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ABSTRACT 
In this research work, the proposed  Dual Predator Optimization algorithm is inspired by the 
hybridization of the very well-known Whale Optimization Algorithm and Grey Wolf 
Optimization. This algorithm integrates with a hybrid micro-grid to optimize the use of 
renewable resources, reduce reliance on fossil fuel, and increase the cost-effectiveness of using 
excess energy by adjusting these parameters over time. The Dual Predator Optimization is 
flexible and more suitable for hybrid energy management. The findings indicate that Dual 
Predator Optimization effectively manages hybrid systems by substantially lowering electricity 
expenses and diminishing the likelihood of supply interruptions. It was determined that in 
comparison to the hybridization algorithms, the Cost of Energy of the proposed Dual Predator 
Optimization technique is reduced to an average of 20%, however, the Loss of Power Supply 
Probability rises to an average of 7.5%. it offers zero load shedding within the hybrid system 
with 100% renewable-satisfied energy production for the microgrid. Moreover, the proposed 
Dual Predator Optimization outperformed others in terms of producing hydrogen by 21.10% 
and 17.60% respectively.  The findings indicate that Dual Predator Optimization is a superior 
method for addressing energy reliability and environmental sustainability issues. 

KEYWORDS 

Optimization, Renewable energy, Hybrid microgrid, Meta-heuristic algorithms, Cost of electricity, Dual 
Predator Optimization.  

1. INTRODUCTION 
In this era of fast globalization, industrial growth, population expansion, and technological 

advancements, the global energy demand has reached an all-time high. An internalizing cycle 
of global economics emerges when countries become mutually dependent on one another for 
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energy supplies, driven by an ever-increasing demand for governments to satisfy their 
populations' lifestyle expectations. The global instability in particularly fossil fuel markets 
among nations, leads to an energy crisis concerning developing countries of the world like 
Bangladesh [1] .  

 
At the same time, one of the most vulnerable countries to global warming, Bangladesh has 

rapidly widening problems [2] like rising sea levels, floods, and cyclones exacerbating energy 
crisis & thereby economic peril. Using renewable energy is seen to be explored by utilizing the 
possible source of renewable energy generation domestically. The optimization algorithms will 
become more crucial to control renewable energy systems efficiently due to high dimension 
problems even existing methods cannot attend those. Although exact optimization methods are 
highly effective in some cases, they turn out to be intractable for large non-linear problems due 
to the search space increasing exponentially. Such cases cannot just be solved in any traditional 
way like the greedy algorithms [3]. Metaheuristic algorithms [4, 5] are more flexible and better 
at working with large-dimensional tasks like global searches.  

 
Solar and wind microgrid systems, as part of renewable energy help to tackle the growth in 

power demand attributed to rapid industrialization and urbanization [6]. The decrease in the 
use of fossil fuels and their damaging greenhouse gas emissions provides support to this view. 
Switch to sustainable energy sources for accommodation. The serious scenario regarding the 
depletion of fossil reserves and challenges related to s emissions underline the need for a 
transition away from the use of carbon compounds. This is especially true for microgrids, 
where hybrid systems might be more cost-effective than expanding traditional power networks 
to rural area [7]. 

 
The Whale Optimization Algorithm (WOA), a meta-heuristic optimization algorithm based 

on humpback whale social behavior and their favorite hunting strategy—bubble-net hunting—
is presented in this work in [8, 9]. To replicate the steps involved in hunting ring creation, 
bubble-net feeding, and prey search, WOA uses three different types of operators. Conversely, 
WOA is used for six optimization issues in structural engineering (tension/compression spring 
design and pressure vessel design), demonstrating its superiority and effectiveness over 
conventional optimization methods. The method's utility for solving various optimization 
problems is further expanded by current research on binary and multi-objective (MO) WOAs 
[9]. 

 
In the Particle Swarm Optimization (PSO) [10] method, Every particle in the search space 

represents a possible solution and updates its position in accordance with both its own and the 
swarm's best-known roles. PSO has evolved into various variants that focus on specific 
enhancements such as parameter adjustment, multi-objective optimization, and hybrid 
techniques. Because of its adaptability and ease of coding, PSO has several practical uses 
(customized), ranging from engineering to artificial intelligence, as well as simple/complex 
searches [11] . 

