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ABSTRACT 

This work aims to investigate the application of a comprehensive nonlinear model-based 

predictive control strategy as a means to avoid unsafe or inappropriate operation of a gas 

turbine. Herein, the nonlinear model-based predictive control is employed to control 

compressor speed by varying the fuel flow in the combustion chamber. The methodology 

complies with the gas turbine constraints explicitly in the optimization procedure and, 

therefore, the nonlinear model-based predictive control algorithm ensures that process 

constraints are not violated. The nonlinear dynamic behaviour of the gas turbine is 

modelled with the aid of a first principle process simulator, which solves the equations of 

state and the conservation equations of mass, energy and momentum. The optimization 

procedure is achieved through the implementation of an evolutionary algorithm. Three 

scenarios are simulated: fuel consumption optimization, load removal/addition and load 

rejection. The proposed control strategy is successfully applied to both transient and 

steady-state operational modes of the gas turbine. 

KEYWORDS 

Nonlinear model-based predictive control, Gas turbine, Process simulator, Optimization,  
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INTRODUCTION 

Transient regimes correspond to a fraction of a gas turbine life. However, it is known 

that during changes in the turbine operating conditions (e.g., start-up, load change, 

shut-down) instabilities and violations of operating constraints may occur, which not 

only reduce the equipment useful life, but can also lead to total damage and, in extreme
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cases, to explosions [1]. In this context, this work presents a comprehensive gas turbine 

control strategy as a means to avoid unsafe or inappropriate operation.  

The most important limitations related to gas turbine operation are associated with the 

compressor and the turbine. Regarding the compressor, main concerns are related to the 

surge onset, characterized by airflow instabilities associated with a pressure drop in the 

discharge. Concerning the turbine, metallurgical issues must be considered with regard to 

the inlet temperature. Outlet temperature may also be limited when a gas turbine is used 

in a combined cycle, in order to achieve adequate steam quality level. Another restriction 

that may be considered is related to the environmental impact, where emission reductions 

may be achieved using combustion controls. Besides operational constraints, there are 

constructive limitations. For instance, valves cannot provide more clearance than their 

constructive limit. Moreover, actuators can only open or close with a speed limitation. 

Thus, it is only possible to manipulate fuel flow gradually.  

Process control is the tool to address solutions to safety, environmental, or 

constructive constraints. Although Proportional-Integral-Derivative (PID) control 

strategy is routinely applied to gas turbines, such approach does not explicitly cope with 

all the aforementioned constraints. The present work aims to examine the application of a 

nonlinear Model-based Predictive Control (MPC) to a gas turbine. The proposed 

methodology advantageously includes constraints in the optimization procedure 

explicitly, and, therefore, guarantees that variables will not exceed their limits [2].  

Additionally, the optimization algorithm may consider not only the controlled 

variables, but also include further goals. Concerning a sustainable approach, the 

model-based predictive control can cope with objectives such as the minimization of 

greenhouse emissions or the reduction of fuel consumption, for instance.  

Model predictive control is widely used in energy systems control, such as 

photovoltaic system [3], building energy [4], regenerative braking system [5] and 

interconnected power systems [6]. However, in the literature, works on gas turbine 

control are mostly focused on PID. In general, those studies that deal with the application 

of MPC to gas turbines make use of simplified mathematical linear models. Applications 

of MPC with nonlinear first principle models are found in chemical processes controls in 

refineries [7]. The representation of the nonlinear dynamics of a gas turbine in the present 

strategy is accomplished through the DESTUR program, a comprehensive first principle 

computational modeling tool [8].  

Thus, although there are several works on modeling and control of gas turbines, the 

nonlinear models are obtained from identification techniques of a gas turbine around a 

specific operating point. Such technique is suitable for turbines operating in close range 

of operation. The novelty of the present work is the use of a nonlinear model that 

represents a wide range of operation, appropriate for modelling and control a situation 

such as load rejection.  

