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ABSTRACT 

This paper proposes a simple mathematical model forupstream fish migration along 

rivers. The model describes the fish migration along a river based on a mixed optimal 

control approach having swimming velocity, school size, and stopping time of migration 

as control variables. The optimization problem reduces to a variational inequality.  

Its explicit “viscosity” solution is presented with the dependence of the fish migration on 

river environment. To prove uniqueness of the solution to the variational inequality 

requires a constructive argument not based on the conventional theorems. A novel finite 

difference scheme for solving the variational inequality is also proposed with its 

convergence results. An application example of the model discusses the upstream 

migration of Plecoglossus altivelis (Ayu) in Japan, which evaluates the dependence of 

the fish migration on the habitat quality and provides recommendations for managing 

river environment. This is an interdisciplinary research between environmental and 

mathematical fields.  

KEYWORDS 
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INTRODUCTION 

Comprehension and assessment of fish migration are necessary for sustainable 

development and management of water environmental systems worldwide, examples 

include those in Asia [1], Europe [2], and North America [3]. Anthropogenic 

degradations of water environment, such as dam and weir constructions and water quality 

changes, have significantly affected the fish migration through changes in hydrological 

and hydraulic characteristics of their habitats and migration routes. Fish migration in 

rivers is highly important from ecological, fishery, and cultural viewpoints. Impacts of 

environmental changes on life histories of migratory fishes have been assessed based on
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the willingness to pay [4], ecological services [5], and ecosystems stability [6]. The fish 

migration has been severely affected by physical barriers such as cascading dams [7] and 

huge hydroelectric dams [8], and the associated environmental changes [9]. Evaluation of 

impacts of environmental changes on the fish migration is the most urgent issue in the 

research of above-mentioned areas. Mathematical models to evaluate fish migration 

would help establish a management way of river environment and ecosystems involving 

migratory fish, however, such research is still rare. 

Conventional models for fish migration are mechanistic multi-agent models to 

simulate detailed interactions among individuals. Such models consider the multi-scale 

nature of fish school dynamics [10], food-web dynamics [11], and body growth [12]. 

They are necessary for evaluation of microscopic dynamics such as swimming behavior 

around hydraulic structures. However, they would be inefficient and often too 

complicated for analyzing macroscopic dynamics such as fish migration along rivers 

with complex connectivity [13], those in rivers with many hydraulic structures [14], and 

those in wide brackish waters [15]. For approaching the macroscopic fish migration, 

conceptual mathematical models that track the longitudinal migration dynamics can 

potentially serve as simpler and more efficient alternatives to the multi-agent models.  

If possible, such a model should be biologically plausible as well as mathematically 

rigorous, however, in most cases, mathematical analysis and practical application have 

not been carried out simultaneously. This is the motivation of this paper where both the 

analysis and application are addressed. 

The objectives of this paper are to propose and analyze a simple, conceptual 

mathematical model for upstream fish migration along a 1-D river. The upstream 

migration is a key biological process for assessing the ecological dynamics of many 

migratory fishes like salmonids [12, 16]. The present model can be applied to diadromous 

and anadromous fish species that have upstream migrations along rivers in their life 

histories. Our model handles a fish school as a whole: the decision-maker as a 

synchronized group of individuals. The proposed model describes the fish migration 

based on a mixed optimal control approach having swimming velocity, school size, and 

stopping time of migration as control variables. The fish school migrates upstream along 

the river and stops its migration at some point, namely, a habitat. A performance index 

containing the cost of migration and the benefit of finding a high-quality habitat is 

presented, which is maximized by the fish school. This optimization problem ultimately 

reduces to a Variational Inequality (VI) that governs the optimal migration strategy, 

which is the equation to be solved. Our approach thus provides a new mathematical 

description of the fish migration based on the mixed optimal control theory, however, its 

basic structure is quite natural where the migration arises from decision-making 

processes by fish. 

The present VI admits a “viscosity” solution [17], which is an appropriate weak 

solution to a wide class of VI’s both with [17] and without the diffusion terms [18]. Our 

VI is of the latter type. Its viscosity solution under a simplified case is derived and 

biological and ecological implications of the solution are discussed with an emphasis on 

the dependence of the fish migration on river environment. To prove the unique existence 

of a viscosity solution to the VI requires a constructive argument not relying on the 

conventional comparison theorems because of its discontinuity. Proving the uniqueness 

amounts to saying that the exact solution is mathematically rigorous, which is a 

requirement for biologically plausible solutions. A finite difference scheme for solving 

the VI under realistic conditions is also proposed with its convergence results.  

An application example of the model is presented to evaluate upstream migration of the 

major inland fishery resource Plecoglossus altivelis (P. altivelis, Ayu) in Japan [19]. 

Yoshioka et al. [20] numerically simulated their horizontally 2-D swimming behavior 

around an existing weir. 
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This paper is based on a mathematical approach for dealing with the upstream fish 

migration problem, however, it turns out to be an effective candidate for describing a 

wider range of biological phenomenon from the new standpoint. A mathematical analysis 

would be inevitable for comprehension and assessment of properties of newly developed 

mathematical models. The results should then be discussed from both theoretical and 

practical point of views, which requires an interdisciplinary research framework between 

mathematics and applied research area. This paper serves as such an example focusing on 

the problem of fish migration, where the researchers in life and environmental science 

and mathematics co-work. The analysis results of this paper demonstrate that the concept 

of viscosity solution is a powerful mathematical tool for analysing fish migration.  

The present model can be used for identifying the potential area of migration in a river, 

which would be useful at least from the viewpoint of fishery resources management.  

This paper is highly mathematical and presents several mathematical analysis results as 

the main results, however, being different from pure mathematical papers, this paper 

provides information about how the present model can be used in practice and what kind 

of result can be obtained from it. The mathematical and numerical analysis results here 

extend that of the previous research [21]. In this paper, more detailed discussion and 

analysis of the mathematical model and the numerical scheme are presented. 

The rest of this paper is organized as follows. The second section presents the mixed 

optimal control model proposed in this paper and derives its associated VI: the main 

problem. The exact solution to the VI and its proof of uniqueness, which is a non-trivial 

and biologically important issue, is presented in this section as well. The third section is 

devoted to development and verification of a numerical scheme to discretize the VI. The 

fourth section gives a brief application result of the present mathematical model. The last 

section gives a summary of this paper and presents future perspectives of our research. 