 
Mirjalili et al. introduced a Grey Wolf Optimizer(GWO) [12]. This is similar to their 

leadership structure, which includes alpha, beta, delta, and omega wolves with distinct 
positions represented in the algorithm. This implementation has been compared with a few 
well-established optimization techniques such as PSO and Differential Evolution (DE), 
demonstrating competitive outcomes on both standard test functions as well as real-world 
engineering problems [12]. T. Agajie et al. explored optimal sizing of Renewable energy 
sources that are hybrid for dependable, hygienic, and cost-effective power production systems, 
highlighting essential elements, variables, procedures, and information [13]. 
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In [14] researchers reviewed Microgrid power-quality problems, optimization methods, and 
management schemes for hybrid microgrids, emphasizing their increased system reliability. 
According to [15], An electrical energy control technique reduces the proposed energy 
expenditures and greenhouse gas emissions significantly for hybrid solar-powered electric 
vehicle charging stations and biogas by 74.67%. A. Karmaker et al. proposed a hybrid PV-
Wind-FC system with battery energy storage which reduces costs and improves energy 
management by eliminating converters and minimizing intermittency [16]. In [17] the proposed 
HFAPSO algorithm effectively optimizes an islanded green energy system, achieving 100% 
renewable energy and minimizing annual energy costs while meeting energy demands. For 
electric car hybrid energy storage systems, N.-D. Nguyen et al. suggested a predictive control-
based energy management approach that boosts performance and efficiency without needing 
to know the speed of the vehicle or anticipated demands [18]. Another study examined A 
gradient-based energy management system with deep determinism method that outperforms a 
twice the width Q-learning-based strategy in hybrid electric tracked cars and increases fuel 
economy by 13.1% [19]. The proposed predictive control strategy in [20] effectively manages 
a wind and solar microgrid that is linked to the grid and has hybrid storage for energy, reducing 
costs and increasing battery life. The proposed energy management strategy by M. Behera and 
L. Saikia for plug-in hybrid electric buses improves fuel economy and avoids the curse of 
dimensionality, with a fuel consumption increase of 3.23% compared to the dynamic 
programming algorithm [21]. The proposed For dual-DC-port dc-port dc-ac converter-
connected PV-battery hybrid systems, a zero-vector-regulation-based closed-loop power 
distribution approach provides flexible power distribution and grid-side current quality without 
complex Synthesis for the voltage vectors [22]. 

 
Machine learning as well as artificial intelligence can effectively manage energy in 

hydrogen fuel cell vehicles, reducing greenhouse gas emissions and improving vehicle-to-
everything connectivity [23]. The Artificial Gorilla Troops Optimization (GTO) algorithm 
effectively solves The optimal power flow problem for hybrid renewable energy systems using 
probabilistic methods, reducing total system cost [24]. Reinforcement learning (RL) can 
optimize energy use in smart buildings, hybrid vehicles, and cybersecurity, contributing to a 
sustainable environment and reducing carbon emissions [25]. DeepEE, a deep reinforcement 
learning framework, can optimize data center energy consumption by up to 15% and 10%, 
achieving more stable performance gains [26]. Hybrid policy-based learning through 
reinforcement (HPRL) energy management effectively optimizes island group energy systems 
in scenarios where energy transmission is constrained, ensuring energy supply and satisfying 
particular demands [27]. Learning through reinforcement can effectively manage energy in fuel 
cell hybrid systems, but requires careful training environments and reward function settings 
[28]. 

 
The hybrid energy storage system (HESS) with hydrogen/bromine redox flow battery and 

supercapacitor effectively smoothens power and accommodates pulse power loads in grid-
integrated solar PV systems, improving overall system dynamics [29]. Compared to alternative 
approaches, the AMPC-based on an energy handling plan for electric vehicles with fuel cell 
hybrids reduces system deterioration and increases fuel efficiency [30]. The proposed energy-
consumption management system effectively lowers peak-to-average ratios and power bills. 
by 28% and 49.32%, while maintaining user comfort [31]. The proposed predictive control 
strategy in [32] effectively allocates load current in Energy storage using a battery-
supercapacitor hybrid systems, reducing energy losses and battery degradation in electric 
vehicle applications. 

 
This paper focuses on the application, modification, and hybridization of WOA in various 

fields of engineering [8]; and also identifies its pros and areas that still need investigation. 
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WOA techniques are applied in five different sectors with 61% focusing on modifications, 27% 
on hybridizations, and the remaining 12% involving multi-objective variants. It points to the 
growing relevance of WOA approaches in engineering [8]. 

