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ABSTRACT 

This paper presents the use of track condition data from the virtual remote wireless sensor 

network within a simulation model of a battery-hybrid diesel-electric locomotive-driven 

freight train for a realistic mountain railway route simulation scenario. Simulation model 

includes the point-mass model of freight train longitudinal motion dynamics subject to 

wheel-to-track adhesion and head wind variations, the model of hybrid diesel-electric 

locomotive energy efficiency, and the model of real-time information provide to the 

virtual train driver about railway track conditions based on a narrow-band wireless 

remote sensor network. Simulation results are used to assess the possible benefits remote 
wireless sensor data for freight train energy-optimal control and to increase the 

transportation safety, including prediction of possible delays due to changed weather 

conditions en route. 
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INTRODUCTION 

Transportation sector currently consumes about 20% of globally produced fossil fuels 

[1], thus making it the second largest carbon dioxide (CO2) emission source [2]. 

According to the study presented in Jiang and Guan [3], this trend is most emphasized in 

the developing world, where inland transportation represents a major contributor to the 

total CO2 emissions balance. One way of dealing with the problem of transportation 

system energy efficiency and Greenhouse Gases (GHG) emission issues, would be 

through improved advanced transportation policies promoting Intelligent Transportation

                                                
* Corresponding author 

mailto:zdenko.kljaic@ericsson.com
mailto:mihael.cipek@fsb.hr
mailto:danijel.pavkovic@fsb.hr
mailto:tmlinaric@fpz.hr
https://doi.org/10.13044/j.sdewes.d8.0352


Kljaić, Z., et al. 
Assessment of Railway Train Energy Efficiency ... 

Year 2021 
Volume 9, Issue 2, 1080352  

 

Journal of Sustainable Development of Energy, Water and Environment Systems 2 

Systems (ITS) and multi-modal transport and greater inclusion of railways in the overall 

transportation mix [4], with electrified urban public transport in particular identified as 

key technology for achieving the goal of cleaner air in urban environment [5].  

The aforementioned facts also represent the key motivation for systematic electrification 

of the transportation sector and phasing out of fossil fuel sources [6], which has been 

most emphasized in road transport applications through introduction of hybrid electric 

and fully-electric vehicles [7], whose optimal charging represents one of the key issues in 

the concept of the smart grid [8]. However, rather high capital railway infrastructure 

electrification costs currently prohibit the full electrification of long railway lines in 

Europe with low traffic volumes [9]. Hence, for the time being, rail transport on these 

routes needs to be covered by diesel-powered locomotives, whose utilisation can be 

foreseen for at least thirty more years [10]. 

In order to tackle the problem of railway transport energy efficiency, introduction of 

energy storage technologies has shown great potential, as shown by the study presented in 

Ovalle et al. [11]. This approach can also be employed with diesel-electric locomotives in 

order to improve their energy/fuel efficiency and to achieve the GHG reduction goals 

through hybridization of diesel-electric locomotive powertrains by means of adding a 

suitably sized battery energy storage system [12]. Alternative energy storage technologies 

suitable for railway vehicle hybridization have also been considered in the literature. These 

included flywheels [13], hydro-pneumatic energy storage systems and ultracapacitors [14], 

but are typically limited in energy storage capacity, and can primarily be used for railway 

train kinetic energy harvesting during braking over relatively short distances. Moreover, it 

should be noted that energy consumption and GHG emission optimization in rail transport 

represents a multi-dimensional nonlinear problem characterized by numerous 

technological and traffic limitations [15]. One such study has been carried out in Cipek  

et al. [16], and has shown remarkable potentials for fuel efficiency improvement and GHG 

emissions reduction (over 16% improvement) compared to the traditional diesel-electric 

locomotive benchmark case for a quite demanding mountainous rail route. However, when 

analysing the financial benefits of diesel fuel savings, one may also need to consider the 

realistic diesel fuel expenditures, which entails a detailed analysis of well-to-wheel fuel 

costs, such as the one presented in Li et al. [17]. 

The second crucial aspect of rail transport is its timely scheduling and safety, which 

may be further emphasised if autonomous railway vehicles are concerned [18], which 

represents a key long-term development issue for associated industries [19]. In that 

respect, Matsumoto and Kitamura [20] presents an autonomous distributed train 

scheduling system within which locations and speeds of particular trains are 

communicated to the centralised database. Based on these data, the central dispatching 

system can optimise the traffic flow and improve the rail route throughput. Obviously, 

accurate localisation and real-time speed estimation of individual traffic entities and 

traffic flow in general is crucial for the operation of such systems [21], wherein Talvitie 

et al. [22] proposes utilisation of fifth-generation (5G) New Radio (NR) networks. These 

communication systems may be additionally augmented with advanced remote sensor 

fusion techniques, such as those based on Extended Kalman Filter (EKF) approach [23] 

in order to obtain precise real-time information on position and speed of high-speed trains. 

