO2 and minimum 85%mol CH4. 

 

Gas processing description.  The gas plant for offshore processing of CO2 rich NG is 

sketched in Figure 1. This process was designed to comply with NG specifications 

assuming the mean values of critical input factors subjected to uncertainties – flow rate 

and CO2 content of the raw gas. This design is denominated as the Base-Case.  

The objective is to test the Base-Case in terms of environmental impacts via MC 

sampling. The main operations in the Base-Case (Figure 1) are:  

• NG dehydration for WDPA;  

• Separation of condensable hydrocarbons for HCDPA;  

• CO2 removal. 

 

 
 

Figure 1. Block diagram of offshore processing of CO2 rich NG (JT ‒ Joule-Thomson,  

TEG ‒ Triethylene Glycol, EOR ‒ Enhanced Oil Recovery, WDP ‒ Water Dew Point,  

HCDP ‒ Hydrocarbon Dew Point, NGL ‒ Natural Gas Liquids) 

 

Triethylene Glycol (TEG) dehydration was chosen for WDPA as the most economic 

option [22], despite requiring a stripping column for TEG regeneration. HCDPA is 

achieved by Joule-Thomson Expansion (JTE) [23], while CO2 is removed from NG by 

Membrane Permeation (MP) due to its operational simplicity, low costs, modularity, 

capability of processing CO2 rich feeds, and reduced weight and footprint [24].  

The process starts with compression of raw NG, which is sent to TEG dehydration for 

WDPA to avoid ice and gas hydrates in pipelines [25]. Rich TEG is regenerated 

producing flare gas residue and recirculates to WDPA column, while the dry NG flows to 

HCDPA, where a saleable stream of Natural Gas Liquids (NGL) is a sub-product. 
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HCDPA must precede MP CO2 removal to avoid membrane damage by condensable 

hydrocarbons. In MP CO2 removal, dry NG flows through a battery of two MP modules, 

whose outlet MP retentate is the final conditioned NG. Final NG is compressed to be 

exported to onshore facilities. The MP permeate is a low-pressure CO2 rich stream which 

is compressed for re-injection as EOR agent.  
 

Gas processing assumptions for simulation.  For each MC realization of the gas plant 

stochastic input factors, the Base-Case is simulated in HYSYS. The following 

assumptions are valid for each simulation. {A1} Thermodynamic modelling uses 

HYSYS Peng-Robinson Package, except for TEG unit with HYSYS Glycol Package. 

{A2} Reference raw gas composition (%mol) 20% CO2, 77.88% CH4, 1.20% C2H6, 

0.36% C3H8, 0.09% iC4H10, 0.08% C4H10, 0.04% iC5H12, 0.02% C5H12, 0.024% C6H14, 

0.037% C7H16, 0.024% C8H18, 0.0023% C9H20, 0.25% N2. {A3} Exported NG pressure  

P = 250 bar, {A4} EOR fluid P = 250 bar, {A5} Adiabatic efficiencies of compressors 

and pumps of 75%, {A6} Raw NG compressor with stage compression ratio of 3.525 × 1 

stage, {A7} Exported NG compressor with stage compression ratio of 2.65 × 2 stages, 

{A8} CO2 EOR compressor with stage compression ratio of 3.2 × 5 stages, {A9} MP 

using two serial spiral-wound stages of 1.1 × 106 m2 and 0.55 × 106 m2 of MP area with 

permeate pressure of 1 bar, temperature difference TRETENTATE − TPERMEATE = 3 °C and 

retentate head-loss of 1 bar, {A10} MP simulation via HYSYS Unit Operation Extension 

MP-UOE from Arinelli et al. [26]. {A11} Component permeances (Sm3/d/bar/m2)  

6.28 CO2, 0.314 CH4, 0.1256 C2H6, 0.01256 C3H8, 0.01256 iC4H10, 0.01256 C4H10, 

0.01256 iC5H12, 0.01256 C5H12, 0.01256 C6H14, 0.01256 C7H16, 0.01256 C8H18, 0.01256 

C9H20, 0.314 N2. {A12}Exchangers head-loss of 0.5 bar. {A13} Cooling Water (CW) 

temperatures: 30 °C and 45 °C at 4 bar. {A14} Pressurized Hot Water (PHW) 

temperatures: 200 °C and 100 °C at 20 bar. {A15} Gas-liquid thermal approach: 5 °C. 

{A16} TEG absorber at 70 bar and TEG regenerator at 1.5 bar. {A17} Lean TEG with 

0.7%w/w H2O, rich TEG with 6.6%w/w H2O. {A18} Gas from intercoolers at 35 °C. 

{A19} Joule-Thomson Expansion of 64 bar for HCDPA. 
 