 
This study's primary goal is to develop an effective optimization algorithm for the energy 

management of hybrid energy systems while taking into account renewable sources' maximum 
potential to lower operating costs. The DPO algorithm has been proposed that combines the 
GWO and WOA and addresses the exploration versus exploitation trade-off in dynamic and 
highly constrained energy management problems. The benefits of DPO are that it helps keep 
the cost of electricity (COE) down while maintaining reliable service via a reduction in the loss 
of power supply probability (LPSP). Additionally, this optimization can significantly enhance 
the renewable factor, reduce load shedding, and maximize the production of hydrogen which 
in turn can be utilized for powering hydrogen vehicles. On top of that, the flexibility of the 
algorithm allows it to make more cost-effective use of renewable energy sources and hence 
cuts carbon emissions while boosting environmental sustainability. By intelligently distributing 
and storing resources, DPO provides a way to transition to cleaner energy infrastructures with 
significant resilience which will be critical for deploying sustainable future supplies. 

 
Additionally, this paper is structured as follows: The approach is described in Section 2. 

Techniques for microgrid energy planning and control are covered in Section 3. The findings 
and discussion are briefly presented in Section 4. The conclusion and future work direction are 
the main topics of Section 5.  

 
 

2. MATERIALS AND METHODS  
This section with suitable subsections discusses the methodological approach of this 

research work. In this section, the methodology is well discussed with appropriate illustrations. 

2.1 Environmental investigation through renewable energy  
 
The developed mathematical representations for the microgrid's solar, wind, battery, and 

diesel generator components are discussed in this subsection. These models are required for 
further evaluations aimed at enhancing the microgrid's performance. Additionally provided is 
a simple electrolyzer model that might be used to produce hydrogen and oxygen from excess 
microgrid electricity for use in businesses located inside the designated economic zone. Finally, 
the subject of simulating the burden on the economic zone is covered. 
 

2.2 System configuration for the hybrid system  
This section, with suitable subsections illustrates the hybrid system configuration on which 

the proposed optimization algorithm has been applied. The hybrid system has been shown in 
Figure 1. 

 
2.2.1 Wind Turbine 
 
For electrical power, wind energy is a popular renewable energy source, especially in the 

country's southeast and south, which have a lot of potential for using this plentiful energy [33]. 
The velocity of the wind at the height of the anemometer needs to be translated to the 
appropriate hub heights because wind speed changes with altitude. For this conversion, the 
power law equation is applied, as this correlation illustrates [1]:  
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𝑣𝑣21
𝑣𝑣11

= (
ℎ21
ℎ11

)𝛼𝛼 (1) 

 
Hither, 𝑣𝑣11 and 𝑣𝑣21 stand for the speed (m/s) at the corresponding height (ℎ11) and hub 

height (ℎ21) in meters, respectively. The friction coefficient is α, which is also referred to as 
the power law exponent or Hellmann exponent. The friction coefficient (𝛼𝛼) can be impacted 
by changes in height above the ground, temperature, season, wind speed, and the roughness of 
the terrain. 

The following formula is used to approximate a wind turbine's power production [34]: 
 

 

𝑃𝑃𝑤𝑤𝑤𝑤−𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

=

⎩
⎪
⎨

⎪
⎧0,                                    𝑉𝑉 < 𝑉𝑉𝑐𝑐−𝑖𝑖𝑖𝑖,𝑉𝑉 > 𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐−𝑜𝑜𝑜𝑜𝑜𝑜 
𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟(𝑉𝑉3 − 𝑉𝑉3𝑐𝑐−𝑖𝑖𝑖𝑖)

(𝑉𝑉3 − 𝑉𝑉3𝑐𝑐−𝑖𝑖𝑖𝑖)  ,     𝑉𝑉𝑐𝑐−𝑖𝑖𝑖𝑖 ≤ 𝑉𝑉 < 𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐−𝑜𝑜𝑜𝑜𝑜𝑜

𝑃𝑃𝑟𝑟 ,                                    𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟 ≤ 𝑉𝑉 < 𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐−𝑜𝑜𝑜𝑜𝑜𝑜 

 (2) 

 
Hither, Pwi-output refers to the wind turbine's kilowatt-output power, Prat   refers to the rated 

power in kW, moreover, Vcut-off, Vrat, and Vc-in refer to cut-in wind speed, nominal wind speed, 
and cut-out wind speed similarly. Small-scale wind turbines can operate well even in low wind 
conditions because of their limited Vcut-in. 

 
Eqs. (1) and (2), combined with the wind speed information from the NASA POWER API 

with a granularity for the specific geographic coordinates of the study area [35]  were used to 
calculate per-unit power generation. Figure 2 shows the outcomes. 