In fact, limited bandwidth and data throughput, along with perceptible data transfer 

latencies of Global System for Mobile Communications – Railway (GSM-R) systems 

makes them increasingly difficult to accommodate high-speed trains, thus motivating a 

transition to 5G communication networks [24]. Standardisation of high-speed train 

communications, as indicated in Hasegawa et al. [25], can facilitate novel technologies 

capable of supporting future railway Information and Communication (ICT) systems [26], 

including Internet of Things (IoT) [27]. Hence, increased influx of Industrial Internet of 

Things (IIoT) technologies [28] into the transportation sector can be anticipated as well 
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as other sectors, such as smart grids [29]. Ultimately, 5G communication systems can 

also be used to further propel intelligent railway transportation technologies [27], as well 

as dedicated cloud-based services aimed at transportation energy efficiency improvement 

[30], and increased freight rail transport safety through introduction of on-board 

distributed sensor networks [31]. In that respect, 5G communications networks enable 

‘cross-industry’ solutions important for integration of traffic systems other industrial or 

public systems [32]. Therefore, the new Radio Access Network (RAN) design and 5G 

systems’ high localisation precision and availability are crucial for advanced traffic systems 

and future inclusion of the so-called ‘telematic’ interfaces for the remote notification and 

advising of the train driver, as well as precise positioning of high speed rail vehicles [33]. 

These systems may be able to supply the precise information to autonomous trains where 

the minimum requirements for availability can be as high as 99.9999% [22]. On the other 

hand, 5G technologies can be used for narrow-bandwidth communication with remote 

sensors networks for aiding rail vehicles by providing warnings about potential problems at 

the track more reliably than earlier-generation communication systems. Thus, novel 5G 

narrow-band communications open new ways to increase the traffic safety through 

increased vehicle autonomy [34], while simultaneously having virtually no maintenance 

requirements over the anticipated ten-year exploitation period [35]. 

Finally, weather conditions are crucial for railway transportation safety [36], because 

they effectively determine [37]:  

 Visibility in case of rain, snow, sleet or fog; 

 Track-to-wheel adhesion deterioration due to snow or ice;  

 Head wind-related air-drag;  

 Otherwise hazardous traffic conditions, for example in the case of sudden  

flash floods.  

Moreover, in the case of passenger transport, weather conditions may also affect the 

passenger flow, wherein temperature and precipitation may result in increased number of 

passengers per train [38], whereas the increase in wind may have an opposite effect [39]. 

Therefore, it would be advisable to provide real-time weather and rail track conditions to 

the driver and the dispatch centre [40]. In this way, an optimal driving strategy can be 

devised, or the scheduled train departure may be postponed until favourable conditions 

are met. Simulation models which include realistic rail track profile [41] and information 

about adhesion limits [42] may provide the dispatch centre with additional information 

which may crucial in the decision-making process. 

Based on the available literature review, it appears that none of the listed works have 

considered a systematic approach to simultaneous the energy efficiency performance 

assessment and safety indices analysis, which are both crucial for the future of railway 

transportation. Moreover, integration of advanced wireless communication technologies 

may provide a certain advantage in terms of timely access to critical information about 

track conditions, thus providing additional means of transportation system performance 

optimisation. Having this in mind, the hypothesis of this paper is that by utilizing 

advanced fast-throughput remote sensor networks for timely information on weather 

conditions related to track adhesion and head wind, the performance of a freight train 

equipped with a hybrid locomotive and travelling over a mountainous region 

characterized by notable gradient variations can be adjusted so that it may complete the 

task while maintaining favourable energy efficiency indices. The main novelty of this 

paper is in a systematic approach to building of a simulation model of track condition 

information exchange within the distributed remote sensors network, and its integration 

with the model of a freight train powered by a hybrid diesel-electric locomotive 

previously developed in Cipek et al. [16] for the purpose of energy efficiency and train 

driving mission safety assessment over a particular mountainous railway route.  

The overall model has been implemented within Matlab/SimulinkTM software 
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environment. Based on the results presented in this work, recommendations useful for 

planning of train missions are also given. The key aspects of the presented research 

methodology are illustrated by the flowchart in Figure 1. 

The paper is organised as follows. Section 2 presents the sub-models of the railway 

train travelling over a mountainous railway route, which include the railway route 

elevation, track adhesion and head wind profiles, models of hybrid diesel-electric 

locomotive power-train and battery energy storage system, and train driver model. 

Section 3 outlines the model of a narrow-band distributed remote sensor network based 

on 5G mobile technology and its integration with the freight train model in terms of data 

exchange. Section 4 presents the simulation results of the proposed freight train model 

augmented with real-time remote sensor data under varying track adhesion and head 

wind conditions, along with the assessment of energy efficiency and safety 

improvements. Concluding remarks are given in Section 5. 
 

