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ABSTRACT 

Australia’s natural capital is under growing cumulative pressure from land use change 

and intensive agriculture, fishery, forestry, and urban sprawl. This consequently reduces 

the benefits and services that it provides. This paper firstly assessed how current trends of 

land-use change have an impact on the natural capital loss in South Victoria, Australia 

during 2006-2016. Then in order to increase natural capital inherent value and to ensure 

that natural capital is multifunctional, a system of Blue-Green Infrastructure is designed 

within the current natural capital of Tarwin Lower, in Victoria. Given that natural capital 

area is declining in Australia, incorporating designed elements into existing natural 

capital to create multifunctional natural capital, enables maximising the supply and value 

of ecosystem services in order to meet the demands of a growing population. Here, three 

ecosystem services (stormwater abatement, water quality improvement, and water supply 

services) were compared in terms of existing natural capital or with integrated 

Blue-Green Infrastructure elements to create multifunctional natural capital system.  

The results indicate that planning Blue-Green Infrastructure will enhance multiple 

aspects of regional sustainability and resilience in the Tarwin catchment and will 

maximise the multifunctionality of the natural capital. Finally, the paper simulates the 

cost-benefit analysis for the implementation of Blue-Green Infrastructure to show that it 

is a cost-effective and sustainable solution to cope with the current demographic, 

economic and agricultural trends, which affect natural capital. This paper confirms that in 

order to provide ecosystem services for extra demands of growing inhabitants, 

Blue-Green Infrastructure networks require to be extended in the Victoria State of 

Australia to compensate natural capital and ecosystem service losses due to the regional 

and urban development. 
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INTRODUCTION 

The emergence of the notion of ‘natural capital’ in recent years has lead to a 

recognition that environmental systems play an important role in defining a society’s 

social well-being and economic output ‒ providing services and resources, and absorbing 

wastes and emissions [1]. 

Natural capital is the most important of the forms of capital [2, 3] [manufactured 

capital (such as buildings and machines), human capital (such as people, their knowledge 

and skills), social capital (such as trust, norms and institutions) and natural capital  

(such as ecosystem services and minerals)] since it delivers the essential conditions for 

human being, delivering clean water, food, air, and basic resources and delivers the 

ecosystem services that are necessary to human wellbeing [4]. 

However, natural capital is disappearing or being fragmented all over the world [5, 6]. 

Despite the assumed growing demand for natural capital as the population grows, we are 

actually seeing it being fragmented and destroyed due to urbanisation or conversion to 

agricultural land [5, 6]. This reduces the benefits that it provides. The degradation and 

fragmentation of natural capital have disrupted essential environmental processes such as 

carbon sequestration, food provision, wildlife habitat, and water regulation that support 

quality of life, economic prosperity, and social well-being [6, 7].  

Land-use change, mostly caused by agricultural activity, population growth, and 

urbanization, is recognised as one of the primary causes of loss of natural capital [8, 9]. 

This is because the common land uses (agriculture, urbanisation) are valued more highly 

than those land-uses associated with natural capital [10]. Several studies have reported 

the high rate of land use changes in developed and developing countries and have debated 

their consequences and causes [11, 12]. The majority of these land use changes occurred 

due to urban and regional development [13, 14]. 

The loss of natural capital is evident in Australia [15]. Almost 44% of Australia’s 

woodland and forests have been cleared since human settlement [15] and a large 

proportion of wetlands have been destroyed or degraded due to agricultural areas, urban 

expansion, and the associated construction of flood protection measures such as levees 

[16]. More recently, the conversion of greenfield sites into rural and urban development 

have caused substantial pressures on the extent of the natural capital in southern, eastern 

and south-western Australia [15, 16] and continue to pose major problems for 

environmental managers.  

Governments (various levels) in Australia have tried to arrest the loss of natural 

capital by the development and implementation of policies to protect, conserve, and 

regenerate its value, such that decisions to retain it in the face of competition with other 

land-uses can be defended. These include compensation schemes such as conservation 

banking, direct compensation to landowners, tradable habitat rights, insurance schemes, 

and tax relief mechanisms [17]. These payment methods need a willing buyer-seller 

market planning and well-defined property right. Despite these efforts, natural capital 

and consequently ecosystem service loss continues and some ecologists have questioned 

the efficiency of these efforts and the actual level of concern about natural capital and 

ecosystem service loss [18, 19]. Three key reasons are to blame [17]:  

• “Information failure” is one reason why conservation investment finance is still 

unsuccessful. Despite increasing overall awareness of conserved environment 

advantages, there is a lack of detailed information at scales helpful for 

stakeholders and environmental managers on how people benefit from  

particular services;  
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• “Institutional failure” is the second reason. The beneficiaries of ecosystem service 

provision are usually distant and different from those who gain from ecosystem 

transformation. Local socio-ecological contexts, including institutions and 

property rights, are usually not given adequate consideration in conservation plans 

so that equity and validity concerns inhibit uptake;  

• Thirdly, due to the public good characteristics of many profits and their lack of 

prices, “market failure” occurs. Furthermore, markets usually reward short-term 

values of natural resources (exaggerating the real opportunity costs of 

conservation) to the detriment of long-term environmental health and human 

well-being. 

Therefore, due to the mismanagement of natural capital, its real value is not 

considered in socio-economic strategies despite its fundamental importance for human’s 

well-being. One solution may be to ensure that the inherent multifunctionality of natural 

capital is retained through good planning and also accounted for in estimates of the value 

of natural capital to society. For example, individual nature reserves that are spatially 

isolated each have a value solely as nature reserves. But, if they are connected as a system 

of nature reserves, they potentially have new emergent properties such as providing flood 

control, biodiversity corridors and many other functions that they cannot perform 

individually. These connected systems can be designed using well-known engineering 

and biological principles and the added value to society of the emergent properties can be 

estimated. Therefore, ‘multifunctional natural capital’ is an important new concept that 

could help to solve the problem of declining natural capital in the face of competing land 

uses and population growth. 