 

  

 
Figure 1. Proposed hybrid microgrid system’s schematic diagram 
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2.2.2 Solar  
 
Bangladesh's geographic location offers a plethora of opportunities for solar power 

harvesting [36]. Because Bangladesh is situated in an area with high levels of solar irradiation, 
it has year-round access to plenty of sunlight. The following formula can be used to determine 
the power generated by the panels as a function of solar radiation [6]: 
 

 
𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =  𝑃𝑃𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 ×

𝐺𝐺
𝐺𝐺𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

× [1

+ 𝐾𝐾𝑡𝑡𝑡𝑡𝑡𝑡 �𝑇𝑇𝑎𝑎𝑎𝑎 + (0.0256 × 𝐺𝐺)� − 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 
(3) 

 
Hither, Psolarout refers to the output power (kW) of solar, PN-solar refers to rated power under 

reference conditions, G refers to solar radiation in Wm-2, Greference equal to 1000 Wm-2, Treference 
equal to 25°C, Ktem equal to -3.7×10-3 (1/°C), Tam refers to the ambient temperature. Equation 
(3) and data were extracted from the NASA POWER API with a granularity for the specific 
geographic coordinates of the study area [35] can be used to compute the production of solar 
energy, as illustrated in Figure 3. 

2.2.3 Diesel Generator 
 
The diesel generator lessens load shedding and enhances power quality by acting as a 

backup source when the battery runs low during periods of high demand. When designing a 
hybrid system, the efficiency and hourly fuel consumption of a diesel generator can be 
expressed using the following formula [37]:  

 
Figure 2. Average monthly wind speed for a specific year 

 
Figure 3. Average monthly Solar radiation for a specific year 
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 𝑄𝑄(𝑡𝑡) =  𝑎𝑎.𝑃𝑃𝑃𝑃(𝑡𝑡) +  𝑏𝑏.𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 (4) 
 
Hither, 𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟  is the rated power (kW), Q(t) is the fuel consumption (L/h), Pi(t) is the 

generated power (kW), and percentage of fuel consumption is denoted by the parameters 
(L/kW) a and b are the constant parameters (L/kW). The efficiency of a diesel generator is 
established by [38]: 
 

  𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑛𝑛𝑏𝑏 × 𝑛𝑛𝑔𝑔 (5) 
 
Hither, 𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 refers to the overall efficiency and 𝑛𝑛𝑏𝑏 refers to the brake thermal efficiency 

of the diesel generator. 𝑛𝑛𝑔𝑔 refers to the generator's efficiency. 
 
2.2.4 Electrolyzer 
 
Electrolyzing water to create hydrogen is an intriguing method for producing hydrogen for 

a Proton Exchange Membrane (PEM) fuel cell. With the help of an electrolyzer made up of 
numerous cells, each cell having a cathode and anode submerged in electrically conductive 
water molecules are decomposed into their elements hydrogen and oxygen. The electric power 
used by the electrolyzer can be defined as the following [39]: 
 

 𝐻𝐻2𝑓𝑓 = �
𝐾𝐾𝐾𝐾𝐻𝐻2𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖       𝑖𝑖𝑖𝑖𝑃𝑃𝑖𝑖𝑖𝑖 ≤ 𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝐾𝐾𝐾𝐾𝐻𝐻2𝑃𝑃𝑟𝑟                          𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

 (6) 

 

 𝑂𝑂2𝑓𝑓 =
𝐻𝐻2𝑓𝑓

2
 (7) 

 
Hither, 𝑂𝑂2𝑓𝑓(Nm3h-1) refers to the per-hour oxygen production and 𝐻𝐻2𝑓𝑓(Nm3h-1) refers to the 

per-hour Hydrogen production.  𝐾𝐾𝐾𝐾𝐻𝐻2(𝑁𝑁𝑁𝑁3/ℎ/𝐾𝐾𝐾𝐾) refers to the flow rate of hydrogen per 
kW. Pinput (kW) refers to the electrolyzer power used. 