 
 

Figure 1. Principal block diagram (flowchart) of proposed methodology for railway train fuel 

efficiency and safety assessment 

RAILWAY ROUTE AND LOCOMOTIVE MODEL 

This section outlines the mountainous railway route from Cipek et al. [43] and the 

hybrid diesel electric locomotive model developed in Cipek et al. [43] based on a suitable 

conventional diesel-electric locomotive [44], wherein identical driver command interface 

adopted from Valter [45] is used. The hybrid locomotive model also utilises the 

optimised energy management control strategy developed in Cipek et al. [16]. 

Mountainous railway route driving scenario  

Main characteristics of the mountainous rail route between the towns of Oštarije and 

Knin (Lika region, Republic of Croatia) in terms of elevation profile and speed limits are 

illustrated in Figure 2, wherein black curve represents the route elevation profile (h), while 

green dashed trace represents railway train speed limits (vlimit). These traces were defined in 

Cipek et al. [43] using free on-line Global Positioning System (GPS) Visualizer utility 

software [46] and an on-line source for the particular track speed limitation [47], 

respectively. Additional information in Figure 2 is related to the relative adhesion 

coefficient (kva), (ratio of available adhesion with respect to the nominal case), whose 

availability is assumed based on the remote sensors grid data (see discussion in subsequent 

sections). In particular, the presented relative adhesion coefficient values roughly 

correspond to dry track and wet track adhesion conditions. Since the variable adhesion 

(wheel-to-track friction) coefficient (a) within the freight train model can be expressed by 

multiplying the theoretical result from Pichlík and Zděnek [48] with the relative adhesion 

coefficient kva, this results in the following adhesion coefficient expression: 
 

𝜇a = (𝜇min +
𝛽

𝑣 + 𝛾
) 𝑘va  (1) 
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with min = 0.161 representing the adhesion coefficient minimum value, and other 

velocity-related constants parameterised as  = 7.5 km/h and  = 44 km/h according to 

Pichlík and Zděnek [48].  

Finally, blue curve in Figure 2 represents the average wind velocity (vwind) profile, 

which is also assumed to be available from the distributed remote sensors grid  

(see subsequent sections). According to Valter [45], this additional relative wind velocity 

affects the specific motion resistance (wk0) [N/t]. Due to the same train configuration 

from Cipek et al. [16] used in this paper, a specific motion resistance for heavy cargo 

trains can be defined as: 
 

𝑤k = 25 + 0.0025(𝑣 + 𝑣wind)2 (2) 
 

Note that the minimum value of wind velocity addition vwind is 12 km/h (Figure 2), 

which is according to Valter [45] a commonly used value within the above wind 

resistance model.  
 

 
 

Figure 2. Altitude, traction coefficient, head wind speed, and train speed limit profiles for the rail 

route considered in this work 

 

According to Valter [45], the train movement is also subject of the railway track 

curvature radius effects and track gauge. For the sake of simplicity, an equivalent 

constant-valued average curvature resistance (wr = �̅�r = 4.99 [N/t]) is adopted herein, as 

proposed in Cipek et al. [16]. 

Hybrid locomotive power-train and train driver model 

Figure 3a shows the overall quasi-steady-state model of the battery-hybrid 

locomotive [16], comprising the train driver, longitudinal dynamics, electrical traction 

and mechanical brake system sub-models (framed by dashed lines), which are given in 

more detail in Figure 3b. The power-train sub-models are modelled by means of static 

characteristics (maps), which are originally developed in Cipek et al. [16]. 

The driver model subtracts the freight train model velocity (v) from the velocity 

reference (target) (vref), and the resulting difference is used to generate the train driver 

control output in terms of throttle ‘Notch’ position and braking ‘Brk’ commands.  

These are partitioned into eight positive ‘Notch’ levels corresponding to constant traction 

power operation, one zero-valued neutral ‘Idling’ position, and eight negative ‘Notch’ 

levels for regenerative braking at constant braking power [16]. The driver model is 

configured as a simple proportional term with gain (KDr) [16], and its output is 

subsequently quantized resulting in seventeen integer values related to ‘Notch/Idle/Brk’ 

commands, and also saturated so that the ‘Notch/Brk’ command selection does not 
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exceed the definition range from –8 to +8 (Figure 3b) [43]. In the case of deceleration, 

additional braking action by means of mechanical brakes can be applied if train velocity 

exceeds 1 km/h over the targeted value, i.e., when regenerative braking cannot effectively 

dissipate the train’s kinetic energy (i.e., at low train longitudinal speeds). The combined 

braking command ‘Brk’ (utilising traction system regenerative braking and mechanical 

brakes in Figure 3a) also takes into account the wheel vs. track braking potential [16]. 
 

 
 

Figure 3. Block diagram of battery-hybrid locomotive model (a) and electrical traction sub-model (b) 
 

Percentage of maximum electrical traction power (Pt,max = 1,402.08 kW [43]) at each 

‘Notch’ position is shown in Figure 4a, whereas Figure 4b shows the overall efficiency of 

the electrical traction system ηel(%P) as a function of the percentage of nominal power. 