MATHEMATICAL MODEL 

This section presents our model and derives and analyses the associated VI.  

The mathematical notions like function spaces are found in the textbook [22]. 

Migration dynamics 

An Ordinary Differential Equation (ODE) that governs the longitudinal movement of a 

fish school is presented. The 1-D domain D = (0, L) with the length L > 0 is considered as 

a river reach bounded by physical barriers placed at the boundary D∂  that contains the 

upstream- and downstream-ends x = 0, L. The flow velocity :V D →R is positive and 

Lipschitz continuous in D . The fish school is considered as a synchronized group, which 

is seen as a moving point in D. The position of the school at the time t ≥ 0 is denoted as 

[ ]: 0,tX T D→  where the time that Xt firstly hits D∂ is denoted as T. The swimming 

velocity ut: [0, T] → U = [−umax, umax] of the fish school is considered as a control variable. 

Here, umax is the maximum sustained swimming speed, which is assumed to be 

sufficiently large such that ( )max max
x D

u V x
∈

> . The ODE that governs the longitudinal 

movement of the fish school until it first hits the boundary D∂ is set as: 

 

( )
d

d

t
t t

X
V X u

t
= − for 0 t T< <  (1)

Performance index 

The performance indexed to be maximized by the fish school, the decision-maker, is 

presented. It is assumed that all the individuals in the school share a common 
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performance index containing the three terms: benefit of finding a high-quality habitat, 

hydrodynamic cost, and non-hydrodynamic cost. The population density in the fish 

school Nt: [0, T] → [0, +∞], referred to as the size in what follows, is a function of the 

time t. The stopping time of migration is denoted as τ. In what follows, ( )1
C Dα ∈  

represents the profit by terminating the migration, which is assumed to be non-negative. 

The performance index J is set as: 

 

( ) ( )
( )
( )

( )
0

; , , d
t

t t

t

f u
J x u N X e b N e t

a N

θ

θ θτ α
 

= − + 
 

 , 
t

te e
δ−= , { }min ,Tθ τ=  (2)

 

with the discount rate δ ≥ 0. Conceptually, δ represents impatience of the fish school: 

larger δ results in earlier stopping of migration. It would be natural to consider that the 

existence of a performance index to be maximized during a fish migration process is a 

result of evolutionary processes. Also, δ can be larger for the migration subject to higher 

predation pressure: namely higher mortality. 

In eq. (2), the function f ≥ 0 with f (0) = 0 is the hydraulic cost of solo swimming per 

unit time as a smooth, non-negative, convex, and even function. This f can be identified 

from laboratory or field experiments on the swimming behavior of individual fishes 

along a current as demonstrated later. The coefficient a > 0 represents the discount of the 

hydrodynamic cost by forming a school, which is motivated by the theoretical and 

experimental results that increasing the size N effectively reduces the hydrodynamic cost 

per individual [23]. The probabilistic model theoretically predicts [24]: 

 

( ) m
a N N= with 1/ 3m =  (3)

 

On the other hand, the coefficient b > 0 conceptually represents the non-hydraulic 

cost by forming a school per unit time. Schooling would have many aspects of benefits, 

such as improvement of navigational performance, hearing perception, and foraging 

efficiency. While at the same time, schooling would negatively affect passage efficiency, 

information transmission among individuals, and competitions among the individuals 

[25]. Being different from the sophisticated multi-agent models [26], a simple strategy is 

employed in this paper. This is because these effects are possibly interacting and difficult 

to mathematically describe in detail. Therefore, the lumped approach [27] is employed: 

 

( ) k
b N dN=  (4)

 

with k > 0 where its sophisticated parameterization remains as a future topic. This term is 

necessary so that a fish school is created. For example, removing this term from the 

performance index J leads to an unreasonable result that forming a fish school with the 

infinitely large fish school is optimal. 

The value function : DΦ →R is the maximized performance index defined as: 

 

( ) ( )
, ,

sup ; , ,
u N

x J x u N
τ

τΦ = ( ) ( ) ( ); , ,0x J x u N xαΦ ≥ =    (5)

 

From a biological viewpoint, the value function is an index to be maximized by the 

fish school through choosing a migration strategy. The optimizers (u, N, τ) to give the 

supremum of eq. (5) are expressed as (uopt, Nopt, τopt), which are functions of x. Finding 

the optimizers is the goal of the present model. 
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Variational Inequality 

The dynamic programming principle (Chapter III.4 of [18]) leads to the VI as a 
governing differential equation of the value function Φ: 

 

( ) ( ) ( ){ }, , min , , 0H x F x xδ α′ ′Φ Φ = Φ + Φ Φ − =   in  D ,  αΦ =  at 0,x L=  (6)

 

where :H D× × →R R R is the function called Hamiltonian, and the function

:F D× →R R is given as: 
 

( ) ( )
[ ]

( )
( )

( )
max max, , 0

, inf
u u u N

f u
F x p V x p up b N

a N∈ − >

  
= − + + + 

  
 (7)

 

The derivative of Φ with respect to x is denoted as Φ'. Hereafter, the function f is 

assumed to lead to the inequality: 
 

( ) 1 2,F x p c c p≤ −   for all  x D∈  and p ∈R  (8)

 

where c1, c2 > 0 are some constants depending on neither x nor p. Also, the condition  

k > m is assumed to make convex be (fa−1 + b) (u, N). The latter assumption leads to a 

concave F(x, p) for p ∈R , and the equation F(x, p) has the two solutions p = p− (x), 0 with 

p−(x) < 0 for x D∈ . At least two examples of f that comply with the conditions 

mentioned above are found, both of which are used in this paper: f1(u) = |u|n+1 with kn > m 

(condition of forming a school) and ( ) 2

2 max(1 1 )f u u u= − −  [27]. Eq. (8) is a key for 

the unique solvability of eq. (6).  