 
 
2.2.5 Battery 
 
The battery compensates for the discontinuous nature of renewable energy and for future 

applications renewable power is stored in a battery. Hither, the amount of energy retained 
(kWh) in the batteries during the time slot, t is denoted by 𝐸𝐸𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ; 𝐸𝐸𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 and 𝐸𝐸𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 
refers to the lowest and highest battery capacity for storage (kWh), accordingly. Let 𝑃𝑃𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡  
and 𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 

𝑡𝑡𝑡𝑡  refer to peak battery charge and discharge power (in kW), similarly. 
𝑃𝑃𝑐𝑐𝑚𝑚𝑎𝑎𝑎𝑎𝑎𝑎 𝑃𝑃𝑑𝑑𝑚𝑚 refers to the maximum power of charging and discharging. The system's battery 
capacity (kW) is calculated based on demand and autonomous days, using the calculation 
below [40]: 
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⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧ 𝐸𝐸𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝐸𝐸𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡−1 +                

�𝑃𝑃𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡 , 𝑒𝑒𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 −
𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡

𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
� ∆𝑡𝑡  

𝑤𝑤ℎ𝑒𝑒𝑒𝑒 0 ≤ 𝑃𝑃𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡 ≤ 𝑢𝑢𝑏𝑏𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ,𝑃𝑃𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡 = 𝑃𝑃𝑐𝑐𝑚𝑚

𝑤𝑤ℎ𝑒𝑒𝑒𝑒 0 ≤ 𝑃𝑃𝑑𝑑𝑚𝑚 ≤ �1 − 𝑢𝑢𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡 �,
𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 
𝑡𝑡𝑡𝑡 = 𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 

𝑚𝑚𝑚𝑚𝑚𝑚

𝐸𝐸𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  ≤ 𝐸𝐸𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ≤ 𝐸𝐸𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  
𝐸𝐸𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ≤ 𝐸𝐸𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏1                                    

 

  

(8) 

The change in stored energy throughout the time period ∆t prior to and there after 
charging/discharging is shown in the first section of Equation (8). The charging and 
discharging power should not be greater than their maximum values, as indicated by the second 
and third claims. The binary parameter 𝑢𝑢𝑏𝑏𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 makes sure the charging and discharge processes 
do not happen sequentially. The fourth element of equation (8) constrains the energy stored, 
ensuring that it remains between its smallest and highest capacity. The last condition states that 
the energy that remains at the close of the transmit term is the same as its initial state. 

 
 
2.2.6 Load 

 
The seasonal pattern of energy demand for a typical day in Rangpur has been illustrated by 

the monthly average load curve as shown in Figure 4 which reveals that peak loads occur during 
the summer months (higher cooling loads) and minimum during the winter months (higher 
heating loads). 
 

2.3 Strategies for microgrid energy planning and control  
 
When it comes to microgrid energy management, there are two possible outcomes: one 

where the load can be met by renewable energy sources, and another where they can't. In the 
first case, the system operates efficiently with clean energy. Excess power can be stored or 
used for other applications. In the second case, backup sources must be utilized to maintain a 
stable supply, such as batteries and diesel generators. 

 
Figure 4. Average monthly load Curve for a specific year 
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Case 1: Renewables Cover Total Load: In this case, the surplus energy is directed toward 
charging the battery and operating the electrolyzer. Any amount of power left over after the 
electrolyzer operates at its full capacity is deemed waste. In this scenario, load shedding 
remains zero.  

 
Case 2: Inadequate Renewable Energy: When renewable resources are not enough to meet 

the load in the second scenario:  
 

• Finding out if the battery can close the energy deficit is the first step in the procedure. 
In this case, there is no waste, load shedding, or hydrogen produced by the electrolyzer. 
The battery drains to its lowest level if it can bridge the energy gap. 

• If the battery is completely discharged, to compensate for the shortfall and ensure 
uninterrupted power supply, the diesel generator comes into consideration. By 
preventing load shedding when both renewables and battery storage are insufficient, 
this backup mechanism ensures system reliability. The diesel generator is the last 
possible alternative here meaning the emission is avoided for the whole time other than 
emergency. 

 

2.4 Formulation of problems 
 
2.4.1 Cost of Electricity 

One popular and frequently used indicator for evaluating the economic feasibility of hybrid renewable 
energy systems is the cost of electricity (COE). It is the set cost or price per unit of electricity or energy. 
With the help of equation (9), the calculation is completed. 

  𝐶𝐶𝐶𝐶𝐶𝐶 =  𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇

  (9) 

Hither, TC prefers total cost and TL prefers total load. Every component utilized in the 
microgrid has its installation, running, and maintenance expenses included in the overall cost. 
Additionally included is the whole expense of gasoline for the diesel generator unit. 

 
2.4.2 Loss of Power Supply Probability  

 
A statistical assessment of the probability of a power supply failure due to a lack of 

renewable resources or technical problems meeting demand is known as the loss of power 
supply probability, or LPSP. Two distinct ways are used to calculate LPSP: probabilistic 
methods, which base the calculation on the total energy impact of an energy storage system, 
and chronological simulation, which employs time-series data over a predetermined period [34], 
shown by equaition (10). 
 