In this work, MPC is implemented in the MATLAB® software, integrated with the 

DESTUR process simulator. The control process relies on an optimization problem, 

where the objective function to be minimized is the error between the predicted output of 

the system and the desired value during a certain future period (control horizon).  

The minimization technique employed is the differential evolution algorithm [9], 

implemented as in Pires et al. [10]. Results are obtained for three simulated cases of the 

gas turbine control problem: fuel consumption reduction, load removal/addition and load 

rejection. 

LITERATURE REVIEW 

Research on MPC applications to gas turbine control starts in 1997 [2]. Nevertheless, 

there have been few publications directly related to the subject. Linear models are usually 

employed to represent the gas turbines. In addition, few works seem to investigate the 
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possibility of hierarchical model predictive control to gas turbines, where the action of 

decentralized controllers is coordinated by an algorithm operating at a higher level.  

A most comprehensive work on the application of MPC to gas turbines is presented by 

Viassolo et al. [11], which shows the advances from the pioneering ideas of Vroemen  

et al. [12] and van Essen [13], by dealing with noise measurement, and considering fuel 

consumption minimization in an MPC strategy. 

Gas turbine modelling 

The origins of turbine simulation trace back to the 1950s, when Gold and Rosenzweig 

[14] developed a method to estimate the gas turbine response speed. Since then, many 

computational models for turbine performance analysis have emerged, such as HYDES, 

NEPOMP, NNEP, TURBOMATCH and DYNGEN, TURBOTRANS, GTRANS, 

DEAN, COTRAN [15]. During the 1980s Rowen [16] proposed a simplified 

mathematical model to represent a heavy-duty single-shaft gas turbine, which became the 

most cited work in the field. Later, the author presented an improvement of his first 

model, considering the Variable Inlet Guide Vanes (VIGV) [17].  

In the following years, several works in the field were published proposing different 

methodologies to construct linear and nonlinear models, such as identification techniques 

described in the work of Pozzani [18] and those assessed by Yee et al. [19]. More 

recently, many gas turbine models were developed aiming to assess different control 

strategies, such as the transient simulator DESTUR, which was applied to assess different 

PID control strategies by Avellar et al. [20], Avellar [21] and Assumpção [22]. 

Gas turbine control 

Ultimately, a control strategy for the operation of a gas turbine is important during 

transient modes that may occur during startup, shutdown, and perturbations, such as load 

changes in power generation applications or disturbance in fuel injection in aircraft 

applications. The objective is to respond to those perturbations while keeping the 

operation out of instability regions (e.g., surge) and without exceeding design limits  

(e.g., turbine inlet temperature). Typically, the inlet fuel flow rate in the combustion 

chamber and the air flow rate in the compressor are manipulated, while inlet temperature, 

compressor stability region, fuel-air ratio in the combustion chamber and shaft speed are 

monitored.  

Boyce [23] states that all gas turbines are manufactured with native control systems. 

One of the most common control methodologies is the logic proposed by Rowen, which 

considers speed, acceleration, temperature, as well as upper and lower limits for the fuel 

mass flow rate as the main controls. The strategy involves one PID loop for the fuel flow, 

and another PID loop for positioning VIGV.  

Vroemen et al. [12] and van Essen [13] were the first to apply model-based predictive 

control to a gas turbine, where a linearization strategy to represent the turbine dynamics is 

applied within the MPC. The choice of an MPC strategy relies on the fact that the 

methodology is able to address the gas turbine constraints (surge region, inlet 

temperature, maximum valve opening, valve open/close speed) explicitly in the 

optimization procedure. Therefore, the MPC algorithm ensures that variables will not 

violate the constraints [2].  