Definition of viscosity solutions 

Viscosity solutions are appropriate candidates of weak (non-classical) solutions to 

degenerate elliptic differential equations like the eq. (6). This VI does not have classical, 

continuously differentiable solutions in general but has viscosity solutions that are not 

differentiable and possibly discontinuous. Handling the eq. (6) requires the concept of 

viscosity solutions even under simplified conditions as shown in the next sub-section. For 

the sake of brevity of analysis, the boundary operator :B D∂ × →R R is introduced as: 
 

( ) ( ),B x r r xα= −  (9)

 

moreover, the operators 
*

*, :G G D× × →R R R  as: 

 

( )
( ) ( )

( ) ( ){ } ( )*

, ,
, ,

min , , , ,

H x r p x D
G x r p

H x r p B x r x D

 ∈
= 

∈∂
 (10)

 

and: 
 

( )
( ) ( )

( ) ( ){ } ( )
*

, ,
, ,

max , , , ,

H x r p x D
G x r p

H x r p B x r x D

 ∈
= 

∈∂
 (11)

 

for the sake of brevity of descriptions. The upper- and lower semi-continuous envelops of 

: DΦ →R  are denoted as Φ* and Φ*, respectively [28]. They are defined as: 
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( ) ( ) ( ) ( )*

0
limsup lim sup

y x

x x y y D B xε
ε →+→

Φ = Φ = Φ ∈ ∩ { }{ }x 
 

 (12)

 

and: 

 

( ) ( ) ( ) ( )*
0

liminf lim inf
y x

x x y y D B xε
ε→ →+

Φ = Φ = Φ ∈ ∩ { }{ }x 
 

 (13)

 

respectively, where Bε(x) with ε > 0 represents the closed interval [x – ε, x + ε]. 

Following the literature for viscosity solutions [27], the definition of viscosity solutions 

to the eq. (6) is stated as follows. 

 

Definition 1.  A function : DΦ →R  with ( )C DΦ ∈  is a viscosity sub-solution 

(super-solution) to the eq. (6) at x D∈  if: 

 

( ) ( )*

* , , 0G x x xφ′ Φ ≤    ( ) ( ){ }*

*, , 0G x x xφ′Φ ≥    (14)

 

for any test functions 1( )C Dφ ∈ such that * φΦ −  ( * φΦ − ) has a local maximum 

(minimum) at x. The function : DΦ →R  with ( )C DΦ ∈  is a viscosity solution if it is a 

viscosity sub-solution as well as a viscosity super-solution.  

Note that a classical, sufficiently smooth solution is a viscosity solution.  

By definition, a viscosity solution maybe discontinuous at D∂ . Any smooth, classical 

solution is a viscosity solution, meaning that the concept of viscosity solution is indeed a 

weaker than that of the classical solution. An immediate consequence of Definition 1 is 

that any viscosity solution Φ satisfies Φ ≥ α in D. In fact, if Φ < α at some x D∈ , then 

H(x, r, p) < 0 for ( ),r p ∈ ×R R . Then, Φ cannot be a viscosity super-solution. This is a 

contradiction. 

Exact viscosity solution 

An exact viscosity solution to the eq. (6) is derived for specific functional forms of the 

coefficients, which can give biological and ecological implications of the proposed 

mathematical model. Assume the uniform flow condition V = const < umax and: 

 

( ) ( ) ( )tanh tanhx A B Cx A B CLα = − − −  (15)

 

with the constants A, B, C > 0. This α is motivated by the fact that the quality of habitat 

measured by the amount of food, such as diatoms, would sharply increase along a river 

[29]. A formal exact solution to the eq. (6) on D is then found as Figures 1a and 1b: 

 

( )
( ) ( )

( ) ( ){ } ( )
0

0max ,

x x y
x

x x x y

α

γ α

 ≤
Φ = 

>
,  ( ) ( ) ( )0 0x p x y yγ α−= − +  (16)

 

and: 

 

( ) ( )

( )

1 1

0

ln 1 1

1

BC C
y

L

ω ω ω

ω

− − − + − ≥
= 

<

 with ( )
1

AC pω
−−= −  (17)
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Figure 1. Exact (blue) and numerical solutions with the cell size l = 0.01 L  (green), and α (black) for: 

continuous (A = 1) (a) and discontinuous case (A = 2) with f = f1 and n = 2 (b); the other parameters 

are V = 1, umax = 5, δ = 0, m = 1/3, k = 0.5, d = 0.5, B = 10, C = 20, λ = 106  

(the numerical solutions are computed with 100 uniform cells) 

 

In eq. (16), p− is a negative constant determined as a solution of F = 0. The two graphs 

y = γ(x) and y = α(x) intersect at x = y1 such that y0 < y1 ≤ L if: 
 

( )
1

1

0
1L y p ω

−− −≥ + − −  and  1ω ≥  (18)

 

Therefore, when eq. (18) is satisfied, the found Φ in eq. (16) is rewritten for x > y0 as: 
 

( )
( ) ( )
( ) ( )

0 1

1

x y x y
x

x y x L

γ

α

≤ ≤
Φ = 

< ≤
 (19)

 

Similarly, when eq. (18) is not satisfied, Φ in eq. (16) is rewritten for x > y0 as: 
 

( )
( ) ( )

( )
0

0

x y x L
x

x L

γ ≤ <
Φ = 

=
 (20)

 

The optimal controls can be determined in the sub-domain of D  where α(x) < Φ(x). 

Assume that the minimum of the second term of eq. (7) is achieved by the internal 

solutions ( )opt max max,u u u u= ∈ −  and N = Nopt > 0. Then, they are positive constants and 

satisfy: 

 

( )( ) ( ) ( )1

opt opt opt1f u u V mk f u
−′ − = + , ( )

1

1 1

opt opt
m kN mk d f u− − + =    (21)

 

and: 

 

( )
( ) ( ) ( )

( )

1

0 opt

opt opt
0 otherwise

x y u x x
x

α γ
τ τ

− − <   = = 


 (22)

 

To prove that the exact solution in eq. (16) is a viscosity solution is not a trivial issue 

because this Φ is not smooth at x = y1. Since the exact solution satisfies the eq. (6) where 

the solution is continuously differentiable, it has to be examined with the condition of 

viscosity solution at which it is not differentiable or discontinuous. After elementary 

calculations, it turns out that eq. (16) is a viscosity solution to the eq. (6) by examining it 

against the condition of viscosity super- and sub-solutions on D . 
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Implications of the exact viscosity solutions 

Practical implications of the exact solution of eq. (16) are presented focusing on its 

dependence on the parameters and coefficients. The condition ω ≥ 1 implies that the cost 

of migration is sufficiently small and/or the benefit of finding a high-quality habitat is 

sufficiently high. The fish school approaches the upstream-end x = 0 when A is 

sufficiently high. The school does not migrate upstream (τopt = 0) for all x D∈ when  

ω < 1. Therefore, the exact solution in eq. (16) implies that the fish school would not 

migrate upstream along the river if its environment is severely degraded. In particular, y0  

is increasing with respect to A, showing that degradation of the river environment results 

in more downstream termination of the fish migration. Therefore, the shape and the 

magnitude of the habitat quality α are important for qualitative understanding of the fish 

migration. This point is investigated in the fourth section as well through a model 

application. 