These connected systems can be achieved via a network of natural and semi-natural 

reserves. Water reservoirs and their related (natural) open spaces established along 

streams can regulate the river system, and prevent floods during extreme rainfall events. 

Wetlands and ponds can provide wildlife habitat (nature conservation), water treatment, 

and can clean the polluted water from nutrients and fertilizers that are mostly washed 

away from agricultural lands and which result in algae blooms in streams. In addition, 

they provide habitat for the wetland crops, such as biofuel production and reed, and 

provide areas for recreational purposes. Vegetated areas such as forests and woodlands 

provide carbon sequestration, regulate water flows and prevent soil from erosion.  

This network of the blue and green bodies is necessary to provide a wide range of 

advantages to the environment and people. As biodiversity supports the environmental 

services [20], guaranteeing the long-term persistence of habitat and species that provide 

main environmental services is conceivably, a practical strategy. 

Blue-Green Infrastructure (BGI) is an interconnected network of natural and designed 

landscape components, including water bodies and green and open spaces, which provide 

multiple functions such as water storage for irrigation and industry use, flood control, 

wetland areas for wildlife habitat or water purification, among many others [21, 22]. 

Several developed and developing countries have already capitalized on this approach to 

achieve a range of economic, socio-cultural and environmental benefits [23]. 

Considering the natural ecosystem as infrastructure [24], in this paper, the land use 

and natural capital changes that occurred during 2006-2016 in the South Victoria and 

surrounding areas are evaluated. This: 

• Gives us a view about natural capital changes in the regional context of Australia;  

• Helps us to consider the land use effects of continuous development in regional 

and urban parts of Australia;  

• Predicts future environmental behaviour in a spatially explicit manner.  

Moreover, it allows the evaluation of future land use change impacts on ecosystem 

service supply considering a reference scenario. Those circumstances that can be tailored 

to underpin more informed decisions associated with natural capital management are 
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reported and opportunities for more ecosystem services for the same area are identified.  

It is also shown how strategic, adaptive and multifunctional design of natural capital 

enables more ecosystem benefits based on a holistic understanding of the complex 

interrelations and dynamics of social-ecological systems. A method is presented to 

design the integration of BGI into existing natural capital and estimate the value of the 

resultant multifunctional natural capital. Lastly, this paper evaluates the cost and benefits 

of a designed BGI system in the study area. 

Natural capital and ecosystem services  

Ecosystem benefits and flows of natural capital ecosystem services are valued in 

Victoria using an Ecosystems Services Accounting (ESA) approach [25]. The ESA was 

developed by the State Department of Environment, Land, Water and Planning 

(DELWP) and Parks Victoria in order to identify and measure the ecosystem services 

delivered by Victoria’s natural capital system, including the ecological and social 

advantages, according to international best practice [25]. In this approach, most of the 

amenities delivered by natural capital systems are considered as public goods and 

therefore the benefits are not reflected in market transactions. As such, it was necessary 

to establish a monetary value for individual ecosystem services based on a wide-ranging 

review of recent data, literature, and application of ecological evaluation methods.  

For example, the ecosystem service flows of stormwater abatement, water quality 

improvement, and water supply provided by the natural ecosystem and their associated 

advantages in monetary terms are summarised in Table 1 [25]. These three (of many) 

components are highlighted because they are good examples of natural capital benefits 

that can be designed for multifunctionality and will be the focus of deeper analysis later. 
 

Table 1. Summary of ecosystem flows and advantages of ecosystem services in  

Victoria, Australia [25] 

 

Ecosystem 

service 

Quantity of ecosystem  

service flow 

Annual benefits  

(AUD) – welfare  

gains compared to 

surrounding land use 

Other measures 

of economic 

activity 

Hectares 

modelled 

Level of confidence  

in flow 

quantities/monetary 

values 

Water supply 
Water run-off of 3,392 gigalitres 

(from nine highest yielding parks) 
- 

Value of water 

of  AUD 244 

million p.a.  

for supply 

(imputed) 

896,367 Higher/Medium 

Water 

purification 

(non-metro 

parks) 

4,165 tonnes of sediment p.a.  

entering regulated rivers  

(preventing release of 47,000 tonnes 

from the counterfactual) 

Avoided value of lost 

storage in regulated rivers 

(net of water yield 

reduction):  

AUD 50 million p.a. 

- 368,732 Higher/Higher 

Flood protection 

34,372 ML of stormwater p.a. going 

into Melbourne’s waterways 

(avoiding 40,000 extra stormwater 

from the counterfactual) 

Avoided infrastructure 

costs to deal with  

additional stormwater: 

AUD 46 million p.a. 

- 64,212 Higher/Higher 

 

Market-based methods have been used for changes in water availability measured 

with corresponding supply costs or entitlement prices to water corporations in order to 

value the water supply services. Even though water market-based values are available, 

prices charged for abstraction do not reflect the real and full value of water. Water prices 

normally cover the infrastructure, operations, and maintenance, together with the energy 

costs of clean water allocation and wastewater treatment. These costs thus largely reflect 

the value of capital inputs on the supply aspect instead of the water itself [25]. 

To value the water purification services of natural ecosystem, market-based methods 

have been used according to the replacement cost method and the cost of new water 

treatment infrastructure to cope with the extra nitrogen or sediment. 
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Valuation of stormwater and flood regulation is based on the per hectare avoided cost 

of flood detention or retarding basin storage. The cost is related to the hydraulic 

constituent of water’s developer contribution charges, which reflects the cost of on-site 

infrastructure that transports or postpones flood comprising stream/river protection 

works as well. 

METHODS 

This section covers the land use changes that occurred in southern Victoria during 

2006-2016, problem description, and the introduction of multifunctionality to Natural 

Capital (BGI). Details on each step have been provided in the following sections. 

Defining land use changes in southern Victoria 

Changes in land use were evaluated in the South Victoria regions and surroundings 

(Figure 1). 
 