The traction force (Ft) based on the ‘Notch’ position-related engine-generator set power 

output, traction system overall efficiency and train velocity v as follows [16]: 
 

𝐹t =
3.6 𝜂el[%𝑃(Notch)]𝑃t,max × %𝑃(Notch)

𝑣
 (3) 

 

where v is the locomotive (and train) longitudinal velocity given in km/h, %P(Notch) is 

the electric power percentile of ‘Notch’ position and Pt,max [W] is maximum locomotive 

power. The traction power is included within the model as a static map [16], utilising the 

train velocity and ‘Notch’ as inputs to calculate the electrical transmission power (Pt). 
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Figure 4. Locomotive power production vs. ‘Notch’ command (a) and overall electric power 

conversion efficiency curve (b) [43] 

 

Maximum traction force is also limited by the maximum wheel vs. track adhesion 

characteristic, as discussed above. This, in turn, is limited by the normal force exerted by 

the locomotive weight ml × g according to the following expression: 
 

𝐹t,max = 𝜇a × 𝑚l × 𝑔 × cos 𝛼 ≈ 𝜇a × 𝑚l × 𝑔 (4) 
 

where α is the track slope, typically within 2.5 degrees (thus the approximation cos  1 

is valid in this case). Note that, in the case when conventional brakes are applied overall 

train weight is taken into account for maximum braking force.  

Hence, the maximum traction force can be obtained by combining eq. (3) and eq. (4) 

utilising the overall hybrid locomotive weight (ml = 107.85 t [16]). These traction force 

curves for each ‘Notch’ are shown in Figure 5, wherein negative wheel-to-track force 

values are obtained for the case of regenerative braking. Figure 5 also shows the 

maximum locomotive traction for 100%, 75% and 50% of adhesion, which illustrates 

that the variable adhesion effect to traction characteristic is dominant in low-speed 

high-power operating regimes. 

The sub-model for longitudinal motion in Figure 3b represents the simplified 

dynamics of a lumped overall mass of the train (ma) [kg] subject to locomotive traction 

and total braking forces Ft and Fb, respectively, along with aerodynamic drag and rolling 

resistance forces, and the overall gravity force component ma × g × sin due to the track 

slope. The final model is given by Valter [45]: 
 

𝐹t − 𝐹b =
𝑑𝑣

𝑑𝑡
𝑚a + 𝑚a × 𝑔 × sin 𝛼 +

𝑚a

1000
(𝑤k + 𝑤r) (5) 

 

 
 

Figure 5. Maximum traction force vs. velocity curves with ‘Notch’ command and wheel-to-track 

adhesion as parameters 
 

In the above eq. (5), wk and wr [N/t] are the specific resistance coefficients 

corresponding to air drag and curvature motion, respectively. In the proposed model, 
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traction and braking forces Ft and Fb are affected by adhesion and head wind variations 

(simulated through varying the relative adhesion coefficient kva and head wind velocity 

vwind, as shown in Figure 2). These adhesion and head wind variations are assumed to also 

be available to the driver from the remote sensors measurements. 

The traction power is also included as a static map [16], and uses the same train 

velocity and ‘Notch’ inputs for the electrical transmission power Pt calculation.  

The difference between transmission power Pt and generator power (Pg) feeds the battery 

model directly over the common Direct Current (DC) link. The battery energy storage 

model is derived in Bin et al. [49] from the battery equivalent electrical circuit, and is 

presented in Figure 6a (note that positive values of battery input power (Pbatt) correspond 

to battery discharging operation). For the particular battery model, characterised by State 

of Charge (SoC)-dependent open circuit voltage (Uoc) and internal resistance (R) (with the 

internal resistance also being dependent on current/battery power sign), the parameters of a 

single Li-Ion battery cell have been adopted from Autonomie software, and are shown in 

Figure 6b and Figure 6c. Battery sizing has been performed in Cipek et al. [16] and results 

in 900 kWh of total battery energy storage system capacity (arranged in 75 parallel modules 

comprising 200 series-connected cells each), which is characterised by the overall battery 

system weight of 9,450 kg [16].  

A rule-based controller shown in Figure 3a (also developed in Cipek et al. [16]) uses the 

transmission power demand Pt and the battery SoC controller power demand (PbR) to 

calculate the power required from the main engine-generator (PgR), and, subsequently the 

required throttle NotchRB by means of the ‘Notch’ selector map. In the case when the 

requested power PgR is lower than the power generated when NotchRB = 4 is selected, 

low-efficiency operation of the engine is avoided by bringing it to idling ([16]) to avoid the 

highly-impractical engine on/off operation. The engine-generator sub-model provides the 

fuel and emission rates and the electricity generator power output Pg for each NotchRB as 

shown in Table 1. 