For the cost function f1 presented in the previous section, assuming the condition  

kn > m yields that uopt and Nopt are increasing with respect to the flow speed V, which is 

consistent with the experimental results [30]. Similar statement holds for f2. The second 

of eq. (21) states that the swimming speed is increasing with respect to the school size, 

which is also consistent with the experimental results [30]. 

Unique solvability 

In general, there is no guarantee that the found exact solution is the unique viscosity 

solution to the eq. (6). This is not only a mathematical issue but also a practical issue 

since the viscosity solution should be the plausible solution to the eq. (6). The issue of 

unique solvability is discussed below for the cases δ > 0 and δ = 0 separately. In this 

section, α of eq. (15) is employed. 

For δ > 0, the eq. (6) is a unique continuous viscosity solution by the comparison 

theorem (Theorem 3.17 of [28]) since the eq. (6) satisfies the continuity and ellipticity 

conditions {eqs. (3.1), (3.24), and (3.35) of [28]}. The uniqueness of discontinuous 

viscosity solutions for δ > 0 are unclear at this stage, but it is expected that this subject can 

be dealt with based on the constructive argument presented below. 

For δ = 0, the above comparison argument cannot be used since it requires δ > 0. This 

is the major difficulty for dealing with the case with δ = 0. The remaining part of this 

sub-section presents the idea and plan of a constructive proof of unique solvability of the 

eq. (6) for δ = 0 in the viscosity sense for the exactly-solvable problem in the previous 

sub-section. The constructive proof follows a step-by-step manner presented in 

Propositions 1 through 4. The proof is a bit long, but is presented in this paper for the sake 

of its self-containedness. 

For the sake of brevity of descriptions, the sets D1 and D2 are defined as: 

 

( ) ( ){ }1 |D x D x xα= ∈ Φ > ,  ( ) ( ){ }2 |D x D x xα= ∈ Φ = ,  1 2D D D∪ =  (23)

 

It is assumed that viscosity solutions do not have dense non-differentiable points in D. 

This assumption has a technical aspect, but viscosity solutions having dense 

non-differentiable points in D can be very irregular and not reasonable from biological 

viewpoints. 

 

Proposition 1: Φ'(x) = p− in D1.  The Rademacher’s Theorem (Theorem B.12 [28]) 

shows that Φ is differentiable almost everywhere in D1 since its viscosity sub-differential 

is locally bounded in D1 (Proposition 4 of [31]) because of the property in eq. (8). This 

leads to that Φ is decreasing in D since F(x, p) = 0 has the two solutions p = p− (x), 0 with  

p− < 0 for x D∈  and α is strictly decreasing. It is shown that a viscosity solution Φ has at 
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most a finite number of non-differentiable points in D1. Non-differentiability of Φ at 

1y D∈  possibly arises in the following ways: 

 

(a) ( )0 0y′Φ − =  and ( )0 0y p
−′Φ + = <  

 

(b) ( )0 0y p
−′Φ − = <  and ( )0 0y′Φ + =  

 

The case (a) violates the condition for viscosity sub-solutions, and therefore not 

allowed. On the other hand, the case (b) complies with the condition for viscosity 

solutions, however, it leads to Φ'(L − 0) = 0 and Φ(L − 0) > 0 due to the strictly decreasing 

property of α (α' < 0 in D), which violates the condition for viscosity sub-solutions at the 

boundary x = L. Therefore, a viscosity solution Φ does not have a non-differentiable point 

in D1. The above result implies Φ' = p− or Φ' = 0 in D1, but the latter again leads to  

Φ'(L − 0) = 0 and Φ(L − 0) > 0, which violates the condition for viscosity sub-solutions at 

x = L. Therefore, Φ' = p− in D1. In addition, then Φ is strictly decreasing in D. 

 

Proposition 2: Φ(0) = α(0).  First, if Φ(+0) > α(0), then, the condition for viscosity 

sub-solutions at x = 0 leads to F(0, p) ≤ 0 for p ≥ p−, which is not true since F(0, p) > 0 for  

p− < p < 0. Second, if Φ(+0) < α(0), then the condition for viscosity super-solutions at  

x = 0 is not satisfied since Φ(+0) – α(0) < 0 . Therefore, Φ(0) = α(0). 

 

Proposition 3: D2 does not involve isolated points as disconnected subsets.  Assume 

that 2y D∈  and y is a disconnected subset of D2. In this case, there exists a sufficiently 

small ε > 0 such that ( ) ( ) 1, , , .y y y y Dε ε− + ⊂ Then, Φ(x) > α(x) for

( ) ( ), ,x y y y yε ε∈ − ∪ + . Since Φ'(x) = p− for ( ) ( ), ,x y y y yε ε∈ − ∪ + , Φ'(x) = p− for 

( ),x y yε ε∈ − +  and thus ( )1
,C y yε εΦ ∈ − + . Therefore, the two curves z = Φ(x) and  

z = α smoothly contact at x = y, showing that α is concave at x = y. Since α is concave for 

x ≤ y because of its hyperbolic tangential shape, Φ(0) > α(0) follows. This contradicts 

with the boundary condition Φ(0) = α(0). Therefore, D2 does not involves singletons as 

disconnected subsets. 