 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 =
∑(𝑃𝑃𝐿𝐿 − 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 𝑃𝑃𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 − 𝑃𝑃𝑆𝑆𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑃𝑃𝐷𝐷)

∑𝑃𝑃𝐿𝐿
 (10) 

Hither, PL refers to the load (kW), Psolar refers to the electricity produced by solar energy 
sources (kW), Pwind refers to the electricity produced by wind turbines (kW), SOCminimum refers 
to the least amount of charge, PD refers to the power generated by diesel engines (kW). 
 

2.4.3 Renewable Factor 
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The renewable factor (RFact) controls how energy is distributed between the diesel 
generator and the renewable side. A situation where the energy system is entirely dependent 
on renewable sources is indicated by a 100% contribution from renewables. Conversely, if the 
renewable factor is zero percent, then all of the energy produced by diesel generators is 
equivalent to all of the energy produced by renewable sources. This statistic accurately captures 
the system's level of balance between renewable and non-renewable resources. The renewable 
factor is computed using the study's equation in (11) [41]: 
 

 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(%) = (1 − ∑ 𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑇𝑇
𝑛𝑛=1 (𝑡𝑡)

∑ 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡)𝑇𝑇
𝑛𝑛=1 +∑ 𝑃𝑃𝑤𝑤𝑤𝑤𝑤𝑤(𝑡𝑡)𝑇𝑇

𝑛𝑛=1
)   (11) 

Heither, Pdie refers to energy can produced by diesel generator, Psol refers to energy can 
produced by solar, Pwin refers to energy can produced by wind turbine. The aim of optimization 
is to increase the RFact value.  
 

2.4.4 Load Shedding 
 
Direct power outages occur when the total amount of power available falls short of the 

demand. Different load suppliers in the system are separated by a central control unit during 
load shedding (LSD). The fraction of the overall load that is subject to load shedding is 
calculated. In this investigation, load shedding was computed using the following equation (12). 
 

 𝐿𝐿𝐿𝐿𝐿𝐿(%) =
∑ 𝑃𝑃𝑃𝑃1(𝑡𝑡)𝑇𝑇
𝑛𝑛=1

∑ 𝑃𝑃𝐿𝐿1(𝑡𝑡)𝑇𝑇
𝑛𝑛=1

 (12) 

 
Here, "PC1" means "power outage." Minimal power outages is the core aim through 

optimization. The load shedding in the final MCF is given a heuristically high weight in order 
to achieve this, and it will be reduced to the lowest feasible level. 
 

2.4.5 Hydrogen Production 
 
In the current work, the electrolyzer is the only load that is connected to use excess energy 

in order to minimize energy waste. In an electrolyzer, H2 and O2 can provide conflicting results. 
This enables the system to become more cost-effective at the electrolyzer's maximum. 
Therefore, using an electrolyzer is one of the goals of this very research work, which is explain 
as follows [1]:  
 

 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜(%) =
∑ 𝑓𝑓𝐻𝐻2(𝑡𝑡)𝑇𝑇
𝑛𝑛=1

𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝐻𝐻2∗𝑇𝑇
. (13) 

 
Heither, ∑ 𝑓𝑓𝐻𝐻2(𝑡𝑡)𝑇𝑇

𝑛𝑛=1  refers to summation of hydrogen production over time, fmaxH2 refers 
to the maximum flow rate of hydrogen that the electrolyzer can handle. 

 
3. DUAL PREDATOR OPTIMIZATION ALGORITHM   

The Dual Predator Optimization Algorithm (DPO) is a meta-heuristic algorithm that is 
proposed in the course of this research. The proposed DPO algorithm combines the WOA and the 
GWO characteristics to efficiently tune the trade-off between exploration and exploitation for 
hybrid energy systems optimization. This flexible structure allows DPO to deal with renewable 
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energy resources, multiple contingency plans, batteries, and diesel engines among others as 
required always having energy available. The DPO comprises the following seven primary steps: 

 
• Initialization 
• Evaluation 
• Selection 
• Exploration 
• Adjustment 
• Reassessment 
• Identification 

I. Initialization 
Initially, the search agents are dispersed around the search space at random. They all can start 

by exploring different solution spaces due to the fact that each agent is initialized in a different 
state. In the first part, since there is a lot of variability, it allows for the algorithm to within a few 
iterations quickly around where in the search space it is. 