Gas plant uncertainties.  Uncertainties related to the raw NG were selected for MC 

analysis. Independent normal random populations were assumed for feed flow rate  

(MM Sm³/d) and for its CO2 content as molar fraction because these are the feed factors 

with the highest influence on the process response and also with the highest subjection to 

uncertainties. Normal PDF’s were chosen due to their relevance for describing multiple 

physical, meteorological, biological and financial phenomena. One can argue that normal 

PDF’s are not adequate to represent real stochastic disturbances because they have 

infinite tails spread on (−∞, +∞) domains, whereas the reality is not akin to infinite 

amplitude inputs. Well, this is not the case. First of all, there are, indeed, (very) rare 

natural events with relatively gigantic catastrophic amplitudes (someone does not have to 

be especially imaginative to cite one). Secondly, the 99.73% probability domain of 

normal PDF’s corresponds to the finite interval [µ − 3σ, µ + 3σ], while the 99.99% 

probability domain corresponds to [µ − 4σ, µ + 4σ], where µ and σ are, respectively, the 

population mean and standard deviation. This implies that more than 10,000 outcomes 

have to be sampled to have a single one outside the [µ − 4σ, µ + 4σ] interval, while MC 

searches are applied with finite samples containing from 1,000 to 3,000 outcomes, which 

is sufficient for ergodicity [27]. In other words, on practical grounds normal PDF’s give 

rise to bounded unimodal samples. Other advantages of normal PDF’s are:  

• By the Central Limit Theorem a normal input is appropriate to represent the 

contribution of several other independent inputs following arbitrary distributions 

(which is, in real applications, the case of some unimodal disturbances that 

represent a collection of contributions);  
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• Normal PDF’s may degenerate to other simpler PDF’s like the Dirac PDF. 

 Additionally, there is a very special reason to adopt normally distributed input 

factors. This has to do with the traceability of normal signals throughout the process. 

When submitted to uncertainties following normal PDF’s, process output variables shall 

present behaviours close to the normal pattern for approximately linear cause-effect 

relationships, whereas behaviours very different from normal (e.g. bimodal, multi-modal 

or stone-wall responses) would be observed for very non-linear causality relationships.  

In other words, using normal inputs one can identify where there is great non-linearity in 

the process response. This may be useful in sensitivity studies, design of process control 

strategies and when applying design safe margins to some critical process units.  

The normal PDF of variable x  is given by eq. (1) with its parameters μ (mean) and σ 

(standard deviation). In the present case, the raw NG flow rate population is supposed to 

follow a normal PDF with μ = 6.0 MM Sm3/d and σ = 1 MM Sm3/d, meaning that it 

practically varies from 3.0 to 9.0 MM Sm3/d. Meanwhile, two scenarios were devised for 

the CO2 content populations of raw NG: Case 20% – using normal PDF with μ = 0.20 and 

σ = 0.03 (i.e. CO2 molar fraction approximately varies from 0.10 to 0.30), and Case 50% 

– using normal PDF with μ = 0.50 and σ = 0.03 (i.e. CO2 molar fraction approximately 

varies from 0.40 to 0.60), as shown in Figure 2. 
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Figure 2. PDF’s of: raw NG flow rate population [MM Sm³/d] (a), feed NG CO2 molar fractions 

populations for: Case 20% CO2 (b) and Case 50% CO2 (c) 

Monte Carlo sampling 

MC is a relevant methodology based on stochastic analysis for evaluating systems 

under non-deterministic scenarios when analytical solutions are complex or impossible 

due to non-deterministic components which are not known a priori [11]. Such 
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methodology provides an approximation of the problem solution by stochastic sampling 

of the independent system variables obeying known PDF instead of solving the 

numeric-mathematical problem directly. The objective of MC analysis is the stochastic 

appraisal of the performance of a given dependent variable of interest (output variable) 

according to the behaviour of uncertain independent variables (input variables).  

The method consists on creating samplings of the independent variables by generating 

pseudo-random numbers distributed between 0 and 1 which are converted to random 

samples obeying PDF’s of the independent variables, given that the behaviour of these 

independent variables is random and follows specific PDF’s. When a large sample of 

random values of independent variables is used, the calculated values of output variables 

can be plotted as histograms, leading to approximations of PDF’s of output variables, 

which are the main objectives of MC analysis jointly with some statistics for estimating 

parameters of these PDF’s (e.g. sample mean and sample standard deviation). 