 

 
 

Figure 6. Battery power flow model (a); cell open-circuit voltage vs. SoC (b) and cell internal 

resistance vs. SoC and current sign (c) 

 

The battery charging/discharging power demand is commanded by the 

proportional-type SoC controller (Figure 3a), characterised by its gain (KSoC) and a 

dead-zone (ΔSoC) to avoid controller output ‘chattering’ when the control error signal  
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eSoC = SoCR – SoC is near zero. Cipek et al. [43] suggested that it would be convenient to 

use a variable SoC reference due to mountainous route being characterized by significant 

variations in elevation profile resulting in notable variations of train potential energy. 

This approach is also used based on the known lowermost and uppermost elevation levels 

hmin and hmax as input parameters [43]: 
 

SoC(ℎ) = SoCbh −
ℎ − ℎmin

ℎmax − ℎmin

(SoCbh − SoCbl) (6) 

 

with SoCbl and SoCbh representing the minimum and maximum values of the variable 

battery SoC target.  
 

Table 1. Hybrid-electric locomotive diesel engine and generator set data from Cipek et al. [16] 

 

Throttle 

position 

Main engine power 

Pmg [kW] 

Generator power Pg 

[kW] 

Fuel rate �̇�f 

[g/s] 

Emissions rate [g/s] 

Hydrocarbons 

(HC) 

Carbon 

monoxide 

(CO) 

Nitrogen oxides 

(NOx) 
CO2 

IDLE 6.43 0 2.5704 0.0299 0.0436 0.1510 7.9910 

Notch 4 632.77 566.49 40.8315 0.0834 0.1503 2.4458 129.3824 

Notch 5 787.15 694.13 51.6475 0.1136 0.3057 3.2341 163.4197 

Notch 6 965.83 844.70 64.2834 0.1593 0.9703 4.0096 202.2778 

Notch 7 1,161.70 1,004.73 79.8195 0.2585 2.2294 4.8944 249.5078 

Notch 8 1,312.80 1,121.67 94.4690 0.3314 4.1517 5.2350 292.7589 

 

In this study, the SoC controller parameters (KSoC, ΔSoC, SoCbl, SoCbh) have been 

obtained by using a DIviding RECTangles (DIRECT) search-based optimisation [50], 

aimed at minimising the overall locomotive fuel consumption for two different 

simulation scenarios, subject to the minimum battery SoC constraint of 20% and without 

considering battery aging effects over a single train driving mission. The first scenario 

corresponds to a fully-loaded train (630 t of cargo hauled by the locomotive [43]) and 

constant wind velocity of 12 km/h and 100% adhesion, representing the nominal 

(benchmark) case herein. The second scenario corresponds to variable adhesion and wind 

velocity profiles from Figure 2. Each optimisation run performed for the particular train 

load results in a unique set of locally-optimal SoC controller parameters listed in Table 2. 
 

Table 2. SoC controller parameters for different hybrid locomotive operating modes 

 

vwind and kva 
Parameters 

KSoC ΔSoC [%] SoCbl [%] SoCbh [%] 

Constant 12,055 4.32 42.16 52.32 

Variable 1,006 1.46 42.34 56.37 

NARROW-BAND REMOTE SENSOR NETWORK MODEL 

This section presents a simulation model of a narrow-bandwidth distributed sensor 

network based on 5G mobile technology, which is integrated with the previously 

described battery-hybrid locomotive-based freight train model, and thus-obtained overall 

model is also equipped with a visualisation interface.  

According to Figure 5 and the related discussion presented above, the auxiliary 

variables needed for the effective operation of the freight train traction control system and 

battery SoC controller are those related to track conditions, i.e., the wheel vs. track adhesion 

potential and head wind, which directly affect the wheel traction and train motion resistance. 

These track-related variables are directly related to atmospheric conditions, in particular 

temperature and air humidity are related to wheel traction [coefficient a in eq. (4)], whereas 

wind speed and its direction (head wind) define the additional motion resistance according 

to eq. (5). Hence, the aforementioned atmospheric variables need to be measured by an 
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array of remote sensors and periodically transmitted to a server comprising a central 

database which the train driver would access in order to receive the most recent track 

condition updates in order to adapt the train control strategy. 

Figure 7 shows the block diagram representation of Narrow-Band (NB) IoT remote 

sensor node connection to a central database containing track adhesion and head wind data 

from a remote sensor network distributed equidistantly along the railway track. The remote 

sensor node model comprises the physical sensors (transducers) of air temperature and 

humidity, and wind speed and direction (atmospheric variables), whose measurements are 

processed in order to obtain useful information about track condition (i.e., adhesion and 

head wind). These data (digital information) is prepared for radio transmission by means of 

Quadrature Amplitude Modulation (QAM) of the carrier signal ([51]). This is a form of 

Orthogonal Frequency Division Multiplexing (OFDM), typically used in Long Term 

Evolution (LTE) or 4G communication networks [52]. In order to convert the parallel QAM 

data output into radio signals suitable for transmission, Inverse Fast Fourier Transform 

(IFFT) [53] is used within this framework. Signal transmission from the sensor node to the 

NB IoT receiver model can be emulated by a transport delay (and, possibly, by an external 

noise source). At the receiver side, the modulated radio signal features are extracted by 

means of Fast Fourier Transform (FFT) [53], which are subsequently passed to the QAM 

demodulator for the extraction of useful data. The extracted data is sorted (indexed) before 

being stored in the central database which may be updated periodically or upon the train 

driver’s request with the track condition data relevant for the particular geographical 

location (characterised by its GPS coordinates). 
 