Since then, as stated by Pongrácz et al. [24], there have been few works related to 

MPC applied to gas turbines, most of them employing models built on linearization 

techniques, rather than first principle models. Jurado and Carpio [25] applied 

Hammerstein model. Some experiments of MPC were conducted by van Essen and de 

Lange [26] applying successive linearization techniques to model a laboratory gas 

turbine installation. Brunell et al. [27] employed MPC to an aircraft gas turbine engine 

also using linearization technique, to which the authors refer as Simplified Real Time 
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Model (SRTM). Mu and Rees [28] named their control strategy as Approximate Model 

Predictive Control (AMPC), in which the linearization technique is employed. Martucci 

et al. [29] studied the effects of terminal weight on the prediction horizon of a gas turbine 

engine using a linear model within MPC strategy. Brunell et al. [30] applied MPC based 

on successive linearization approach to an aircraft engine. Mu and Rees [31] compare an 

MPC strategy with repeated linearization concept with a strategy which uses a model 

built with use of neural network identification technique. Ghorbani et al. [32] used a 

linear model in a multivariable MPC strategy for a gas turbine power plant and the same 

authors used a linear model in a constrained MPC strategy for a heavy-duty gas turbine 

power plant [33]. Lusanga [34] investigated the availability of MPC for a Brayton cycle 

represented by a linear model.  

THE MODEL-BASED PREDICTIVE CONTROL REVIEW 

In recent years, some remarkable results have been obtained with MPC strategies 

applied to complex nonlinear systems [35]. In this context, the present work uses 

DESTUR [8] to represent the nonlinear dynamic behaviour of the gas turbine.  

The process simulator solves the equations of state and the conservation equations of 

mass, energy and momentum. 

General strategy 

The class of MPC controllers adopts the following overall methodology. The process 

model is used for predicting future outputs, for a given horizon Nh. The predicted outputs 

���� + �|��, k = 1, 2 ... Nh, depend on the knowledge of the input and output values at the 

time (t), and on the set of future control signals 	�� + �|��, k = 1, 2 ... Nh, which must be 

evaluated and sent to the system, as illustrated in Figure 1. 

 

 
 

Figure 1. Overall MPC strategy 

 

The set of 	 is obtained by optimizing a criterion established to keep the process as 

close as possible to a reference trajectory (� + �), which may be the actual desired value 

(set-point), or an approximation of it. In general, this criterion is a quadratic function of 

the error between �� and �, as adopted in this work. Usually, the control effort Δu is also 

considered in the objective function.  

If the model is linear, a quadratic criterion is used, and no restriction is considered.  

As a consequence, it is possible to attain an explicit solution for the optimization problem, 

i.e., one can obtain a direct equation for the control signals (u). In the present work, since 

a nonlinear model as well as restrictions are considered, an optimization method is used 

to find a solution. The optimization algorithm plays an important role in this strategy, and 

its effort depends on the number of variables and restrictions, and on the size of the 

predictive horizons.  
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The model predictive control is formulated as the repeated solution of an optimal 

control problem with finite horizon open loop, subjected to the system dynamics, input 

constraints and state restrictions, as shown in Figure 2.  

 

 
 

Figure 2. MPC general structure 

 

Thus, the choice of the model is critical to the quality of the outputs prediction. 

Objective function 

The class of MPC controllers adopts the following overall methodology. The process 

model is used for predicting future outputs, for a given horizon Nh. The predicted outputs 

���� + �|��, k = 1, 2 ... Nh, depend on the knowledge of the input and output values at the 

time (t), and on the set of future control signals 	�� + �|��, k = 1, 2 ... Nh, which must be 

evaluated and sent to the system, as illustrated in Figure 1.  

Different objective functions may be proposed to obtain the control law (u). However, 

the general idea is to impose the future outputs (��) to follow the desirable path (w) within 

the considered horizon, while the control effort (∆u) necessary to perform such a task is 

penalized. Therefore, in this work the objective function is expressed according to: 
 

��, ��, ��� = � ��������� + �|�� − ��� + ����
��

����

+ � �����Δ	�� + � − 1���
� 

��
 (1)

 

where N1, N2 and Nu mean, respectively, minimum prediction horizon, maximum 

prediction horizon and control horizon. The parameters N1 and N2 establish the period 

that the predicted outputs (��) must follow the reference (w). The parameters δ and λ are 

coefficients that penalize future behaviour. 