This work uses the Inverse Transform Method [28] to generate normal 

pseudo-random populations. This method employs random number properties and the 

Cumulative Distribution Function (CDF) of a random variable to generate its sample 

PDF. The correlation of a random number with the CDF is given by  eq. (2), which can 

be inverted to generate eq. (3) based on the iCDF (inverse of CDF) for expressing the 

mapping of a set of values of the variable of interest from a set of random values 

uniformly distributed between 0 and 1: 

 

 ====
1

0

1

1)()()1()1()(
rndx

a
rndrnddrndPDFrndCDFxCDFdxxPDF  (2)

 
1 i ( 1)x CDF rnd=  (3)

 

where rnd is a random number uniformly distributed between 0 and 1, rnd1 is a sample of 

rnd between 0 and 1, x is another random number varying along the domain bxa ≤≤ ,  

x1 is a sample of x between a and b, PDF(rnd) and PDF(x) are the PDF’s of variables rnd 
and x, and CDF(rnd) and CDF(x) the integrals of PDF(rnd) and PDF(x). 

  The iCDF – inverse of the CDF – for the standard normal distribution (μ = 0, σ = 1) 

is numerically approximated in eq. (4) and eq. (5) [29]. Eq. (4) and eq. (5) correspond to 

the conversion of a population of pseudo-random numbers sampled from 0 to 1 into a 

population following the standard normal PDF with an absolute error smaller than  

4.5 × 10−4, where c0 = 2.515517, c1 = 0.8202853, c2 = 0.010328, d1 = 1.432788,  

d2 = 0.189269 and d3 = 0.001308. The symmetry of normal PDF is considered so that  

eq. (4) and eq. (5) are valid for 5.00 ≤< p . For 15.0 ≤< p , eq. (4) and eq. (5) are used 

with 1 − p, switching the signal of the calculated abscissa z. With eq. (4) and eq. (5) the 

population of z values generated from the population of p values approximately follows 

the standard normal PDF. Eq. (6) converts the population of standard normal z to a 

normal population x with mean μ and standard deviation σ. Figure 3 depicts the 

relationships between samples via iCDF and CDF to generate samples according to 

normal PDF’s: 
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Figure 3. Interrelationships among iCDF, CDF, and PDF of normal populations 

Quasi-Monte Carlo sampling versus Monte Carlo sampling 

The Quasi-MC (Quasi Monte Carlo) is an alternative sampling method for 

multi-dimensional numerical integrations and similar contexts where conventional MC 

sampling is applied. Quasi-MC uses low-discrepancy sequences – such as, the Halton 

and Sobol sequences – also called quasi-random or sub-random sequences [30]. 

Quasi-MC is presented in opposition to the regular MC sampling applications such as 

multi-dimensional MC integrations, which are based on pseudo-random sequences.  

MC and Quasi-MC samplings are adequate for multi-dimensional integrations where 

common numerical strategies – such as Newton-Cotes quadrature formulas – face severe 

difficulties. The advantage of Quasi-MC is its faster rate of convergence [O(1/N)] 

relatively to regular MC [ (1 )O / N ], where N is the number of samples. On the other 

hand, Quasi-MC has some drawbacks comparatively to MC [31], such as:  

• Its superiority over MC only appears if N is really high and the dimensionality 

(number of independent factors) is not too high;  

• A majoring of the involved Quasi-MC error sometimes cannot be found for very 

non-linear response functions – e.g. multi-modal responses;  

• Regular MC is very easy to implement even for very non-linear response 

functions as in the present case with offshore gas plants processing CO2 rich NG;  

• The high non-linear behaviour of some response functions may bring multi-modal 

responses for unimodal inputs (e.g. with normal PDF’s) – as shown in the present 

study in Figures 9-15 – such that the higher performance of Quasi-MC may be 

hampered by such patterns, vis-à-vis the resiliency of regular MC in such cases.  

Despite the apparent superiority of Quasi-MC over MC, in the present work, only 

regular MC sampling is used. The main reason has to do with the much easier and robust 

implementation of MC sampling in the environment of ‘MCAnalysis’ juxtaposed to the 

fact that the number of flowsheet simulations is not too high for statistical convergence of 

the sample mean and variance of responses – from 1,000 to 2,000 simulations are 

normally required with two stochastic input factors – and also the fact that the real 
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time-consuming step is the simulation of the complex gas plant (i.e. evaluation of the 

process response) and not the sampling management algorithm itself. 

Environmental performance of processes – Waste Reduction algorithm 

Several methodologies for characterizing the environmental impact of products and 

processes are available in the literature, as Life Cycle Assessment (LCA) and Waste 

Reduction (WAR), both well-established techniques to include environmental 

considerations into process design [32]. The LCA methodology assesses the 

environmental performance of a product or process thorough its life cycle: from the 

primary resources to recycling or safe disposal [33]. However, this methodology requires 

a large amount of information and few data are publicly available due to legal or 

intellectual property concerns [34]. The WAR methodology considers only the product 

manufacturing step [19] as Figure 4 shows. WAR is selected to be used in this work due 

to its simplicity when compared to LCA. It is worth noting that WAR, contrarily to LCA, 

is restricted to ‘gate-to-gate’ analysis (Figure 4). 
 