 

Proposition 4: Identification of the solution structure.  Firstly, note that D1 is a union 

of open sets and is expressed as 1 1,i

i

D D=∪ with (possibly infinitely) a countable number 

of open sets D1,i. Similarly, note that D2 is a union of closed sets and is expressed as 

2 2, j

j

D D=∪  with (possibly infinitely) a countable number of closed sets D2,j. Each D2,j 

cannot be a singleton. 

Assume D1,i = [0, ε] with a positive constant ε. In this case, Φ > α in D1,i  = [0, ε] and  

Φ > α at x = ε if ε < L. If α(0) + p−x ≥ α(x) in D = [0, L] , then ε < L does not hold true and 

leads to  Φ = α(0) + p−x in D. If α(0) + p−x ≥ α(x) in D = [0, L] does not follow, then ε < L. 

This ε < L is uniquely found and Φ' < α' at x = ε. In addition, Φ = α for x > ε since p− < α' 

for x > ε. 

Assume D2,1 = [0, ε] with a positive constant ε. In this case, Φ = α in D2,j = [0, ε] if ε < L. 

In addition, p− > α' (the latter has a steeper slope). Then, Φ > α for (ε, ε + ε1) with a 

sufficiently small ε1. The condition for viscosity super-solutions requires that the 

condition and Φ' = α' has to be satisfied at x = ε. The viscosity solution can be continued 

uniquely for x > ε + ε1 in an essentially same way with the first case. If p− > α' in D, ε = L 

and Φ = α in D . 
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The above-presented results uniquely construct the viscosity solution from the 
upstream toward the downstream. The present argument would be partly applicable to 

problems with variable coefficients and other functional forms of α, which will be 

addressed in our future research. 

NUMERICAL SCHEME 

A numerical scheme for solving eq. (6) is proposed and verified. 

Discretization 

Solutions to the eq. (6) may not be explicitly found in applications, which motivates 
us to develop a numerical scheme that can approximate its solutions. For this purpose, a 

finite difference scheme based on exact viscosity solutions to local two-point boundary 

value problems is presented for solving the eq. (6) under general conditions. This kind of 

discretization technique utilizing local exact solutions is called fitting technique and has 
been applied to elliptic and parabolic problems [32]. The domain D is discretized into  

I ≥ 2 cells Ci = (xi−1, xi) (1 ≤ i ≤ I) with 0 = x0 < x1 < … < xI = L. Φ is approximated at each 

xi. The approximation of Φ at xi is denoted as Φi. The length of Ci is denoted as  

li = xi – xi−1.  The discretization procedure below focuses on a vertex xi (1 ≤ i ≤ I − 1) 
without the loss of generality. 

The finite difference scheme for a linear problem is firstly explained and is extended 

so that the present VI is handled. Consider the linear advection-decay equation: 
 

( ) ( ) 0R W x g x′Φ − Φ − =   in  D ,  αΦ =  at 0,x L=  (24)

 

with a piece-wise continuous g.W (≠ 0) and g are approximated in each cell and those in 
Ci are denoted with the subscript i as Wi and gi, respectively. A finite difference 

approximation of eq. (24) is proposed as: 
 

,0 1 ,1 0i i i il F l F++ = ,  [ ],  at i j i
i j C x

F R W g
+

′= Φ − Φ −   ( 0,1j = ) (25)

 

where Fi,j is expressed with Φi+j−1, Φi+j+1, Wi+j, and gi+j. Consider the local linear two-point 

boundary value problem in Ci to find :i iCΨ → R : 

 

0i i i i iR V g′Ψ − Ψ − = , ( )1 1i i ix − −Ψ = Φ  and ( )i i ixΨ = Φ  (26)

 

Its unique viscosity solution in Ci is found as: 
 

( ) ( )

( ) ( )

1

1
1

1 1

1 1

1

( 0)

( 0)

i i

i i

RW x x

i i i i

i
RW x x

i i i i

g R g R e W

g R g R e W

−

−
−

−− −

−− −

−

 + Φ − >
Ψ = 

+ Φ − <

 (27)

 

The present scheme evaluates Fi,j with Ψi as: 
 

( )

( )
1

1

,0
1

0

0
1

i i

i i

i i i

RW l
i

i i
i iRW l

R g W

F e
R g W

e

−

−

−

 Φ − ≥


=  Φ − Φ
− <

−

,
( )

( )

1
1 1

1
1 1

1
1 1

,1

1 1

0
1

0

i i

i i

RW l

i i

i iRW l
i

i i i

e
R g W

F e

R g W

−
+ +

−
+ +

−

+
+ +−

+ +

 Φ − Φ
− >

=  −
 Φ − ≤

 (28)

 

The boundary conditions are directly specified at x0 = 0 and xI = L. Assembling eq. (25) 
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for 1 ≤ i ≤ I –1 with the boundary conditions leads to a system of linear equation with a 

coefficient matrix whose inverse is positive-definite, showing that the present scheme is 

unconditionally stable. The scheme reduces to the classical first-order upwind finite 

difference scheme as 0R → + . 

For solving the eq. (6), a penalty method [33] is employed to reduce a VI to a 

differential equation that is easier to numerically handle. The penalized counterpart of the 

eq. (6) is given as: 
 

( ) { }, max ,0 0F xδ λ α′Φ + Φ − − Φ =   in  D ,  αΦ =  at 0,x L=  (29)

 

with the penalty parameter λ > 0, so that it is expressed like eq. (24). The original eq. (6) 

is formally recoveredwhen λ → +∞ , which is implemented numerically in the penalty 

method. In the present scheme, the first and second terms of eq. (29) are advection-decay 

terms having solution-dependent coefficients. These coefficients are determined by 

optimizing the “min” term of eq. (7) in each cell. The third term is discretized at each 

vertex as λ max {αi – Φi, 0}. A standard fixed-point iteration is used for solving eq. (29). 

The iteration is terminated when the difference of old and updated numerical solutions at 

each vertex becomes smaller than 10−8, which is a sufficiently small value. 

Computational accuracy 

The present finite difference scheme is degenerate elliptic (Definition 2), Lipschitz 

continuous (Definition 3), and proper (Definition 6) in the sense of Oberman [34]. 

Therefore, for the linear problem of eq. (24), the scheme admits a unique numerical 

solution (Theorem 8 [34]). In addition, the scheme is monotone and non-expansive in the 

l∞-norm since it is degenerate elliptic (Theorem 3 [34]). The same statements hold for  

eq. (29). 