 
II. Evaluation 

The fitness of each agent is calculated which helps to find out, how well the agents are capable 
of solving the problem. This feature identifies the agents who are productive and the ones that are 
a burden. The foundation for selecting the best agents is fitness assessment, which is also used to 
monitor an algorithm's development in terms of quality.  

 
III. Selection 

In fitness evaluations, the three highest-scoring agents, are chosen as leaders named Alpha, 
Beta, and Delta. These agents represent the optimal solutions at that iteration and are used as a 
reference for other agents to learn the way to reach a potentially optimum solution.  

 
IV. Exploration 

The loop continues up to a predefined maximum number of iterations. During each iteration, 
parameters are updated to define the movement strategy. If the parameters suggest insufficient 
progress, movement is directed toward Alpha (α), Beta (β), or Delta (δ). Otherwise, random 
exploration of the search space is performed to identify new potential solutions. Additionally, if 
no improvement is observed over several iterations, repositioning is applied using a chaotic map 
to escape local optima. 

 
V. Adjustment 

In the main loop, all agents are forced to move inside the search space boundary This is done 
to ensure all the agents are within valid bounds which allows the search process to work well. 

 
VI. Reassessment 

After each iteration, the fitness of every agent is evaluated with their new position. This new 
fitness value gives you an idea of which agents are the top performers at this point. In case some 
agent has a better value than the current leaders, i.e. if one of the α, β, or δ values is worse than 
that shown by an individual of the population then based on this comparison will update their 
corresponding α, β, and δ to move towards ideal solutions.  

 
VII. Identification 

The loop ends after that number of iterations. The best agent is honored as Alpha, a by-product, 
or output of an optimal solution. This last stage finds the optimal solution and its exploration in 
the search space is exhaustively scrutinized. 
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Pseudo code for the proposed DPO algorithm 
 
The DPO algorithm is described in this point step by step, 

1. Randomly initialize search agents to be within the specified ranges across all dimensions 
of a solution in population space. 

2. Calculate the Fitness Value of each Candidate Solution. 
3. These agents with the most excellent fitness are identified as Alpha (Xα), Beta (Xβ), and 

Delta(Xδ). 
4. While (t < Max_iterations): 
 4.1 For each search agent i: 
  4.1.1 Update control parameters    
  4.1.2 If |A| < 1: 
   4.1.2.1 Update the agent’s position towards the leaders Xα, Xβ, and Xδ.   
  4.1.3 Else if |A| ≥ 1: 
    4.1.3.1 Random search to encourage exploration of the agent's location 
  4.1.4 If p ≥ 0.5: 
   4.1.4.1 If the agent has not improved: 

    4.1.4.1.1 Reset the position of the agent by the chaotic map and 
release it from local Optimum. 

    4.1.4.2 Update the position. 
  4.1.5 Ensure the agent’s position is within the search space boundaries. 
 4.2 Re-evaluate the fitness value for each search agent. 
 4.3 Update Alpha (Xα), Beta (Xβ), and Delta (Xδ) if better solutions are found. 
 4.4 Increment the iteration counter t = t + 1. 
5. Return the best solution found, Alpha (Xα). 

 
 

4. RESULT AND DISCUSSION 
The 'Result and Discussion' consists of two main headings (primary analysis and 

commercial analysis). The central analysis directs to the results relating to the critical findings 
extracted from experimental or survey data with an in-depth analysis of the results. In the 
commercial analysis looks at what the data reveals in the more practical terms of economics or 
business and in what ways it is reasonable to use these findings commercially.  

4.1 Primary analysis 
This section discusses the findings of the research work by dividing the contribution into 

several subsections in the following. It is divided into eight individual cases such as Cost of 
Electricity (COE) analysis using DPO, GWO, and WOA, Loss of Power Supply Probability 
(LPSP) evaluation, Renewable Energy Utilization Comparison, Load Shedding Analysis, 
Hydrogen Production Comparison, Carbon Emissions Reduction, Net Present Cost (NPC) 
Analysis. Each of these individual cases are discussed below. 