 
 

Figure 1. Location of South Victoria in Australia 

 

The spatial analysis relied on two land use datasets of 2006 and 2016. The Victorian 

Land Use Information System (VLUIS) dataset has been used, and the land use data has 

been obtained from the Valuer-General Victoria. The land use descriptions and codes 

have been revised according to the Australian Valuation Property Classification Codes 

(AVPCC). The AVPCC includes nine main classifications: 

• Residential; 

• Commercial;  

• Industrial; 

• Extractive industries;  

• Primary production; 

• Infrastructure and utilities;  

• Community services; 

• Sports heritage and culture;  

• National parks, conservation areas, forest reserve and natural water reserves.  

There are two other classes, which were defined as Urban Void (V) and Unclassified 

private land (U). Urban voids refer to all areas in the urban context, whose designs and 

functions have not yet been decided upon conclusively and they are one of the main signs 

of urbanisation. Each of the main classifications was divided into different secondary and 

tertiary sub-classes [26]. 
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By comparing the 2006-2016 shapefiles, it was possible to detect the land use changes 

during the 10-year period in the southern regions of Victoria. Table 2 illustrates the 

changes occurred during the ten years of the main classes. Figure 2 and Figure 3 show the 

distribution of different classification in the study area in 2006 and 2016, respectively. 

 
Table 2. Changes occurred in land uses (primary classifications) during 2006-2016,  

southern Victoria, Australia 

 

Land use type (primary categories) 2006 [ha] 2016 [ha] Increase-decrease [ha] 

Residential 296,503.5 265,293.7 −31,209.8 

Commercial 15,114.1 4,173.6 −10,940.5 

Industrial 21,471.5 9,194.9 −12,276.6 

Extractive industries 13,883.6 11,761.6 −2,122 

Primary production 1,292,013 1,125,249 −166,764 

Infrastructure and utilities 15,803.4 43,748.3 27,944.9 

Community services 532.1 11,160.8 10,628.7 

Sport heritage and culture 7,081.1 12,759.5 5,678.4 

National parks, conservation areas, forest reserve  

and natural water reserves 
1,183,070 1,147,187 −35,883 

Urban Void (V) 145,684.1 337,664.3 194,622.1 

Unclassified private lands (U) 3,403,06.3 199,681 −140,625.3 

 

  
 

Figure 2. Spatial pattern of land use 2006, southern Victoria, Australia 

 

  

 
Figure 3. Spatial pattern of land use 2016, southern Victoria, Australia 

 

It is important to mention that there is about 5% difference in the total coverage area 

in 2006 and 2016. According to VLUIS metadata, which is based on the state cadastral 
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parcel layer, this difference is because of overlapping polygons due to subdivision and 

realignments of the cadastre [26]. This data layer is dynamic and therefore at any one 

time can have overlapping polygons [in particular this overlapping occurred in 

unclassified private lands (U)]. 

Here, the total coverage area of the natural capital (class 9 − National parks, 

conservation areas, forest reserve and natural water reserves) in southern Victoria was 

reported. Based on the results of Table 2, the decrease of the total natural capital area by 

almost 36,000 hectares (3%) during 2006-2016, shows a fall of ecosystem services in 

2016 while at the same time the demand for ecosystem services increases by population 

growth. According to the Australian Bureau of Statistics (ABS) [27], Victoria 

experienced the highest population growth rate amongst other states by the growth of  

1.1 million people (22.1%) during 2006-2016. In order to provide ecosystem services for 

extra demands of growing inhabitants, two things need to be considered: the first includes 

minimizing or stopping the conversion of natural capital to other artificial land uses, 

which is almost inevitable due to urbanisation and agricultural development. The second 

is the strategic design of natural capital (multifunctional natural capital) as to get more 

ecosystem benefits via a more holistic understanding of the complex interrelations and 

dynamics of social-ecological systems. Here, the impacts of multifunctional natural 

capital via a designed BGI system in a case study were analysed as a proof of concept and 

the costs and benefits of the designed system were reported. 

Problem description 

As a means of exploring the concept of multifunctional natural capital, its potential 

benefits in a case study of Victoria, Australia were explored. The case study is part of the 

Tarwin catchment (Tarwin Lower) located in the South Gippsland region in Victoria, 

Australia (Figure 4). Tarwin Lower is a good case study because: 

• It has already suffered significant land-use driven reductions in natural capital over 

time and there is very little left [25];  

• Agriculture is intensifying in the region and therefore there is every reason to 

suspect that the trend of declining natural capital will continue and exacerbate other 

problems (specifically nutrient run-off) [25]; 

• It is a highly flood-prone area that needs a solution.  

The Tarwin catchment has experienced destructive flood events at a higher frequency in 

the past 25 years (1990, 1997, 2001, 2007, March 2011, May 2012, June 2012 and July 

2016) which caused millions of dollars damage to people, infrastructures, properties, and 

environment. Significant floods had normally happened in this area, every 10 to 20 years. 

However, during 2011-2013, there have been three major flood events [28]. As climate 

change intensifies the frequency and magnitude of flooding more destructive floods are 

likely to happen in this area in the future [29]: 

• Nutrient runoff is a serious problem, which needs a solution. Cumulative data from 

1975 to 1997 show that nitrogen and phosphorus levels in the Tarwin catchment 

exceed recommended levels by State guidelines, particularly downstream of 

intensive agriculture and residential areas [30]. Elevated levels of phosphorus and 

nitrogen contribute to significant water quality deterioration in the Tarwin 

catchment as they are potential to cause toxic blue-green algal blooms; 

• Due to the effects of the climate change, previous drought periods, changes in South 

Gippsland water’s operation as a result of the drought, and landscape developments, 

the raw water demand for South Gippsland region in increasing every year [31].  

For example, the average raw water demand in Tarwin River/Meeniyan in 2012 was 

estimated to be 65 ML/yr; 
Flooding, nutrient run-off, and water supply will all become bigger problems due to 

climate change. As such, it is an ideal site to examine whether multifunctional natural 
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capital can address some of the problems and therefore achieve a higher societal value, 

thus increasing the chances that the decline in natural capital can be stopped. 

 

 
 

Figure 4. Location of the Tarwin River in South Victoria [32] 

Introducing multifunctionality to Natural Capital (Blue-Green Infrastructure) 

BGI planning is implemented according to a variety of guidelines or principles  

[33, 34], all with the common aim to promote ecological services in the communities [35]. 