 
 

Figure 4. WAR algorithm with plant life cycle (adapted from [19]) 

 

WAR was proposed by Cabezas et al. [18] as a general theory for the flow and 

generation of PEI’s through a chemical process and is used to quantify its environmental 

performance. By definition, PEI is the unrealized average effect or impact that the 

emission of mass and energy would cause to the environment, being essentially a 

probability function associated to a potential effect. A PEI conservation equation based 

on an accounting of the flow of PEI in/out of the product manufacturer and energy 

generation [20], is introduced by WAR in eq. (7) for steady state balance, where 
(cp)

in

•

I and 
(cp)

out

•

I are the input and output rates of PEI of the chemical process, 
(ep)

in

•

I and 
(ep)

out

•

I  are the 

input and output rates of PEI of the energy generation process, 
(cp)

we

•

I and 
(ep)

we

•

I are the 

output of PEI associated with the waste energy lost from the chemical and energy 

generation processes and 
( t)

gen

•

I  represents the creation or consumption of PEI by chemical 

reactions inside the chemical process and the power plant. Figure 5 illustrates eq. (7): 
 

(cp) (ep) (cp) (ep) (cp) (ep) (t )

in in out out we we gen 0
• • • • .• • •

I I I I I I I+ − − − − + =  
(7)

 

PEI is calculated by a unified score obtained by the weighted sum of eight 

environmental impact categories, listed in Table 1, and a specific PEI for each impact 

category is associated to the components of the process streams as shown in eq. (8), 

where l is an indicator for input or output, αi is the weighting factor for environmental 
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impact category i, 
•

ljM , is the mass flow of stream j, xkj is the mass fraction of component 

k in stream j and s

kiψ  is the specific PEI of component k associated with environmental 

impact category i. The measures for calculating each s

kiψ  are also listed in Table 1.  

The calculation of s

kiψ
 
is given by eq. (9) where (Score)ki represents the impact score of 

component k correlated with environmental category i and <(Score)k>i represent the 

average impact score of all components in category i. This normalization of the 

component impact eliminates unnecessary bias within the category. The specific 

correlations among each category score and its corresponding measure of impact are 

described in Young and Cabezas [19]. The environmental assessment in this work 

presents the output PEI’s for each individual category caused by the offshore processing 

of CO2 rich NG and identifies the most relevant as performance indicators using PCA. 

Impacts from product streams are not considered. 
 

CompsEnvCats Streams
• •

s
l i j,l kj ki

i j k

I α M x ψ=     (8)

 
(Score)

(Score)

s ki
ki

k i

ψ =
< >

 (9)

 

 
 

Figure 5. WAR algorithm (adapted from [20]) 

 

Table 1. PEI categories and measure of impact associated with PEI category [35] 

 

General PEI category PEI category Measure of impact of PEI category 

Human toxicity 
Ingestion (HTPI) LD50 

Inhalation/dermal (HTPE) OSHA PEL 

Ecological toxicity 
Aquatic Toxicity (ATP) Fathead Minnow LC50 

Terrestrial Toxicity (TTP) LD50 

Global atmospheric impacts 
Global Warming Potential (GWP) GWP 

Ozone Depletion Potential (ODP) ODP 

Regional atmospheric impacts 
Acidification Potential (AP) AP 

Photochemical Oxidation Potential (PCOP) PCOP 

Principal Component Analysis 

Principal Component Analysis (PCA) consists in re-organizing data sets (e.g. data 

from process plants), which often exhibit correlated patterns, in order to find a set of new 

uncorrelated variables as linear combination of the original ones. The new variables are 

assigned to fractions of the variance in the original data in decreasing order [21].  
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The original data set is organized as a matrix X  m × n, where the scalar variables of the 

problem correspond to the columns and their samples correspond to the rows, meaning 

that each vector of sampled data iX  m × 1 for variable iX corresponds to a column of the 

matrix X , as illustrated by eq. (10). Each vector iX originates a sample scalar mean 

>< iX  given by eq. (11). Such sample means are gathered in the vector of means >< X  

as shown in eq. (12). U m × 1 is a compatible vector of ones: 
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T
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T
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PCA factorizes the matrix of sample variance-covariance 
X

R  n × n – symmetric and 

positive definite – obtained by eq. (13). The n eigenvalues of 
X

R  are calculated and 

expressed as a column vector of positive eigenvalues λ  sorted in decreasing order, while 

the respective orthogonal normalized n eigenvectors (n × 1) are stored as columns of 

matrix P  as illustrated in eq. (14): 