 
 

Figure 7. Block diagram representation of NB IoT remote sensor node connection to central track 

adhesion and head wind database 

SIMULATION RESULTS  

This section presents simulation results for the hybrid diesel electric locomotive 

driving mission over the selected mountainous route. The model is simulated with 

variable adhesion and wind velocity profiles and compared with results derived by 

constant commonly used values of aforementioned parameters in order to get insight how 

optimised set of controller parameters can affect the battery SoC and fuel consumption.  

Overall simulation model  

Figure 8 shows the integration of the freight train and driver (control strategy) 

sub-models with the geographical railway route sub-model and the remote sensor 

network model, wherein individual model components are implemented within 

Matlab/Simulink software environment [54].  

The freight train simulation model is fed rail track elevation and slope data from GPS 

coordinates (geographical data) from the general database which also contains the 

corresponding set of atmospheric variable data for each geographic location. In this way, 
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all parts of the simulation model receive relevant data, which is updated based on the 

distance travelled by the train along the railroad track. The same geographical data is also 

fed to the driver model (and the battery energy storage system SoC control strategy) for 

the purpose of energy consumption optimisation (see previous chapter). Based on the 

train geographical location (position along the rail track), relevant remote sensor data 

corresponding to traction adhesion potential and head wind is selected and used within 

the driver model in order to select appropriate throttle ‘Notch’ (or ‘Brk’) command in 

order to maintain the train motion (to avoid wheel slipping). The same data is also used 

within the freight train model to emulate the realistic wind resistance (drag) and traction 

force potential variations with changes in adhesion characteristics. 

Finally, the overall simulation model also comprises a visualisation interface which 

can be used for online monitoring of key freight train variables (such as speed, travelled 

distance, traction force and others). 
 

 
 

Figure 8. Block diagram representation of integrated simulation model comprising freight train and 

driver, smart remote sensor node and track data exchange sub-models 

Results for different track conditions and different State of Charge  

controller parameters 

Train driving simulations are conducted for the round trip over the mountain route 

characterised by the elevation profile shown in Figure 2, wherein the locomotive hauls 

630 t of cargo wagons (roughly corresponding to the maximum load of a single 

locomotive over that particular route, as indicated in Škrobonja et al. [44]).  

Simulations are carried out within Matlab/SimulinkTM software environment.  

Figure 9 shows the throttle ‘Notch’ and braking ‘Brk’ commands wherein the blue trace 

marked (Co) represents the scenario where constant (benchmark) values of wind velocity 

and adhesion are used (vwind = 12 km/h, kva = 100% [16]), while the red trace marked (Vo) 

corresponds to the scenario with variable values defined in Figure 2. The results in  

Figure 9 also indicate that over that route electrical (regenerative) braking is not always 

sufficient, thus mandating utilisation of additional mechanical (friction) brakes, in particular 

during train descending from higher elevation (Figure 9 and Figure 2). 

Figure 10 shows corresponding train velocity over travelled distance and time.  

Using a-priori known train speed limitations (Figure 2), the train speed target vref  

(black trace in Figure 10a) emulates the train driver behaviour who would gradually 

increase and decrease the ‘virtual’ train from one to another speed limitation value.  

Such train speed target generation is performed herein over a 2 km window, as indicated 

in Cipek et al. [16]. For the given speed target vref and constant values of vwind and kva, the 
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actual train velocity (vCo) for the nominal (benchmark) case is obtained in simulation and 

represented by the blue trace in Figure 10, while the red trace represents the actual train 

velocity (vVo) when variable values from Figure 2 are used. The difference in velocities of 

the aforementioned driving scenarios is not emphasized, as shown by spatial speed traces 

(i.e., speed vs. the travelled distance) in Figure 10a. However, when these velocity traces 

are plotted vs. the elapsed driving mission time (Figure 10b), the considered simulation 

scenarios are characterised by different driving mission durations. This indicates that the 

proposed simulation model also may be helpful for the prediction of possible train delays 

for the a-priori known rail track adhesion and head wind conditions. As expected, 

adhesion below nominal value and head wind increase deteriorate the locomotive traction 

performance and result in lower train speeds, especially during ascending phases of the 

journey, which results in lower train velocities and slower driving mission completion 

(Figure 10b). It should also be noted that in the case of notable upward track slope, the 

freight train velocity profile following performance would also be deteriorated, especially 

when adverse track conditions are present. Namely, in those cases the electric motor-based 

traction system cannot provide enough traction action in order to keep the train velocity close 

to the target value, which is manifested in lower train velocities than the speed limit for the 

particular track segment. Thus, the track slope effect also contributes to the prolonged 

duration of the driving mission and its completion. 
 