Reference trajectory 

One advantage of predictive control is when the reference trajectory (w) is known  

a priori, because then the system can effectively react before any change has occurred. 

Such anticipatory feature avoids the delay effects on process response. In process 

optimization, most methods use a reference trajectory that does not necessarily 

correspond to the actual reference r(t), such that w is a smooth approximation of r, as 

given by: 
 

w(t + k) = αw(t + k – 1) + (1 – α) r(t + k); k = 1, 2 ... Nc; 0 ≤ α ≤ 1 (2)
 

The closer the value of α is to 1, the smoother is the approximation. 

Restrictions 

In practice, all processes are subjected to restrictions, whether constructive, safety, 

environmental, operational or economic constraints. Furthermore, process variables 
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changes can be bounded, for instance, due to the physical limits of the actuators. Usually, 

instruments limitations influence the amplitude and rate of change of the control signal, 

as well as the output boundaries, which can be represented by the following rules: 
 

umin ≤ u(t) ≤ umax; ∀t (3)
 

∆umin ≤ ∆u(t) ≤ ∆umax; ∀t (4)
 

ymin ≤ y(t) ≤ ymax; ∀t (5)
 

where ∆u = u(t) – u(t – 1). Adding constraints increases complexity of the algorithm, such 

that an explicit solution cannot typically be obtained. 

Control law 

Control signal u(t + k|t) is obtained by minimizing the objective function (J).  

To optimize J the predicted outputs ��(t + k|t) must be evaluated based on a mathematical 

model. Whatever method is used to search for u, there will be (N2 – N1 + 1) independent 

variables. To reduce the number of degrees of freedom, one assumes that the control law 

is such, that after a given time Nu (< N2) there are no changes in control signals, according 

to the following rule: 
 

∆u(t + j + 1) = 0; j ≥ Nu (6)
 

The previous assumption implies that the second term of the J expression in eq. (1) 

will be a summation up to Nu, and brings improvement to the robustness and overall 

behaviour of the system. In fact, the free evolution of the manipulated variables can lead 

to undesirable control signals with high frequency and, in the worst case, instability. 

GAS TURBINE CONTROL PROBLEM 

The MPC strategy is applied to the speed (N) control of a compressor as the gas 

turbine load changes, by manipulation of the fuel flow (m" f) into the combustion chamber. 

Thus, the control law (u) is the fuel flow, while the output (y) is the compressor speed. 

The thermal system considered in this study is a gas turbine consisting of seven 

components, as shown in Figure 3. 
 

 
 

Figure 3. Scheme of the gas turbine configuration 

 

The turbine represents a commercial industrial configuration, and the simulation is 

accomplished by the program DESTUR. In Figure 3, the components F, CP, CC, TB, G, 

SC, and NZ represent, respectively, filter, compressor, combustion chamber, turbine, 

generator, supplementary combustor and nozzle. 

As shown in Figure 4, each component is represented in DESTUR as a module. 
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Figure 4. Gas turbine representation in the program DESTUR 
 

The parameters for each module must be defined. Indeed, the program has a modular 

structure, which allows for the implementation of different turbine configurations.  

The data input procedure is performed by creating a ‘.dat’ file. The program output is also 

delivered in the same file extension. The MPC is implemented in MATLAB®, which 

reads and writes ‘.dat’ files for communication with DESTUR. Within the MPC, during 

optimization procedure, the objective function is evaluated several times, and at each 

time DESTUR is called. 

Additionally, Figure 4 illustrates two independent PID control loops: one that 

manipulates fuel flow in CC, and another that manipulates the VIGV. This work 

substitutes the PID loop by an MPC strategy to control compressor rotation by managing 

fuel flow in CC. 

To assess the performance of the control strategy, a load rejection scenario is 

simulated. The load rejection test is undertaken during commissioning of a gas turbine, to 

evaluate the speed control in case of a sudden load fall without emergency trip of the 

turbine. An acceptance criterion of such test is that the speed shall not exceed 10% of its 

nominal value [36]. 