BGI development is also considered a melting pot for innovative planning methods in the 

field of environment conservation and blue and green space management [36]. 

Here, a method is presented to design the integration of BGI into existing natural 

capital and estimate the value of the resultant multifunctional natural capital.  

BGI planning was used by integrating regional-scale approaches to systematically 

identify ecosystem service trade-offs, synergies, and ‘hotspots’ associated with BGI and 

its siting in order to highlight the multifunctionality of BGI.  

Figure 5 depicts the typical steps for designing multifunctional natural capital via BGI. 

To analyse the impacts/benefits of the designed multifunctional natural capital (BGI) 

system on ecosystem services, its performance was evaluated with the help of Model for 

Urban Stormwater Improvement Conceptualisation (MUSIC) [37]. To provide a reliable 

method for simulation, a meteorological template was created in MUSIC using relevant 

data of rainfall, evapotranspiration, and time steps (orange colour).  

When the climate-related data was introduced into the model, the source nodes were 

determined to specify the properties of the contributing catchments. This included 

defining land use type, establishing catchments, introducing rainfall run-off parameters, 

and defining pollutant generation parameters (grey colour). 

To evaluate the impacts of the designed system, three MUSIC models were created:  

• With current natural capital (current situation, blue colour);  

• Without natural capital (green colour);  

• With a designed multifunctional natural capital (BGI) system (purple colour).  

After defining the BGI components, four criteria were considered:  

• Location;  

• Size;  

• Connectivity;  
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• Physical configuration of BGI components to design the multifunctional natural 

capital via the BGI system (purple colour).  

Lastly, the performance of each MUSIC model [with current natural capital, without 

natural capital, and with a designed multifunctional natural capital (BGI) system] was 

tested on three ecosystem services of water supply, water purification, and flood 

mitigation (yellow colour). 

The model was designed to facilitate spatial planning at a regional scale and was 

applied to Tarwin Lower as a proof of concept. In the Tarwin Lower example, the 

analysis looked at three benefit criteria (abate stormwater, secure water quality 

improvement, and supply water for the drought periods) to compare performance. But, it 

should be noted that the model is generalizable and can be applied to other catchments or 

regions where appropriate data is available. 
 

 
 

Figure 5. The typical steps for designing multifunctional natural capital via BGI [orange: creating 

the meteorological template in MUSIC, grey: defining catchment attributes, blue: creating 

MUSIC model with current natural capital (current situation), green: creating MUSIC model 

without natural capital, purple: creating MUSIC model with multifunctional natural capital 

(BGI), yellow: comparing the results of three MUSIC models on water supply, water purification, 

and flood mitigation] 

 

The meteorological template was created for Tarwin Lower using continuous rainfall 

data per 6 minutes for the year 2012 (one of the wettest years on record), the measured 

mean monthly potential evapotranspiration for the Tarwin catchment, and a suitable 

definition of storm hydrograph movement through BGI components, which was 

specified by selecting the 6-minute time-steps (Figure 6). 
 

 
 

Figure 6. Rainfall and evapotranspiration data for the year 2012, Tarwin catchment,  

Victoria, Australia 
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To define the catchment attributes, the area for each sub-catchment was defined and 

inserted in the appropriate source node (in hectares). The location, extent, and the 

imperviousness ratio of the sub-catchments were specified. Also, rainfall run-off and 

pollutant generation parameters were determined in MUSIC. 

Rainfall run-off parameters are impacted by the type of the soil and were produced via 

the interplay of the MUSIC Rainfall Run-off model, rainfall, and evapotranspiration 

(Table 3). 
 

Table 3. Rainfall run-off parameters for the Tarwin catchment, Victoria, Australia 

 

Impervious area properties 

Rainfall threshold [mm/day] 1.00 

Pervious area properties 

Soil storage capacity [mm] 120 

Initial storage [% of capacity] 25 

Field capacity [mm] 80 

Infiltration capacity coefficient ‒ a 200 

Infiltration capacity coefficient ‒ b 1.00 

Groundwater properties 

Initial depth [mm] 10 

Daily recharge rate [%] 25.00 

Daily baseflow rate [%] 5.00 

Deep seepage [%] 0.00 

 

Run-off pollutant parameters were produced stochastically by assuming a constant 

mean concentration or from a well-defined mean and standard deviation. The study area 

comprises five types of land use: grazing modified pasture (cattle), grazing modified 

pasture (other livestock), rural living, conservation environment, and roads. Table 4 

illustrates Dry Weather Concentration (DWC) and Event Mean Concentration (EMC) of 

the nutrients according to the different land uses. Land use type is considered as the main 

parameter for changes in nutrient and sediment delivery to the BGI components.  

Data were collated by South Gippsland Water for Total Suspended Solid (TSS), Total 

Nitrogen (TN), and Total Phosphorus (TP). 

Three MUSIC models [with current natural capital (current situation), without natural 

capital, and with a designed multifunctional natural capital (BGI) system] were created to 

compare their impacts on water supply, water treatment, and flood mitigation. 

Figure 7 shows the current natural capital (green regions) located in the study area. 
 

Table 4. DWC and EMC of TSS, TP, and TN for different land uses in the Tarwin catchment, 

Victoria, Australia 

 

Land use type 

log10 TSS [g/m3] log10 TP [g/m3] log10 TN [g/m3] 

Base  

flow 

Storm  

flow 

Base  

flow 

Storm  

flow 

Base  

flow 

Storm  

flow 

Agricultural (cattle) 
Mean 1.000 2.300 −1.090 −0.301 −0.500 0.342 

Std. Dev. 0.130 0.310 0.130 0.300 0.130 0.260 

Agricultural  

(other livestock) 

Mean 1.000 2.200 −1.397 −0.301 −0.500 0.342 

Std. Dev. 0.130 0.310 0.130 0.300 0.130 0.260 

Rural residential 
Mean 1.000 2.041 −1.000 −0.602 −0.522 0.301 

Std. Dev. 0.170 0.320 0.190 0.250 0.120 0.190 

Road 
Mean 1.000 2.000 −1.000 −0.522 −0.522 0.362 

Std. Dev. 0.170 0.320 0.190 0.250 0.120 0.190 

Conservation  

environment 

Mean 0.699 1.602 −1.699 −1.046 −2.096 −0.046 

Std. Dev. 0.130 0.200 0.130 0.220 0.130 0.240 
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Figure 7. Natural capital located in the study area [38] 

 

Tarwin Lower is a rural residential including natural capital zones facing numerous 

resilience challenges such as ageing infrastructure and high vacancy rates. Yet the 

Tarwin catchment natural capital, farms, and extensive vacant land also present an 

opportunity for regional transformation, and BGI is a primary redevelopment strategy. 