 
 

Figure 9. Train driver commands 

 

 
 

Figure 10. Train velocity over distance (a) and over time (b) 

 

Figure 11 shows the locomotive fuel consumption and battery SoC for three different 

scenarios concerning a battery-hybrid locomotive: 
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 Constant vwind and adhesion kva (benchmark case) are used in simulation and 

controller parameters are optimised for these constant parameters (CoC scenario), 
which directly relates to the main optimisation result presented in Cipek et al. [16]; 

 Variable vwind and adhesion kva are used in simulation, while the control strategy 

parameters are derived for benchmark values (VoC scenario);  
 Variable vwind and adhesion kva are used in simulation, and the control strategy 

parameters are optimised for these variable track parameters (VoV scenario).  

Figure 11a shows that the fuel consumption traces, while Figure 11b shows the SoC 

traces for the considered CoC, VoC and VoV scenarios. The benchmark CoC scenario 

originally presented in Cipek et al. [16] is, unsurprisingly, characterized by the lowest fuel 

consumption result, while also maintaining the battery SoC above the minimum 

recommended value (SoCMIN = 20%). The aforementioned fuel consumption ‘optimality’ 

of this benchmark case is primarily related to the absence of adhesion variability which 

enables the locomotive powertrain to utilize the regenerative braking potential for battery 

recharging to its full extent. In the VoC case, battery SoC exhibits deeper discharges (SoC 

falls below 20%) compared to the cases of CoC and VoV target. Namely, in the cases of 

CoC and VoV scenario, the optimised SoC controller parameters are derived subject to the 

minimum battery SoC constraint of 20%. In this way, by using data from remote sensors 

grid of track conditions, and properly optimised control strategy parameters, deep battery 

discharging is effectively avoided. This would in turn result in less emphasised aging of the 

battery pack, and, consequently, in extension of battery cycle and calendar life compared to 

the case when no such measures could be applied. In all of the aforementioned cases, 

battery SoC profiles are highly reminiscent of the actual railway track elevation profiles 

(Figure 2). In particular, the positive (rising) SoC trends are associated with downward 

track slopes characterised by extensive utilisation of regenerative braking via the electric 

traction system, whereas the negative (falling) SoC trends are associated with upward track 

slopes mandating additional utilisation of battery power (battery discharging operation) for 

improved traction performance. The fuel consumption data in Figure 11a indicates that 

VoC and VoV scenarios are characterized by noticeable fuel consumption increase over 

the CoC case. Final values (VfCoC = 2,320 L, VfVoC = 2,552 L, VfVoV = 2,556 L) confirm that 

track conditions variability (i.e., variable head wind and traction coefficient) may yield up 

to 10% higher fuel consumption, which is caused by the increased drag due to additional 

variable wind velocity combined with less available regenerative braking power when 

adhesion is decreased. VoV scenario shows that that the locomotive consumes negligibly 

more fuel (only 4 L more) than in the VoC case. Even though the control strategy 

parameters for the VoV case are optimised having in mind altered track conditions, this 

result is justified by the requirement to maintain the battery SoC within prescribed bounds. 
 

 
 

Figure 11. Comparative cumulative fuel consumption of locomotive (a) and SoC variable (b) 
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Simulation results of different track conditions of track segment 

Since track conditions (head wind and adhesion) may vary during a single journey, 

the data from the remote sensors grid could be used within the developed model to 

estimate the journey’s duration and its feasibility for the particular track segment.  

The time frame map of the first 50 km of the proposed route from Figure 2 and the case of 

fully-loaded train is given in Figure 12. Normal passage time over this segment with this 

kind of load and with nominal 100% adhesion and 12 km/h head wind velocity, is  

1.4 hour. Reduction of adhesion to around 70% and increase of head wind velocity to  

40 km/h has negligible impact to the time increase. However, further reduction of 

adhesion or further increase of wind velocity significantly increases the segment passage 

time. White area in Figure 12 shows adhesion values and wind velocities corresponding 

to unfeasible driving missions for the particular train configuration, which could be used 

within the locomotive ‘telematic’ interface to alarm the driver of unfavourable driving 

conditions. Moreover, the data shown in Figure 12 may also be used to predict the 

possible problem of unscheduled stopping of the train due to insufficient powertrain 

capability to overcome the adverse weather-related track conditions. This might also 

prove to be highly useful in terms of managing train schedules by including an additional 

locomotive into the freight train in order to increase the traction capabilities and, thus, to 

reduce possible delays. 

 

 
 

Figure 12. Train driving mission duration estimated for initial 50 km track segment under 

variable track conditions 

 

Please note that the presented results have been obtained for the case of ideal 

availability of the remote sensor data in real time. Obviously, with the decrease of the 

availability of remote sensor data, the freight train control strategy adaptation would also 

deteriorate, thus resulting in the train driver model relying solely on the on-board train 

velocity measurements and slope information based on a-priori known rail track 

elevation profile. Thus, the presented adaptive control strategy would be reduced to the 

basic control strategy proposed in Cipek et al. [16] over the track segment characterised 

by low availability of real time remote sensor data. However, this type of scenario is 

beyond the scope of this work. 