 

( ) ( )

1

T T T

X

X U.<X> X U.<X>
R

m

− −
=

−
 (13)

 

1

n

λ

λ

λ

 
 =  
  

⋮  , 1 nP P P=   ⋯                                  (14)

 

Matrix P  contains the directions capable of describing the variability of original data 

X  by decreasing relevance, meaning that X data show more variability over the 

direction defined by the first column of P . This is the 1st principal direction for describing 

the statistical behaviour of X . The second column of P  is the 2nd principal direction and 

so on. A matrix of generalized scores S  m × n is obtained by projecting X  over the 

directions (columns) of P  after subtracting the respective sample means >< iX  as  

eq. (15) shows, where iP  is the principal direction i of P  and iS  contains m × 1  

samples of the generalized score Si. The generalized scores are the new scalar variables 

S1, S2,…, Sn candidates to substitute the original variables X1, X2,…, Xn with the advantage 

of having the variability condensed to its maximum and decreasing along the elements of 

the set. Usually, the first elements represent most of the variability of the original set.  

The percentage of the variance associated to the general score Si is calculated considering 

its contribution over the total variance of the sample as shown in eq. (16): 



Gonzaga, C. S. B., et al. 

A Monte Carlo Methodology for Environmental ... 

Year 2020 

Volume 8, Issue 1, pp 35-55  
 

Journal of Sustainable Development of Energy, Water and Environment Systems 46 

i

T

i PXUXS )( ><−=  (15)
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(16)

Software ‘MCAnalysis’ 

In order to enable the automatic execution of MC analysis for any chemical process 

representable as a simulation flowsheet, a set of random sample values of the process 

input stochastic variables must be generated, managed and submitted to process 

simulation to generate output samples which are then statistically processed to generated 

statistics results and figures. Therefore ‘MCAnalysis’ was designed as a HUB to manage 

MC analysis for several different scenarios of stochastic response like technical analysis 

of a process design, safety analysis, energy consumption assessment, economic 

assessments and environmental sustainability assessment (Figure 6). In this work only 

the environmental assessment is demonstrated. 
 

 
 

Figure 6. HUB architecture of ‘MCAnalysis’ 

 

‘MCAnalysis’ starts with the module “Generate Batch Data”, which processes a 

configurable XML (Configuration XML) containing the definition of the MC 

non-deterministic independent input variables, the respective PDF’s and how to identify 

them in the HYSYS simulation flowsheet. Populations of the input stochastic variables 

are randomly generated and graphically processed through MATLAB for generating 

histograms and plotting associated PDF curves. HYSYS simulation is then executed in 

batch for each sample of the input variables. The relevant simulated responses for the  

MC analysis, listed in another configuration XML (Read XML), are gathered and stored 

in an output XML file (HYSYS output XML). The batch data generated from the 

simulation can then be used for process design or assessment of environmental 

performance with MC analysis. 

For technical analysis of a process design, HYSYS output XML is processed by the 

module ‘MCM Analysis’ together with a configurable XML (Configuration XML) 

containing the output variables relevant for MC analysis as well as their maximum or 

minimum specifications (if the variable is a design specification) for graphical 

presentation of MC analysis results through MATLAB: histograms, PDF curves and 

percentage of success achieved by the sampled cases. As for environmental performance 

assessment, HYSYS output XML is processed by the module ‘Environmental Indicators’ 

together with a configurable XML (WAR general data), which is extracted from HYSYS 
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with components, input and output streams, where the output streams are classified by the 

user as product or waste. This module uses the WAR algorithm data [35] to generate an 

XML (WAR output) containing PEI’s classified according to the eight environmental 

impact categories for all the samples of MC analysis. For the environmental performance 

assessment itself, this output XML is processed by the module ‘MCM Analysis’ in the 

same way as the HYSYS output XML.  

RESULTS AND DISCUSSIONS: ENVIRONMENTAL ASSESSMENT VIA 

MONTE CARLO ANALYSIS 

The environmental performance was assessed for the process design with two mean 

CO2 contents in the raw gas feed: Case 20% CO2 and Case 50% CO2. The respective 

flowsheets of both cases were previously designed with MC analysis in order to achieve a 

minimum of 75% success frequency for all design specifications in the sampled cases. 

Populations of 1,000 random samples for each independent stochastic input were used. 