But are natural capitals in the Tarwin catchment being strategically planned where 

ecosystem service benefits are maximised and needed most? BGI spatial planning 

analysis was used to answer this question, comparing the designed modelled with the 

current natural capital across the Tarwin catchment. 

As mentioned above, to design the multifunctional natural capital (BGI) system 

within the current natural capital, four criteria were considered:  

• Location;  

• Size; 

• Connectivity;  

• Physical configuration of BGI components.  

Four BGI components (bio-retention cell, rainwater tank, infiltration trench, and 

vegetative swale) among many others were chosen based on their applicability in a 

regional context, efficacy, and aesthetic suitability. 

In order to define the best location for the BGI components, different GIS shape-files 

(Gippsland flood-ways, Gippsland land-use land-cover, Gippsland soil, and Gippsland 

plan- overlay) were integrated with the Digital Elevation Model (DEM) layer.  

These layers provide information about areas prone to flood, current land-use and 

land-cover, type of the soil, soil permeability and drainage rate, and others. 

Based on the soil layer shape-file information, the dominant soil type in the region is 

aeric and aquic podosols and extratidal hydrosols. The drain-rate fluctuates between very 

poor, poor and moderate level while perm-rate fluctuates between very slow, slow and 

moderate. The DEM layer signifies the surface level and slope. 

The rainwater tanks were located on parts of the study area with the lowest elevation 

based on the information provided by the DEM layer. The gravity conveys the 

stormwater into the rainwater tank (storage component). Regardless of surface 

characteristics, slope is one of the most important factors to consider. Moreover, a 

number of these tanks were located in floodplain zones. The floodplain zones were 

identified using the flood-way layer to determine the best location to capture rainfall 

run-off directly. 
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The bio-retention cell and infiltration trench were located where the soil permeability 
value and soil moisture retaining capacity is very low so as to reinforce the rainfall 

infiltration process. The soil characteristics were fully covered by soil shape-file layer. 

The vegetated swale was located in the areas that connect less permeable and high 

permeable zones. This was to ensure that they convey the stormwater from less 
permeable to the storage component or high permeable regions of the study area.  

The Gippsland land-use land-cover and plan-overlay layers provide us with the further 

indication of where the vegetative swale could best be located. 

Size of each BGI component within the natural capital was set based on their 
applicability in a regional context. The area of the bio-retention cell was set at 2,000 m2, 

the area of the infiltration trench was set at 1,000 m2, the area of the vegetative swale was 

set at 1,000 m2, the area of each tank was set at 50 m2, and the volume of the tank 250 m3 

(250,000 L). Compared with the size of each natural capital in the study area (7.04, 4, 
3.44, 1.64, and 0.52 ha), the occupied size of the BGI components in natural capital is 

negligible. Therefore, BGI has the benefit of taking little space and therefore having little 

impact in terms of space. As such, there are no significant implications on land-use by the 

introduction of BGI to regional and rural areas and natural capital. 
Regarding connectivity, it is proposed that rural residential sites including roads will 

drain to the swale component prior to discharge to the bio-retention and infiltration trench 

before discharging to the rainwater tank. The agricultural farms will drain to the 

bio-retention prior to discharge to the infiltration trench before discharging to the 
rainwater tank. The conservation environment will directly drain to the rainwater tank. 

Finally, the physical configuration of the BGI components was defined in MUSIC as 

shown in Tables 5-8, respectively. 
 

Table 5. Rainwater tank properties 

 
Inlet properties 

High flow by-pass [m3/s] 100 

Low flow by-pass [m3/s] 0 

Individual tank properties 

Number of tanks 5 

Storage properties 

Volume below overflow pipe [m3] 250 

Depth above overflow [m] 0.10 

Surface area [m2] 25 

Initial volume [m3] 0.00 

Outlet properties 

Overflow pipe diameter [mm] 112 

Advanced properties 

 K [m/yr] C * [g/m3] 

TSS 400 12.000 

TP 300 0.130 

TN 40 1.400 

 

Table 6. Bio-retention cell properties 

 
Inlet properties 

Low flow by-pass [m3/s] 1.500 

Storage properties 

Extended detention depth [m] 0.35 

Surface area [m2] 3,500.00 

Filter and media properties 

Filter area [m2] 1,000.00 

Unlined filter media perimeter [m] 14.00 

Saturated hydraulic conductivity [mm/hr] 150.00 

Filter depth [m] 0.60 

TN content of filter media [mg/kg] 800 

Orthophosphate content of filter media [mg/kg] 55.0 

Outlet properties 

Overflow weir width [m] 2.00 

Advanced properties 

Weir coefficient 1.70 

Number of Continuous Stirred-Tank Reactor (CSTR) cells 3 

Porosity of filter media 0.350 

Horizontal flow coefficient 3.0 

 K [m/yr] C * [g/m3] 

TSS 8,000 20.000 

TP 6,000 0.130 

TN 500 1.400 
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Table 7. Vegetative swale properties 

 
Inlet properties 

Low flow by-pass [m3/s] 0 

Storage properties 

Length [m] 500.0 

Bed slope [%] 1.00 

Base width [m] 2.0 

Top width [m] 5.0 

Depth [m] 0.30 

Vegetation height [m] 0.100 

Exfiltration rate [mm/hr] 0.00 

Calculated swale properties 

Mannings N 0.094 

Batter slope 1:5 

Velocity [m/s] 0.372 

Hazard 0.112 

Cross sectional area [m2] 1.05 

Swale capacity [m3/s] 0.391 

Advanced properties 

Number of CSTR cells 10 

 K [m/yr] C * [g/m3] C ** [g/m3] 