CONCLUSIONS 

In this paper, the previously developed model of the battery-hybrid diesel-electric 

locomotive is extended with additional remote track condition data from the sensors 

network utilising 5G wireless communication technologies. These data are related to key 

two parameters defining the track conditions, i.e., the adhesion coefficient and the 

average head wind velocity, which, in turn, correspond to variable weather conditions. 

Those data are then used within the freight train model to predict its behaviour, and are 

also used to find optimal battery SoC controller parameters for different operating 
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regimes, thus avoiding unnecessary deep discharging of the battery on-board the hybrid 

diesel-electric locomotive. The proposed approach has been extensively verified by 

means of comprehensive simulations. 

The simulation model extended with variable track conditions has been able to 

identify the required adaptation of the driver behaviour (i.e., change of driving/braking 

regimes) under track adhesion and head wind variations. This has also resulted in 

increased time duration of the journey under the worsened track conditions (compared to 

the benchmark case with constant traction and head wind) in order to honour the related 

traction system limitations. 

Worsened track conditions (i.e., lower adhesion and stronger head wind) also result in 

increased fuel consumption and deeper discharges of the battery energy storage system 

on board the hybrid diesel-electric locomotive due to sub-optimal operation of the 

power-train (i.e., diesel engine and the traction electrical drive). In particular, under 

reduced traction condition, the potential for freight train kinetic energy harvesting via the 

traction electrical drives is significantly reduced, whereas the increase in head wind 

generally results in increased power consumption. 

The optimized SoC controller, utilising track condition information from the remote 

sensor network, can maintain the on-board battery SoC above the minimum 

recommended value (20% herein), which has not been the case with the fixed value SoC 

controller. Thus, the optimised controller is capable of preventing deep battery 

discharges associated with the battery useful life reduction, while simultaneously 

maintaining the fuel consumption at an acceptable level for the particular demanding 

driving scenario. 

Final results also indicate that the model incorporating track condition data from 

remote sensors is also capable of predicting the driving mission duration over the track 

segment in question and of predicting possible unscheduled train halts due to adverse 

track conditions. 

Future work may be directed towards investigation of availability of the wireless 

sensor network real-time data in terms of freight train control strategy adaptation and its 

general effect on the completion of driving mission and related safety issues, as well as 

more detailed investigation of the effectiveness of the proposed approach for different 

train configurations. 
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NOMENCLATURE 

Brk brake command [%] 

E energy [kJ] 

eSoC State of Charge difference [%] 

Fb braking force [N] 

Fb,max maximum braking force [N] 

Ft traction force [N] 

Ft,max maximum traction force [N] 

g gravity acceleration [m/s2] 

h elevation [m] 

hmax maximum route elevation [m] 
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hmin minimum route elevation [m] 

KDr proportional gain (driver model) [%] 

KSoC State of Charge controller proportional gain [%] 

kva percentile of available adhesion [%] 

l travelled distance [m] 

m mass [kg] 

ma train mass [kg] 

�̇�exh overall rate of exhaust emissions [kg/s] 

�̇�f engine fuel consumption rate [kg/s] 

ml overall locomotive weight [t] 

N number of battery cells [-] 

Notch train driver command [-] 

NotchBR controller throttle position [-] 

Pbatt battery power [kW] 

PbR State of Charge controller power demand [-] 

Pg main generator electric power [W] 

PgR output power of the engine-generator set [kW] 

Pi input power [kW] 

Po output power [kW] 

Pt electric traction power [kW] 

Pt,max maximum electrical traction power [kW] 

Qmax battery capacity [kWh] 

R internal resistance of the battery model [Ω] 

SoC battery state of charge [%] 

SoCbh upper bound of variable State of Charge reference [%] 

SoCbl lower bound of variable State of Charge reference [%] 

SoCmin state of charge minimum value [%] 

SoCR state of charge reference (target) value [%] 

s Laplace variable [-] 

t time [s] 

Uoc open circuit voltage of the battery model [V] 

v longitudinal train velocity [m/s] 

Vf fuel consumption volume [L] 

vlimit train velocity limit [m/s] 

vref train velocity reference [m/s] 

vwind wind velocity addition [m/s] 

wk specific motion resistance [N/t] 

wr curvature motion resistance [N/t] 

�̅�r average curvature motion resistance [N/t] 

Greek letters 

α track slope angle [°] 

β numerator parameter for adhesion coefficient calculation [km/h] 

 denominator parameter for adhesion coefficient calculation [km/h] 

SoC State of Charge controller dead zone [%] 

el mechanical to electrical conversion efficiency [%] 

a wheel vs. track adhesion coefficient [-] 

min minimum adhesion coefficient [-] 
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