Specifications WDP, HCDP and minimum molar fraction of methane were achieved with 

success in 100% of the samplings for both cases. Maximum 3%mol fraction of CO2 in the 

exported NG was reached in 83.3% of the samples for Case 20% CO2 and in 82.1% for 

Case 50% CO2. Figure 7 shows histograms and PDF curves of the sampled populations 

of the input variables. The amount of sampled cases, sample mean μ and sample standard 

deviation σ of the populations as well as their theoretical and expected values, are 

available in the title bar of each graphic. In all graphical results in this study, the 

similarity of the response behaviour with a normal pattern is tested by depicting the 

population histograms with the corresponding normal PDF using the sample mean and 

standard deviation as parameters. For example, Figure 7 confirms for the two stochastic 

input factors – flow rate and CO2 content of raw gas – the similarity of sampled and 

theoretical population parameters, and the similarity of population histograms and 

normal PDF curves. These numerical and graphical similarities attest that the sampling 

was successful in terms of reproducing the respective normal behaviours. 
 

 
 

Figure 7. Histograms and comparative normal PDF’s of: raw NG flow rate population  

[MM Sm³/d] (a), raw NG CO2 molar fraction populations for: raw NG with 20%mol CO2 (b) and 

raw NG with 50%mol CO2 (c) 

 

After designed under uncertainties with MC analysis, the gas plant flowsheets 

adequate to Case 20% CO2 and Case 50% CO2 were submitted to environmental 

assessment with MC analysis. The intent is to disclose the behaviour of the 
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environmental indicators in Table 1 for the gas plant operating under stochastic inputs. 

The results are shown in Figures 8-15 which depict histograms and normal PDF’s for 

populations of output PEI’s from the eight environmental impact categories considered in 

WAR algorithm (Table 1). The normal PDF’s built with sample mean and sample 

standard deviation serve as qualitative indications of the suitability of normal patterns to 

represent the statistical behaviour of the corresponding MC responses. The number of 

samples, percentage of samples which attained or exceeded specifications, sample mean 

μ and sample standard deviation σ are available in the title bar of each graphic. 
 

 
 

Figure 8. Histograms and Normal PDF’s of output HTPI [PEI/h] for: Case 20% CO2 (a) and Case 

50% CO2 (b) 

 

 
 

Figure 9. Histograms and Normal PDF’s of output HTPE [PEI/h] for: Case 20% CO2 (a) and Case 

50% CO2 (b) 

 

 
 

Figure 10. Histograms and Normal PDF’s of output ATP [PEI/h] for: Case 20% CO2 (a) and Case 

50% CO2 (b) 

 

 
 

Figure 11. Histograms and Normal PDF’s of output TTP [PEI/h] for: Case 20% CO2 (a) and Case 

50% CO2 (b) 
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Figure 12. Histograms and Normal PDF’s of output GWP [PEI/h] for: Case 20% CO2 (a) and Case 

50% CO2 (b) 

 

 
 

Figure 13. Histograms and Normal PDF’s of output ODP [PEI/h] for: Case 20% CO2 (a) and Case 

50% CO2 (b) 

 

 
 

Figure 14. Histograms and Normal PDF’s of output AP [PEI/h] for: Case 20% CO2 (a) and Case 

50% CO2 (b) 

 

 
 

Figure 15. Histograms and Normal PDF’s of output PCOP [PEI/h] for: Case 20% CO2 (a) and Case 

50% CO2 (b) 

 

When considering the uncertainties of both feed gas flow rate and CO2 molar fraction, 

the histograms of HTPI, HTPE, TTP for both cases, ATP and PCOP for Case 20% CO2 

and GWP for Case 50% CO2 presented behaviour completely different from normal 

PDF, which shows that the process responds to uncertainties in a highly non-linear way 

regarding environmental performance. In each one of these instances, the impertinence of 

normal behaviour can be visualized by means of the discrepancy between the statistical 
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behaviour of the histogram and the respective normal PDF built with sample mean and 

sample standard deviation from the histogram. The remaining PEI’s presented behaviour 

relatively close to normal patterns. In addition, the histograms of HTPI, HTPE, ATP, 

TTP, GWP and PCOP exhibit some difference of patterns for the 20% and 50% CO2 

content cases. This means that the process responds non-linearly to changes in the CO2 

content of raw NG regarding most of the environmental indicators. Table 2 summarizes 

the percent differences between sample mean μ and sample standard deviation σ between 

the populations for the two CO2 content cases relative to the values of Case 20% CO2. 