TSS 8,000 20.000 14.000 

TP 6,000 0.130 0.130 

TN 500 1.400 1.400 

 

Table 8. Infiltration trench properties 

 
Inlet properties 

High flow by-pass [m3/s] 100 

Low flow by-pass [m3/s] 0 

Storage properties 

Extended detention depth [m] 0.3 

Surface area [m2] 1,000 

Exfiltration rate [mm/hr] 0.50 

Filtration properties 

Filter area [m2] 1,000.00 

Filter depth [m] 2.0 

Filter median particle diameter [mm] 1.00 

Saturated hydraulic conductivity [mm/hr] 1,000.00 

Depth below underdrain pipe [% of filter depth] 0.0 

Outlet properties 

Overflow weir width [m] 2.00 

Advanced properties 

Weir coefficient 1.70 

Number of CSTR cells 3 

Void ratio 0.3 

 K [m/yr] C * [g/m3] 

TSS 8,000 20.000 

TP 6,000 0.130 

TN 500 1.400 

 

It should be pointed out that MUSIC uses the Universal Stormwater Treatment Model 

(USTM) to calculate the treatment processes that take place in most of the treatment 

devices. When a parcel of water carrying materials such as suspended solids, phosphorus, 

or nitrogen enters a treatment measure such as a bio-retention cell, the water quality of 

the parcel begins to change. Several physical processes are involved, and detailed 

behaviour can be very complex. But the overall effect is that contaminant concentrations 

in the parcel tend to move by an exponential decay process towards an equilibrium value 

for that site at that time. This behaviour can be described by the first order kinetic  

(or k-C *) model, in which C * is the equilibrium value or background concentration, and k 

is the exponential rate constant. 

The water quality performance of a treatment measure may depend upon the inflow 

rate. In particular, stormflow and baseflow may be handled very differently. Baseflows 

may be confined to a distinct low flow channel or pipe, while stormflows potentially 

occupy the whole area of the treatment measure. To allow for this, the package 

recognises two separate background concentrations in treatment measures that do not 

consist of a permanent pool, thus allowing for a better description of the low flow 

operating conditions in these measures. 

C * parameter has been redefined to be the event background concentration, which 

applies at higher flows when the extended detention storage is in use. The new parameter 

C ** becomes the baseflow background concentration, which applies when flows are 
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largely confined to a low flow channel. Where a permanent pool is present, only a single 

background concentration (C *) applies. The C ** feature can be disabled by setting it to 

have the same value as C *. 

Figures 8-10 depict the designed Tarwin catchment MUSIC model with the 

multifunctional natural capital (BGI) system, with current natural capital, and without 

natural capital respectively. To check the benefits of natural capital on ecosystem 

services, it is assumed that in the system without natural capital, the study area includes 

rural residential and agricultural zones only. 
 

 
 

Figure 8. Study area with the designed multifunctional natural capital (BGI) system 

 

 
 

Figure 9. Study area with current natural capital 

 

 
 

Figure 10. Study area without natural capital 
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RESULTS AND DISCUSSION 

To evaluate the ecosystem services (water supply, water purification, and flood 

mitigation) the results of the three models were compared. Table 9 and Table 10 illustrate 

the changes occurred in sediment loads, runoff, and water supply for models with current 

natural capital and with multifunctional natural capital (BGI), and also with and without 

current natural capital respectively. 

While Table 9 and Table 10 highlight the importance of multifunctional natural 

capital (BGI) system and natural capital in providing different ecosystem services 

respectively, Table 9 also provides initial evidence that designing about only 0.1% of the 

current natural capital area as BGI can maximise stormwater abatement by 16%, water 

quality improvement by 94.4%, and water supply reuse services by 100%. Here 100% 

means current natural capital in Tarwin Lower cannot secure water supply for reuse 

purposes by itself although they will reduce runoff by stormwater infiltration into the soil. 

BGI components such as rainwater tanks, ponds, and wetlands enable storing stormwater 

(by storage component or detention storage zone), which can be reusable for other 

purposes such as irrigation in the regional context or toilet flushing for urban areas. 

Also, the results indicate that there are priorities for placing BGI in natural capital. 

Although the area of sub-catchments I (0.52 ha) and J (1.64) are smaller than 

sub-catchments E (7.04 ha), H (4 ha), and F (3.44 ha), sub-catchments I and J have higher 

priorities for BGI implementation (Figure 8). This is due to being located very close to 

the river, and also being located in lower elevation where gravity will convey water 

directly to those sub-catchments. The former reason makes those two sub-catchments 

very important because of their role in improving stormwater quality prior to discharge to 

the river and the latter reason highlights their importance because of runoff capture and 

flood mitigation. 
 

Table 9. Ecosystem service differences with current natural capital and with multifunctional natural 

capital (BGI) system 

 

 

Model with 

current natural 

capital 

Model with multifunctional 

natural capital (BGI) system  
Decrease/increase 

Decrease/increase 

[%] 

Sediment loads 

[kg/yr] 
37,560 2,118 −35,442 −94.4 

Reused 

supplied 

[ML/yr] 

0 42 +42 +100 

Rainfall runoff 

[ML/yr] 
326 274 −52 −16 

 

Table 10. Ecosystem service differences with and without current natural capital 

 

 
Model without natural 

capital 

Model with current 

natural capital 
Decrease/increase 

Decrease/increase 

[%] 

Sediment loads 

[kg/yr] 
56,048 37,560 −18,488 −33 

Reused supplied 

[ML/yr] 
0 0 0 0 

Rainfall runoff 

[ML/yr] 
392 326 −66 −17 

 

The results show that planning BGI will enhance multiple aspects of regional 

resilience and sustainability in the Tarwin catchment where BGI could be strategically 
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sited to maximise multifunctionality. The analysis provides a replicable and 

comprehensive method for designing future BGI so that it exploits environmental and 

social resilience. Moreover, it signifies a spatial planning method for complementary 

ecosystem service priorities and evaluating competing for a specific landscape. 