THE OPTIMIZATION PROBLEM 

For the optimization problem which is part of the MPC strategy, computation of the 

gradient may not be feasible or cost-effective when using a nonlinear model, such that 

search methods or heuristic methods become attractive. Genetic and evolutionary 

optimization algorithms have been employed to search for the optimal solutions of 

realistic thermal systems, as in Manolas et al. [37] where a genetic algorithm is applied 

for the operation optimization of a cogeneration system, which supplies a process plant 

with electricity and steam, and as in Pires et al. [38] where evolutionary algorithms are 

applied to achieve thermoeconomic optimization of a complex cogeneration system. 

Here, the objective function (J) is minimized by means of the stochastic heuristic 

method of differential evolution [9]. In addition to the quadratic error of predicted 

outputs and to the control effort, the objective function also considers the manipulated 

variable, i.e., fuel consumption in combustion chamber (m" f ), such that during the 

steady-state mode the gas turbine operates burning as little fuel as possible and still 

delivering the desired output (N). Therefore, the considered objective function is 

obtained by adding the fuel flow rate term (m" f�, to the right-hand side of eq. (1). 

RESULTS AND DISCUSSION 

The MPC strategy is implemented coupled to DESTUR. In Figure 4, it is represented 

by the module “MOD 09”, which is responsible for the compressor rotation control by 

manipulating fuel flow (m" f� in the CC. The control purpose is to maintain the compressor 

speed (N) at 3,600 rpm. Control parameters are presented at Table 1.  
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Table 1. Comparison between theory and experiment 

 
Parameter Value 

∆umin [kg/s] 0.0 

∆umax [kg/s] 2.0 

umin [kg/s] 2.0 

umax [kg/s] 10.0 

α 0.0 

W [rpm] 3,600 

N1 1 

N2 4 

Nu 2 

λ 1.0 

δ 0.5 

Ts [s] 0.5 

 

To verify the dynamic behaviour and control performance, the MPC is tested under 

three situations. 

In the first scenario, the MPC algorithm is applied during the steady-state regime with 

the purpose of finding the best values for fuel flow, while maintaining rotation at the 

desired level, say 3,600 rpm. During operation with constant power output of 107 MW, 

as illustrated in Figure 5, after 10 seconds the fuel flow is gradually optimized from  

6.90 kg/s to 6.88 kg/s, while the rotation is controlled at 3,600 rpm. 
 

 
 

(a) Manipulated variable (u): fuel flow (m" f) into the CC 

 

 
 

(b) Controlled variable (y): compressor rotation (N) 

 

Figure 5. Results for fuel consumption optimization: controlled and manipulated variables 

 

Thus, as demonstrated, there are other possible operating points for the same rotation 

of the compressor. In this example of a sustainability-related tactic, the MPC controller 

was able to select an operating point with reduced fuel consumption while maintaining 

the desired rotation.  
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For the second case, step disturbances in the load of the gas turbine are applied.  

At first, a sudden load fall of 10% is imposed, reducing it from 107 MW to 96.3 MW, as 

shown in Figure 6. 
 

 
 

Figure 6. Load removal/addition 
 

After load removal, the turbine operation stabilizes. Subsequently, another step 

change is forced, but now the load increases back to its original value. As expected, 

during the first change in load, rotational speed increases, as illustrated in Figure 7b. 

As the compressor rotation (N) offsets its set-point of 3,600 rpm, the MPC looks for 

the best values of fuel flow (m" f) into the combustion chamber, aiming to control the shaft 

speed (N). Consequently, the fuel flow is automatically operated on by the MPC, as 

demonstrated in Figure 7a. Thereby, fuel flow is reduced, and then stabilizes, while 

rotational speed is controlled (3,600 rpm). After stabilization, load is added back, 

decreasing rotation. The MPC thus promptly acts, increasing fuel flow until the rotation 

set-point of 3,600 rpm is achieved. Eventually, the operation stabilizes once again, and 

the turbine runs in a steady-state regime. 
 