 
Table 2. Summary of output PEI categories, sample mean μ and sample standard deviation σ for 

Cases 20% CO2 and 50% CO2  

 

Output 

PEI 

category 

Sample μ 

[PEI/h] 

Case 20% 

CO2 

Sample μ 

[PEI/h] 

Case 50% 

CO2 

Difference 

[%] 

Sample σ 

[PEI/h] 

Case 20% 

CO2 

Sample σ 

[PEI/h] 

Case 50% 

CO2 

Difference 

[%] 

HTPI 78.6954 115.2523 46 31.2578 40.2725 29 

HTPE 0.5927 0.5719 −4 0.0680 0.1866 175 

ATP 29.4191 125.1532 325 10.7894 33.6199 212 

TTP 78.6945 115.2523 46 31.2578 40.2725 29 

GWP 26.5738 25.3893 −4 2.5228 5.1699 105 

ODP 7.19E-05 7.54E-05 5 8.95E-06 1.20E-06 -87 

AP 196.6189 205.9300 5 24.4564 32.9228 35 

PCOP 198.1187 401.6670 103 53.8053 106.1162 97 

 

By assigning equal weights to each environmental category, the total output PEI is 

depicted in Figure 16, showing that the Case 50% CO2 has a sample mean 62% higher 

than Case 20% CO2 and sample standard deviation 74% higher. Therefore, the long-term 

increase of CO2 content in raw NG caused by CO2 reinjection due to EOR will deteriorate 

the environmental performance of the process. 
 

 
 

Figure 16. Histograms and Normal PDF’s of total output PEI [PEI/h] for: Case 20% CO2 (a) and 

Case 50% CO2 (b) 

 

In addition, the most relevant environmental impact categories were identified with 

PCA. Table 3 shows the eigenvalues (λi), the variances (νi) and the cumulative variances 

for Case 20% CO2 and Case 50% CO2. It can be concluded that the first two principal 

components PC(1) and PC(2) are the only relevant components for explaining the 

environmental performance of the process, corresponding to, respectively, 81.2% and 

18.8% of the variance of Case 20% CO2 and to 92.6% and 6.5 of Case 20% CO2.  

For identifying the dominant environmental impact categories corresponding to PC(1) 

and PC(2), the components of vectors iP  with higher absolute values listed in Table 4 for 

Case 20% CO2 and Case 50% CO2, correspond to the most relevant categories. 
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Table 4 shows that the environmental impact categories GWP (global atmospheric 

impacts), AP and PCOP (regional atmospheric impacts) are the most significant to PC(1), 

having high relevance to the process for both cases. When PC(2) is also included, the 

environmental impact category TTP (ecological toxicity) can be considered as medium 

relevance to the process for both cases.  

 
Table 3. Eigenvalues λi and variance νi for each principal component for Case 20% CO2 and  

Case 50% CO2 

 
Case 20% CO2 

Principal 

component 
PC(1) PC(2) PC(3) PC(4) PC(5) PC(6) PC(7) PC(8) 

λi 4,994.8 574.7718 0.3601 0.0364 0.0024 0 0 0 

νi [%] 89.6738 10.3191 0.0065 0.0007 0 0 0 0 

Cumulative 

variance [%] 
89.6738 99.9928 99.9993 100 100 100 100 100 

Case 50% CO2 

Principal 

component 
PC(1) PC(2) PC(3) PC(4) PC(5) PC(6) PC(7) PC(8) 

λi 11,551 1,083.3 145.4925 6.7193 0.0199 0 0 0 

νi [%] 92.6247 6.4694 0.08689 0.0369 0.0001 0 0 0 

Cumulative 

variance [%] 
92.6247 99.0941 99.963 99.9999 100 100 100 100 

 

Table 4.
iP vector of each principal component: Cases 20% CO2 and 50% CO2 

 
Case 20% CO2 

iP  PC(1) PC(2) PC(3) PC(4) PC(5) PC(6) PC(7) PC(8) 

HTPI 0.0158 0.0940 0.2728 −0.4001 0.8689 −0.0373 −0.0000 −0.0000 

HTPE 0.1526 0.0022 −0.4869 0.7134 0.4795 0.0285 −0.0000 −0.0000 

ATP 0.0009 −0.0000 0.0247 −0.3557 0.0186 0.9989 0.0000 −0.0000 

TTP 0.0806 0.9920 −0.0290 0.0205 −0.0901 0.0031 −0.0000 −0.0000 

GWP 0.4420 −0.0441 −0.4182 −0.3557 −0.0358 −0.0021 0.0000 −0.7071 

ODP 0.00000 0.0000 −0.0000 −0.0000 0.0000 −0.0000 10.000 0.0000 

AP 0.4420 −0.0441 −0.4182 −0.3557 −0.0358 −0.0021 0.0000 0.7071 

PCOP 0.7611 −0.0563 0.5808 0.2763 −0.0631 −0.0040 0.0000 −0.0000 

Case 50% CO2 

iP  PC(1) PC(2) PC(3) PC(4) PC(5) PC(6) PC(7) PC(8) 