Using the MUSIC-link model, which forms part of the standard MUSIC interface 

(accessed using the MUSIC-link tab in the main interface) and choosing the assessing 

authority, the validation report showed that the results were within an allowable range. 

Cost-benefit analysis 

Based on the results of Table 1, the sum of the benefits of applying the BGI 

components based on only three ecosystem services of water supply (reused supplied), 

water purification (reduction in sediment loads), and flood mitigation (reduction in 

rainfall runoff) was estimated AUD 100,525 per year. It is important to note that for water 

supply service the value of water was considered as the value of benefits, and for flood 

regulation service, the benefits of the stormwater retention services of Victoria’s 

metropolitan natural ecosystem was considered due to the complication of peak flows 

valuation and modelling for non-metropolitan regions. 

Using the MUSIC life cycle cost tool, the life-cycle cost of each BGI components was 

calculated. All cost approximations are based on functions that result from costing data 

collected from around Australia in 2003-2004. The information originated from all six 

Australian States, including major cities and regional areas. It included descriptions of 

the BGI’s design/type, unusual characteristics (e.g. unusual construction costs or disposal 

costs), expected life cycle/span, catchment area, area of the treatment zone, cost elements, 

data quality and how cost elements vary over time (e.g. maintenance costs). The cost 

approximations demonstrated were inflated to the base costing year specified in the 

costing properties (year 2017). 

The MUSIC life cycle cost of BGI components is tabulated in Tables 11-14, where:  

• The life cycle cost: The sum of all discounted costs over the life cycle of the BGI 

measure (expressed in dollars relevant to a base date); 

• Equivalent annual payment: The life cycle cost of the BGI measure (AUD) divided 

by the specified life cycle of BGI measure (years); 

• Life cycle: The functional life of the BGI measure (in years);  

• Total acquisition cost: The cost of defining the need for BGI measure  

(e.g. preliminary feasibility studies), all design costs and construction costs 

including overheads but not Goods and Services Tax (GST) or costs associated with 

using the land (where relevant); 

• Annual establishment cost: The cost required to ensure that the BGI measure is 

properly established where that establishment cost is not included in the total 

acquisition cost; 

• Typical annual maintenance cost: The annual cost of typical, frequent maintenance 

activities, including all costs associated with inspections, training, administration, 

and waste disposal (but not GST); 

• Renewal/Adaptation cost: The cost of unusual and/or infrequent restoration 

activities (sometimes called ‘corrective maintenance’), including all overheads but 

not GST; 

• Renewal period: The period between infrequent renewal/adaptation costs; 

• Decommissioning cost: The cost of removing the BGI measure and fully restoring 

the site at the end of the BGI’s useful life; 

• Annual inflation rate: A rate used in the life cycle costing module to convert real 

costs to a new base date; 

• Discount rate: The rate (%) used to discount all future costs back to a base date.  
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Table 11. Costing inputs for vegetative swale 

 

Life cycle [yrs] 50 

Acquisition cost [AUD] 202,841 

Annual maintenance cost [AUD] 13,840 

Annual establishment cost [AUD] 0 

Establishment period [yrs] 0 

Renewal/adaptation cost [AUD] 5,122 

Renewal period [yrs] 1 

Decommissioning cost [AUD] 102,413 

Real discount rate [%] 5.5 

Annual inflation rate [%] 2 

Costing results for swale 

Life cycle cost of swale [AUD 2017] 529,644 

Equivalent annual payment cost of the asset [AUD 2017/year] 10,593 

Equivalent annual payment per m3/s maximum flow reduction [AUD] 7,393.99 

Equivalent annual payment/ML flow reduction/year invalid 

Equivalent annual payment/kg TSS/year [AUD] 0.52 

Equivalent annual payment/kg TP/year [AUD] 475.87 

Equivalent annual payment/kg TN/year [AUD] 203.49 

Equivalent annual payment/kg gross pollutant/year [AUD] 1.25 

 

Table 12. Costing inputs for bio-retention cell 

 
Life cycle [yrs] 50 

Acquisition cost [AUD] 262,591 

Annual maintenance cost [AUD] 15,508 

Annual establishment cost [AUD] 0 

Establishment period [yrs] 0 

Renewal/adaptation cost [AUD] 6,631 

Renewal period [yrs] 1 

Decommissioning cost [AUD] 132,581 

Real discount rate [%] 5.5 

Annual inflation rate [%] 2 

Costing results for bio-retention 

Life cycle cost of bio-retention [AUD 2017] 645,057 

Equivalent annual payment cost of the asset [AUD 2017/year] 12,901 

Equivalent annual payment per m3/s maximum flow reduction [AUD] 9,758.95 

Equivalent annual payment/ML flow reduction/year [AUD] 1,625.85 

Equivalent annual payment/kg TSS/year [AUD] 0.21 

Equivalent annual payment/kg TP/year [AUD] 125.57 

Equivalent annual payment/kg TN/year [AUD] 18.31 

Equivalent annual payment/kg gross pollutant/year [AUD] 1.23 

 

Table 13. Costing inputs for rainwater tank 

 
Life cycle [yrs] 50 

Acquisition cost [AUD] 19,000 

Annual maintenance cost [AUD] 116 

Annual establishment cost [AUD] 0 

Establishment period [yrs] 0 

Renewal/adaptation cost [AUD] 0 

Renewal period [yrs] 1 

Decommissioning cost [AUD] 259 

Real discount rate [%] 5.5 

Annual inflation rate [%] 2 

Costing results for rainwater tank 

Life cycle cost of tank [AUD 2017] 20,982 

Equivalent annual payment cost of the asset [AUD 2017/year] 420 

Equivalent annual payment per m3/s maximum flow reduction Invalid 

Equivalent annual payment/ML flow reduction/year [AUD] 10.27 

Equivalent annual payment/kg TSS/year [AUD] 1.99 

Equivalent annual payment/kg TP/year [AUD] 211.14 

Equivalent annual payment/kg TN/year [AUD] 22.59 

Equivalent annual payment/kg gross pollutant/year [AUD] 0.23 
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Table 14. Costing inputs for infiltration trench 