Convergence of the scheme for our VI is numerically examined with both continuous 

and discontinuous viscosity solutions. The domain is uniformly discretized into I cells.  

For the case δ = 0, the non-oscillatory numerical solutions presented in Figures 1a and 1b 

demonstrate its accuracy and stability. The numerical solutions accurately capture the 

non-differentiable and discontinuous points of the solutions. Tables 1 and 2 summarize the 

computed l∞ errors for a series of λ and I−1. In Table 1, “Osc” means non-convergence of 

numerical solutions. This also applies to the other tables in this paper. The computational 

results suggest the efficient scaling relationship λ = O(I−1), which may not be a sharp 

relationship but useful for accurate numerical computation. Rigorous proof for this scaling 

result should be analyzed in future research. 

For the case δ > 0, since our VI does not admit exact solutions, the scheme is examined 

against the following test problem with constant coefficients: 
 

{ }min 1, 0R V g α′Φ − Φ − − =   in  D ,  ( )1A xα = − , αΦ =  at 0,x L=  (30)

 

which can also be cast into
1

1
VR

L AR
ψ = − −  a penalized form as in eq. (29). The viscosity 

solution to eq. (30) is: 
 

( )
( )

{ } ( )
( )

0

0

1

max , 0 1

0

x

α ψ

α ψ

ψ

≥


Φ = Φ < <
 Φ ≤

 in D  (31)

 

which is discontinuous at x = L when Ψ < 1, where: 
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( )0 0

1 1
exp

Rx
x A

R R V

   
Φ = Φ = + − −   

   
 (32)

 

Table 1. Relative errors for the continuous viscosity solution with δ = 0 

 

λ 
I−1 

0.1 0.01 0.001 0.0001 

10 9.20E−02 2.41E−02 Osc Osc 

100 9.20E−02 6.89E−03 3.65E−03 Osc 

1,000 9.20E−02 5.86E−03 3.84E−04 Osc 

10,000 9.20E−02 5.81E−03 3.84E−05 3.84E−05 

100,000 9.20E−02 5.81E−03 3.84E−06 3.84E−06 

1,000,000 9.20E−02 5.81E−03 1.82E−06 3.84E−07 

 
Table 2. Relative errors for the discontinuous viscosity solution with δ = 0 

 

λ 
I−1 

0.1 0.01 0.001 0.0001 

10 1.14E−02 3.30E−02 Osc Osc 

100 1.12E−02 3.84E−03 3.59E−03 Osc 

1,000 1.12E−02 7.14E−04 3.83E−04 Osc 

10,000 1.12E−02 6.29E−04 3.84E−05 3.84E−05 

100,000 1.12E−02 6.22E−04 1.14E−05 3.84E−06 

1,000,000 1.12E−02 6.22E−04 1.14E−05 3.84E−07 

 

In the numerical computation, the parameter values employed are V = 1, R = 2, L = 1, 

and A = 1 for the smooth, classical solution case and A = 10 for the non-smooth, viscosity 

solution case. Tables 3 and 4 summarize the computed l∞ errors for a series of λ and I−1. 

The computational results presented in this sub-section indicate the satisfactory 

performance of the present finite difference scheme. The error for the smooth, classical 

solution case is negligible. This is owing to the specialized discretization employed in the 

present finite difference scheme that the solutions with the exponential profiles like that 

in eq. (32) can be exactly reproduced. 

 
Table 3. Relative errors for the smooth, classical solution with δ > 0 

 

λ 
I−1 

0.1 0.01 0.001 0.0001 

10 3.22E−15 6.66E−15 2.89E−15 9.47E−14 

100 3.22E−15 6.66E−15 2.89E−15 9.47E−14 

1,000 3.22E−15 6.66E−15 2.89E−15 9.47E−14 

10,000 3.22E−15 6.66E−15 2.89E−15 9.47E−14 

100,000 3.22E−15 6.66E−15 2.89E−15 9.47E−14 

1,000,000 3.22E−15 6.66E−15 2.89E−15 9.47E−14 

 
Table 4. Relative errors for the non-smooth, viscosity solution with δ > 0 

 

λ 
I−1 

0.1 0.01 0.001 0.0001 

10 2.67E−01 3.05E−01 3.01E−01 3.10E−01 
100 3.78E−02 4.10E−02 4.22E−02 4.23E−02 

1,000 2.20E−02 4.34E−03 4.44E−03 4.46E−03 

10,000 9.20E−02 4.43E−04 4.48E−04 4.50E−04 

100,000 2.12E−02 4.48E−05 4.85E−05 4.50E−05 
1,000,000 2.12E−02 4.45E−06 4.49E−06 4.50E−06 
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DEMONSTRATIVE APPLICATION 

The model is applied to an example of fish migration in Japan. 

Study area 

The present mathematical model and the verified finite difference scheme are applied 

to the evaluation of upstream fish migration in Hii River, San-in area, Japan (Figure 2, 

top left). This river provides indispensable water resources for human activities in this 

area. The total length of the mainstream and the catchment area of Hii River are 153 km 

and 2,070 km2, respectively. The river flows into the brackish Lake Shinji, which has a 

downstream brackish lake named Lake Nakaumi. Hydrology of Hi River are reviewed in 

Somura et al. [35]. Both brackish lakes are key habitats for migrating aquatic species that 

grow and spawn in Hii River. Hii River Fisheries Cooperatives (HRFC) authorizes inland 

fishery of the middle to upper reaches of the river. 

P. altivelis (Ayu) (Figure 3, top left) is one of the common diadromous fishes in Japan 

and is a major inland fishery resource in the country. The natural P. altivelis has an 

annual life cycle [36]. During autumn, adults spawn eggs in the downstream reaches of 

the living river and die soon afterwards. Hatched larvae descend to coastal areas of the 

downstreamwater body of the river, typically a sea or a brackish lake. The larvae grow up 

to juveniles with feeding on zoo planktons till the next spring. The grown fishes ascend 

the river toward its midstream and upstream reaches where diatoms (Figure 3, top right), 

which are staple foods of P. altivelis, are available on the riverbed. They feed on the algae 

to mature till the coming autumn when they descend the river. 