 
 

(a) Manipulated variable (u): fuel flow (m" f) into the CC 

 

 
 

(b) Controlled variable (y): compressor rotation (N) 

 

Figure 7. Results for load removal/addition: controlled and manipulated variables 
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The third and last scenario is a load rejection, i.e., a sudden load fall related to power 

failure due to a lightning strike or mechanical failure. In this case, as shown in Figure 8, 

the power output of 107 MW to the grid is unexpectedly lost at 10 seconds.  

 

 
 

Figure 8. Load rejection 
 

As a consequence, as indicated in Figure 9a, the compressor speed achieves  

3,832 rpm, within 10% of its nominal value. 

As per Figure 9b, fuel flow is rapidly manipulated downwards, such that the speed 

goes back to 3,600 rpm in the course of the next 11 seconds. 

 

 
 

(a) Controlled variable (y): compressor rotation (N) 

 

 
 

(b) Manipulated variable (u): fuel flow (m" f) into the CC 

 

Figure 9. Results for load rejection: controlled and manipulated variables 

CONCLUSIONS 

This work has proposed a nonlinear MPC strategy to control the compressor rotation 

of a gas turbine during load changes. The methodology has been successfully applied, in 

conjunction with an evolutionary optimization technique, to control a gas turbine during 
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transient operating mode, and to optimize fuel consumption during steady-state mode. 

Through the optimization procedure the nonlinear MPC is able to explicitly handle the 

process constraints, and therefore the gas turbine operation is controlled in a safe and 

cost-efficient manner. 

The use of a first principle simulator in the model-based predictive control strategy 

has proven capable to consider all nonlinearities of the physical and thermodynamic 

constraint equations, in as much as all necessary libraries are built-in. Furthermore, the 

simulator brings flexibility to the analysis, since it allows for quick modifications in the 

equipment and connections. 

Finally, as an indication of forthcoming research, it is intended to implement the MPC 

strategy to manipulate both fuel flow and air flow in a single loop. A hierarchical 

implementation, where the actions of decentralized controllers are managed by an 

algorithm operating at a higher level, is also a subject for future research. 
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NOMENCLATURE 

J objective function  

m" f fuel flow into combustion chamber [kg/s] 

N compressor speed [rpm] 

Nu control horizon [-] 

N1 minimum prediction horizon [-] 

N2 maximum prediction horizon [-] 

r reference trajectory [-] 

Ts sampling time [sec] 

umax maximum control signal [-] 

umin minimum control signal [-] 

∆umax maximum control effort (maximum change rate of 

control signal) 
[-] 

∆umin minimum control effort (minimum change rate of 

control signal) 
[-] 

w reference trajectory approximation [-] 

y output [-] 

�� predicted output [-] 

Greek letters  

α reference trajectory approximation coefficient  

λ coefficient which penalizes future behaviour of 

control effort 
 

δ coefficient which penalizes future behaviour of 

predicted outputs 
 

Abbreviations 

BIFU Bifurcation Module Representation in Process Model  

CC Combustion Chamber  

CHMB Combustor Module Representation in Process Model  

COMP Compressor Module Representation in Process Model  
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CP Compressor  

CTRL Control Module Representation in Process Model  

ENTR Entry Module Representation in Process Model  

F Filter  

G Generator  

MIXR Mixer Module Representation in Process Model  

MOD Module Representation in Process Model  

MPC Model-based Predictive Control  

NGV Nozzle Guide Vanes  

NMPC Nonlinear Model-based Predictive Control  

NZ Nozzle  

NZZL Nozzle Module Representation in Process Model  

PID Proportional-Integral-Derivative Control  

SC Supplementary Combustor  

TB Turbine  

TURB Turbine Module Representation in Process Model  

VIGV Variable Inlet Guide Vanes  
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