 
Life cycle [yrs] 50 

Acquisition cost [AUD] 139,800 

Annual maintenance cost [AUD] 13,980 

Annual establishment cost [AUD] 0 

Establishment period [yrs] 0 

Renewal/adaptation cost [AUD] 5,732 

Renewal period [yrs] 1 

Decommissioning cost [AUD] 48,930 

Real discount rate [%] 5.5 

Annual inflation rate [%] 2 

Costing results for infiltration trench 

Life cycle cost of infiltration trench [AUD 2017] 475,333 

Equivalent annual payment cost of the asset [AUD 2017/year] 9,507 

Equivalent annual payment per m3/s maximum flow reduction [AUD] 4,928.50 

Equivalent annual payment/ML flow reduction/year [AUD] 32,784.33 

Equivalent annual payment/kg TSS/year [AUD] 1.36 

Equivalent annual payment/kg TP/year [AUD] 136.75 

Equivalent annual payment/kg TN/year [AUD] 46.97 

Equivalent annual payment/kg gross pollutant/year [AUD] 11.39 

 

It is important to note that the current default value for the ‘real discount rate’ in 

MUSIC’s life cycle costing module is 5.5% per year ±2% (at April 2005). Ideally, it is 

better to determine a rate that is current by contacting experienced local stormwater asset 

managers or agencies who routinely specify discount rates for the water industry. As this 

study was a proof-of-concept, a generic real discount rate was used that was informed by 

a sensitivity analysis. The sensitivity analysis looked at five values across the estimated 

life cycle cost of four BGI elements (Figures 11a-d). This can be important when 

evaluating options with substantially different temporal distributions of costs. 
 

 
(a) (b) 

 
(c) (d) 

 

Figure 11. Sensitivity analysis to check the choice of real discount rate effects on the estimated 

life cycle cost for different BGI components: rainwater tank (a); vegetated swale (b); 

bio-retention cell (c) and infiltration trench (d) 
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While the lifecycle cost of the designed BGI network was estimated AUD 2,284,588, 

the benefit of the BGI network for 50 years was estimated AUD 5,026,250, which is more 

than twice as the lifecycle cost of the system. It is important to mention that for 

calculating the benefits of the BGI components, only three ecosystem services were 

considered. It is obvious that the benefits would be greater if more ecosystem services 

were included. Additional ecosystem servies that would be useful to consider are: coastal 

asset protection, climate regulation (carbon storage), carbon sequestration (from 

revegetation), habitats for species (intermediate service), maintenance of nursery 

populations, social cohesion and sense of place, amenity, and recreation opportunities. 

Considering these ecosystem services, together with the associated tests and experiments 

to incorporate them into the model, have been left for the future due to lack of data  

and time. 

The results of the multifunctional natural capital (BGI) modelling suggest that current 

natural capital in Tarwin Lower is not purposefully planned to maximise multiple 

ecosystem service benefits. As this study has demonstrated, if it was being planned more 

holistically to support social-environmental sustainability in Tarwin Lower, the value of 

ecosystem services would be vastly different. A more integrated and strategic plan can help 

to certify that multiple ecosystem services are provided to areas of Tarwin Lower that need 

them most. 

Table 2, indicates a significant growth in Urban Void, infrastructure and utilities, and 

community services followed by decreasing rate of national parks, conservation areas, 

forest reserve and natural water reserves. It is concluded that to compensate natural capital 

and ecosystem service losses due to urban and regional development and to provide extra 

demands of growing inhabitants for reserves, considerable efforts should be made in the 

development of multifunctional natural capital (BGI) networks. This needs smarter 

planning for available lands and an indication that investments in BGI will provide 

multi-functions for the community as a whole.  

Two key findings can be achieved from this research. First of all, multifunctional natural 

capital (BGI) improves the supply of multiple ecosystem services at Australia’s regional 

scale. Areas, where more BGI components are extended, deliver more benefits.  

BGI influences the capability of the environment to supply services at different scales also it 

provides the links, which attach environments together, enabling the flow of environmental 

processes, and finally, ecosystem services. 

The second and more significant finding of this research is, given that natural capital 

area is declining in Australia, incorporating designed elements into existing natural capital 

to create multifunctional natural capital (BGI), maximises the supply and value of 

ecosystem services in order to meet the demands of a growing population. 

CONCLUSIONS 

This paper has presented a generalizable spatial planning method that integrates three 

commonly cited benefits of BGI (abate stormwater, secure water quality improvement, 

and supply water for the drought periods) to make current natural capital a 

multifunctional natural capital system in Tarwin Lower. Due to its holistic approach, BGI 

planning is considered to be more effective and able to handle more complexity than 

traditional planning for nature conservation or natural capital. This method can help 

stakeholders, planners, and local communities in classifying ‘hotspots’, evaluating 

possible spatial tradeoffs, and eventually assisting decision-makers to design BGI 

strategies that integrate a broader range of environmental and socio-economic benefits 

and local resilience priorities.  

The approach developed here was applied to a specific case study but is generalizable 

to any regional hydrological system. Provided that data is available, the approach can be 
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applied rapidly. The key input data required to run the models are publically available 

(rainfall threshold, soil type and soil drainage parameters, etc.) and other parameters 

(such as locally relevant pollution levels) are readily acquired in Australia from local 

water authorities. Furthermore, the approach could be expanded in the future to include 

additional ecosystem services. 

Our findings suggest that the current natural capital do not provide the maximum 

ecosystem services and the results revealed why a strategic spatial planning process is 

needed in order to maximise the benefits. Therefore, policies now should dictate that as a 

community, we should invest in natural capital restoration and planning to achieve 

biodiversity objectives. This needs a substantial change from traditional biodiversity 

conservation goals, to a holistic land management approach that integrates smart urban 

and regional planning with viable populations of native fauna and flora. 
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