HTPI 0.0138 0.0940 0.2728 −0.4001 0.8689 −0.0373 −0.0000 −0.0000 

HTPE 0.2608 0.0022 −0.4869 0.7134 0.4795 0.0285 −0.0000 −0.0000 

ATP 0.0005 −0.0000 0.0247 −0.3557 0.0186 0.9989 0.0000 −0.0000 

TTP 0.0806 0.9920 −0.0290 0.0205 −0.0901 0.0031 −0.0000 −0.0000 

GWP 0.3133 −0.0441 −0.4182 −0.3557 −0.0358 −0.0021 0.0000 −0.7071 

ODP 0.0000 0.0000 −0.0000 −0.0000 0.0000 −0.0000 1.0000 0.0000 

AP 0.3133 −0.0441 −0.4182 −0.3557 −0.0358 −0.0021 0.0000 0.7071 

PCOP 0.7611 −0.0563 0.5808 0.2763 −0.0631 −0.0040 0.0000 −0.0000 

CONCLUSIONS 

MC analysis was successfully applied for environmental assessment of offshore 

processing of CO2 rich NG considering uncertainties on raw NG flow rate and CO2 

content. Processing NG with higher CO2 content carries a higher potential environmental 

impact, as expected, since CO2 is the main emission from the plant, due to the power 

demand of compressors for NG exportation and CO2 injection for EOR. This result raises 

an alert for the impact of the CO2 injection in the reservoir for EOR, which will increase 

the CO2 content in the NG in the long-term.  

The statistical behaviours of the PEI’s corresponding to each environmental potential 

category evidence highly non-linear responses of the process, which validates the 
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recommendation to adopt decision making under influence of stochastic factors as MC 

analysis. Furthermore, the CAE tool ‘MCAnalysis’ was shown to be valuable for this 

kind of analysis, as it can handle uncertainties affecting process responses for a given 

design and address sustainability performance of the process. 

The categories GWP (global atmospheric impacts), AP and PCOP (regional 

atmospheric impacts) were identified by PCA as very relevant to process environmental 

performance under uncertainties, while the category TTP (ecological toxicity) exhibited 

medium relevance, independently of the CO2 content of raw NG, because TTP is also 

related to emissions of unburnt hydrocarbons in the atmosphere due to leakages and 

incomplete burning. These aspects have reflexes on FPSO design decision-making and 

can influence environmental policies of regulating agencies in connection with CO2 rich 

NG exploration and production by offshore platforms. 
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NOMENCLATURE 

CDF cumulative distribution function 

iCDF inverse of cumulative distribution function 

PDF probability density function 
(cp)

in

•

I  input rate of potential environment impact of chemical process 

(cp)

out

•

I  output rate of potential environment impact of chemical process 

(ep)

in

•

I  
input rate of potential environment impact of energy  

generation process 
(ep)

out

•

I  
output rate of potential environment impact of energy  

generation process 
(cp)

we

•

I  
potential environment impact output rate with waste energy from 

chemical process 
(ep)

we

•

I  
potential environment impact output rate with waste energy from 

energy generation process 
( t)

gen

•

I  
potential environment impact generation rate in chemical process  

and power plant 
•

ljM ,  mass flow rate of stream j 

kjx  mass fraction of component k in stream j 

(Score)ki  impact score of species k in environmental impact category i  

(Score)k i< >  average score of all species in environmental impact category i  
P n × n matrix of orthonormal eigenvectors of 

X
R  

iP n × 1 eigenvector i of 
X

R  

X
R n × n sample variance-covariance matrix of X  

iS m × 1 vector of generalized scores S1, S2,…, Sn from  

X1, X2,…, Xn 

X m × n matrix of process data with n scalar variables and m samples 
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Greek letters 

αi weighting factor for environmental impact category i  

λi eigenvalue i of 
X

R  

λ n × 1 column vector of positive eigenvalues of 
X

R  

μ mean both as a population parameter and as a sample statistics  

σ standard deviation both as a population parameter and as a sample 

statistics  
s

kiψ  specific potential environment impact of species k in environmental 

impact category i 

Abbreviations 

CAE Computer Aided Engineering 

EOR Enhanced Oil Recovery 

EOS Equation of State 

GOR Gas-to-Oil Ratio 

HCDP Hydrocarbons Dew-Point 

HCDPA Hydrocarbons Dew-Point Adjustment 

JTE Joule-Thomson Expansion 

MC Monte Carlo 

MCMC Markov Chain Monte Carlo 

MM Nm3/d Millions of normal cubic meters per day 

MM Sm3/d Millions of standard cubic meters per day 

MP Membrane Permeation 

NG Natural Gas 

TEG Triethylene Glycol 

WAR Waste Reduction Algorithm 

WDP Water Dew-Point 

WDPA Water Dew-Point Adjustment 
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