Recently, fish catches of P. altivelis in Japan have been dramatically decreasing due 

to severe degradations of the river environment and ecosystems. Installing physical 

barriers, such as huge dams and weirs, into river cross-sections prevents fishes from 

upstream migration and significantly affects downstream water environment.  

The population of the fish in some rivers are maintained through intensive artificial 

hatching of farmed juveniles during the spring season in each year by local fishery 

cooperatives. The artificially hatched P. altivelis also migrate toward upstream after the 

hatching and grow till the coming autumn, but has been thought to be unsuccessful in 

reproduction due to genetic reasons. This would be the main reason why the fish have to 

be artificially hatched in a river in each spring to maintain their population. 

A major issue in releasing the fish is when and where to release farmed P. altivelis 

along the river and its tributaries so that the released fishes grow well and the fish catch in 

the river increases. In Hii River, local fishery cooperatives and residents say that the 

harmful attached algae Cladophora glomerata Kützing (Figure 3, bottom) are 

significantly growing from the just downstream point toward several km downstream 

reach of the huge multi-purpose dam named Obara Dam (Figure 2, top right) after its 

construction in 2011. This dam does not have facilities like fishways that fishes can pass 

through, serving as a physical barrier. According to residents and the officers of HRFC, 

the areas at and around which the dam was created, and the harmful algae are growing 

involved good fishing ground of P. altivelis. They also report that the P. altivelis after the 

construction of the dam are significantly smaller than those before the construction.  

In addition, the experimental research indicated that P. altivelis could not digest the 

harmful algae [37]. The Hinobori Weir with the height of 11 m (Figure 2, bottom) for 

erosion control is the second largest physical barrier in the mainstream. The weir has a 

vertical-slot fishway longer than 100 m, but its passage efficiency is not clear. In each 

spring, many P. altivelis are artificially released into the river reach between the Hinobori 

Weir and Obara Dam. Currently, HRFC is faced with the problem when and where to 

artificially hatch farmed P. altivelis given the potential shift of the attached algae.  

This problem is partly approached in this paper. 
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Figure 2. Map of the Hii River (top left), photos of Obara Dam (top right) and Hinobori Weir 

(bottom) (photo credits: H. Yoshioka) 

 

 
 

 
 

Figure 3. Photos of P. altivelis (top left), diatom (top right), and Cladophora glomerata Kützing 

(bottom) just downstream of Obara Dam (photo credits: H. Yoshioka) 
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Hydrodynamic cost function 

The cost function f for P. altivelis is firstly presented, which is used in the simulation 

below. Yoshioka et al. [27] collected the observed datasets of swimming behavior of 

individual P. altivelis against water currents, and found the concave formula: 
 

( ) 2

swim flow flow max flow

1

2
u V V u V= − + ,  max 1.17u =  m/s (33)

 

where flow max[0, ]V u∈ is the flow speed of the current and swim max max:[0, ] [0, ]u u u→  is the 

swimming velocity of the individual against the current with the speed Vflow. Correlation 

between the observed and modelled uswim is 0.80 [27], showing its reasonable accuracy. 

The cost function max:[0, ] [0, ]f u → +∞ is then determined as a solution to the initial 

value problem of the ODE [27]: 
 

( ) ( )1

swim

d

d

f f

u u u u
−

=
−

 subject to ( )0 0f =  (34)

 

which turns out to give f = c3f2(u) with a constant of integration c3 that can be set as c3 = 1  

without loss of generality. f2 is twice differentiable and convex in (0, umax), and its 

derivative diverges at u = umax. A limitation of the above uswim and f is that they cannot 

simulate upstream fish migration with the flow speed greater than umax. It is conjectured 

that, above the flow speed umax, the fish is not able to maintain prolonged swimming 

speed and must perform burst swimming such that the present mathematical model 

cannot be directly used. What is important here is that the hydraulic cost function f is 

derived from the swimming behavior of the fish. 

Numerical simulation 

The river reach from just downstream of Obara Dam (x = 0 km) to just upstream of 

Hinobori Weir (x = L = 13 km) is set as the domain D, which is discretized into 218 cells 

with 219 nodes. A steady flow field in the Hii River system involving the river reach is 

computed with the 1-D shallow water solver [37] specifying the Manning’s friction 

coefficient of 0.05 s/m1/3. This numerical solver has already been verified against the 

benchmark, experimental, and real cases. The flow discharge in the reach is 12.5 to  

15.0 m3/s, which does not significantly deviate from the observed discharge during April 

to May. The flow velocity in the reach is utilized as the coefficient V for the present 

model (Figure 4). The profiles of 0 ≤ α ≤ αmax in D with the maximum value αmax > 0 are 

specified on the basis of the summation of two hyperbolic-tangential functions in  

eq. (15) whose coefficients were determined from the interviews from the officers and 

members of HRFC (Figure 4), maxα α≈ at x D∈  represents that diatoms are reported to 

be abundant at x, 0α ≈  represents that diatoms are reported to be sparse at x, and 

otherwise the diatoms moderately exist. This more accurate identification of α will be 

carried out in our future research. The other model parameters are set as δ = 10−6 1/s,  

m = 1/3, k = 2.0, d = 10−3 m2/s2, and λ = 106 1/s. 

Figure 5 shows the computed area in the river where the fish school terminates its 

migration, namely the area where Φ = α in D  for a range of αmax. The results show that the 

area expands as αmax decreases. For moderately large αmax, there is a white area around 

0.6L < x < 0.9L where the fish school ascends. The results show that hatched fishes in the 

downstream grey area around 0.9L < x < L would not ascend the river reach. In the other 

white area around 0 < x < 0.5L, the fish school swims toward the upstream-end of the 

potential habitat. In addition, a decrease of αmax, namely degradation of the overall 
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quality of potential habitat of the fish as good fishing grounds, shows that the 

downstream-end of the potential habitat move toward upstream. Increasing the value of δ 

leads to the wider black area than that in Figure 5 as shown in Figure 6 for δ = 10−4 1/s, 

and  δ > 10−3 1/s results in no upstream migration with Φ = α on D  except for near x = 0. 

Management of river environment is implied to be crucial for fish migration and inland 

fisheries. 
 

 
 

Figure 4. Computed flow velocity V and the modelled coefficient α along the reach 

 

The computational results suggest the following management policy for the studied 

river reach. Especially for the upstream part of the river reach ( 0 0.5x L< < ), the habitat 

quality should be improved so that this part serves as a habitat for the fish. For example, 

cleaning up the riverbed to exterminate the harmful algae can be an effective way for that 

purpose. The results also suggest that the fish should be released in the downstream reach 

( 0.5L x L< < ) if the upstream part is not improved. 
 

 
 

Figure 5. The computed area where the fish school terminates its migration along the river (lateral 

axis) with respect to αmax (vertical axis), the area is coloured blue, the parameter value is δ = 10−5 l/s 

in this figure 

 

 
 

Figure 6. The computed area where the fish school terminates its migration along the river  

(lateral axis) with respect to αmax (vertical axis), the area is coloured blue, the parameter value is  

δ = 10−4 1/s in this figure 
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CONCLUSIONS 

This paper presented a mathematical model for upstream fish migration along 1-D 

rivers from a new, mixed optimal control-based standpoint. The VI that governs the 

optimal swimming velocity, school size, and stopping time of migration was derived, and 

its exact solution was derived under a simplified condition. It was shown that unique 

solvability of the VI is not a trivial issue, and was analyzed from the viewpoint of 

viscosity solutions. The unique solvability issue was overcome for the simplified case 

with the help of a constructive argument that does not rely on the conventional 

comparison arguments. A stable and accurate finite difference scheme based on the 

fitting technique was developed for numerically solving the VI. The scheme turned out to 

have satisfactory ability to handle the VI. A numerical application of the present model to 

upstream migration of P. altivelis in Hii River, Japan suggested potential downstream 

shift of good fishing ground of the fish due to overgrowth of the harmful attached algae 

on the riverbed. The results are useful for decision-making for environmental restoration 

of Hii River, but more useful and reliable results can be obtained if the temperature and 

water quality influences on the migration are considered in the model. Collecting more 

hydraulic data of the river and more bioenergetics data of P. altivelis is required to 

achieve this purpose. 

Future research will evaluate migration of P. altivelis in Hii River under more 

realistic conditions, such as coupling of the present model with the equations of solute 

transport. Mathematical analysis, unique solvability of the VI, under generalized 

conditions is also an important research topic. Some drawbacks of the present 

mathematical model should also be addressed in future. For example, actual river 

environment can be stochastic and uncertain for the fish, which motivates us to extend the 

model so that the fish migration is described as a decision-making process under 

incomplete information. Scaling-up of the microscopic effects, such as the field of 

pressure around individual fishes, will be a key step toward development of a more 

biologically and physically plausible model. In addition, further scaling-up of the present 

model to a lumped 0-D population dynamics model may be useful in practical analysis. 

Field surveys with the local fisheries cooperatives in and around Hii River will be 

continued for deeper comprehensions of the river environment and ecology.  

The presented mathematical modelling framework would potentially serve as a core for 

integrated assessment of food-water nexus. 
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NOMENCLATURE 

a discount of the hydrodynamic cost by forming a school [-] 

A, B, C parameters to specify the form of α [-] 

b non-hydrodynamic cost by forming a school [-] 

B(x, r) Boundary operator defined for ( ),x r ∈ ×R R  [-] 

Bε(x) the closed interval [x – ε, x + ε] [-] 
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d model parameter for b [-] 

c1, c2, c3 positive constants [-] 

Ci i-th cell [-] 

C(S) space of continuous functions in the given set [-] 

C1(S) space of continuously-differentiable functions in the given 

set S 

[-] 

D 1-D river as a domain [-] 

D∂  boundary of D [-] 

D  closure of D, namely D D∪ ∂  [-] 

D1, D2 subsets of D [-] 

D1,i covering subsets of D1 [-] 

D2,i covering subsets of D2 [-] 

f hydraulic cost [-] 

f1, f2 hydraulic costs appearing in literature [-] 

F auxiliary function to define H [-] 

Fi,j auxiliary functions for explanation of the discretization [-] 

g auxiliary function for explanation of the discretization [-] 

gi approximation of g in Ci [-] 

G*,G
* auxiliary functions to extend H [-] 

H Hamiltonian [-] 

I total number of cells [-] 

J performance index [-] 

k model parameter for b [-] 

li length of Ci [-] 

L length of D [m] 

m model parameter for a [-] 

n model parameter for  f1 [-] 

Nt population density in the fish school at the time t [-] 

Nopt optimal population density [-] 

O order symbol [-] 

p auxiliary parameter to define H [-] 

p− auxiliary function to define H [-] 

r auxiliary parameter to define H [-] 

R auxiliary parameter for explanation of the discretization [-] 

t time [s] 

T the smallest time that the process Xt hits D∂  [s] 

ut swimming velocity of the fish school at t [m/s] 

umax   maximum swimming speed of the fish school [m/s] 

uopt optimal swimming speed [m/s] 

uswim measured swimming speed against the flow speed Vflow 

in open channels 

[m/s] 

U range of the swimming speed of the fish school, given by 

[−umax, umax]
                                                           

 

[-] 

 

V flow velocity along D [m] 

Vflow measured flow speed in open channels [m/s] 

W auxiliary function for explanation of the discretization [-] 

Wi approximation of W in  xi [-] 

x, y 1-D abscissa defined along D [m] 

xi i-th vertex [m] 

Xt position of the fish school at t [s] 

y0, y1 parameters to specify the form of Φ [-] 

R  1-D real space [-] 
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Greek letters 

α profit obtained at the termination of migration [-] 

αmax maximum value of α [-] 

δ discount rate [1/s] 

ε non-negative constant [-] 

ε1 positive constant [-] 

γ function to specify the form of Φ [-] 

ϕ test function [-] 

Φ value function [-] 

Φ*, Φ* upper- and lower semi-continuous envelopes of Φ [-] 

Φi approximation of Φ at xi [-] 

ψ parameter to specify the form of Φ [-] 

ψi auxiliary functions for explanation of the discretization [-] 

λ penalty parameter [-] 

τ stopping time of migration [s] 

τopt optimal stopping time of migration [s] 

θ time given by min{τ, T} [s] 

ω parameter given by AC(−p−)−1 [-] 
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