 
Case 1: A yearly profit comparison for the average electricity cost (relative to DPO) over the 

course of a full year is displayed in Figure 5. DPO typically produces the lowest COE, saving 
between 13% and 27%, and roughly 10% to 15% when compared to GWO. As an example, in 
January, DPO's COE was 4.02 Taka, which is 14.1% less than WOA's 4.68 Taka and 27.04% less 
than GWO's 5.51 Taka [*1 USD= 117.70 Taka as of 21st December, 2024]. The DPO algorithm 
efficiently lowers the COE by optimizing the combination of backup resources, like diesel 
generators, and renewable resources, like wind and solar power. This includes everything from 
how the hybrid system components are designed, constructed, and packaged through to their 
installation in a vehicle as well as all other factors checked upfront cost, materials for making each 
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component of the hybrid systems, and even maintenance needs throughout ownership. 
Simulations showed that the best resource allocation method of the DPO algorithm makes it a 
more reliable cost reduction performance than traditional energy management algorithms.  

 

 
Figure 5. Average energy cost for a specific year 

 
Case 2: This case illustrates the effectiveness of the DPO algorithm in reducing the LPSP that 

is satisfactory with the security and dependability constraints under consideration. In the absence 
of adequate renewable and functional systems, the power supply indicated by the LPSP score has 
a higher chance of turning non-dispatchable. The DPO algorithm consistently produces lower 
LPSP values as indicated in Figure 6; in this case, it eliminates 7.2% improvements over GWO 
and can even surpass WOA by 7.7%. These gains resulted in April LPSPs for WOA and GWO 
of 10% and 5.8%, respectively, versus an increasingly high one for DPO of just 1.93%. The DPO 
algorithm was able to reduce the LPSP by approximately 60% due to the ability of a battery 
storage approach for time-varying response from sustainable resources as well as support these 
gaps. By giving priority to battery discharge (the first rule of reductions), the algorithm not only 
provides more reliable performance but also improves fuel efficiency and reduces greenhouse 
gases in the process. This is done regardless of whether there are batteries to discharge from, or 
the diesel generator must be started at the earliest sign that intermediate battery states of charge 
will predict being out-of-usefulness in some future distribution cycle. The above image shows the 
very low LPSP of 0 which shows how the developed DPO algorithm is able to deliver relatively 
constant power output under such highly variable renewable conditions. 

 

Figure 6. Average loss of power supply probability for a specific year 
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Case 3: Monthly analysis of renewable energy for a year is shown in Figure 7, where the 
comparison between DPO, WOA and GWO algorithm is discussed. For DPO algorithm the value 
of renewable energy utilization is almost 100% for the whole year. On the other hand, the values 
for WOA and GWO are on average 3-5% less than DPO for every months of the year. The 
utilization of DPO results very practical and reliable results which proves the potential of greater 
optimization for this algorithm. 

 

 Case 4: The annual load shedding analysis for a year is illustrated in Figure 8 where the 
comparison of DPO, WOA and GWO is shown. In case of WOA and GWO the values of load 
shedding are on average more than 8 kW/month and 10 kW/month, respectively. Meanwhile the 
load shedding for DPO algorithm is 0 kW/month which proves the fact that DPO algorithm is the 
most promising algorithm. It is quite evident from the data that DPO is also superior to WOA, 
GWO in terms of steadfastness in the energy distribution free from any interruption. It’s zero load 
shedding throughout the months proves that the system has the maximum ability to have an 
optimal and stable system and is even preferable to be used for critical applications where 
the supply of power cannot be interrupted. While the relatively lower load shedding is with WOA, 
GWO these remain open to challenge under high-stress operational conditions, as experienced in 
the latter half of Enhancing Operational Conditions. 

 

Figure 8. Average load shedding for a specific year 
 

 

 

Figure 7. Average renewable energy for a specific year 
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Case 5: In Figure 9, the monthly production of hydrogen for a year is compared with DPO, 
WOA and GWO algorithm. From the figure it is evident that DPO algorithm produces the highest 

amount of hydrogen over the whole year which is around 1.75 × 104 kg/month on average. The 
hydrogen production using WOA and GWO algorithm is significantly lower than DPO and the 
average amounts are around 1.5 × 104 kg/month for both of them. Hence the DPO algorithm 
maximizes the hydrogen production and makes the algorithm efficient and reliable. Looking at 
the average monthly analysis, average DPO performance was outstanding all around; it created 
17.60% more hydrogen than WOA, 21.10% better than GWO. This consistent increase 
demonstrates that DPO is the most effective method of all for getting H2 month by month. 

Case 6: DPO algorithm can also optimize generation and demand while backing out carbon-
intensive fossil fuels from the mix. Power Management Update, the DPO also establishes a 
carbon-smart approach by continuing to increase the use of solar and wind resources which emit 
less carbon compared to diesel generators in order for further reduction of emissions in Table I, 
moving progress towards outcomes envisaged by the New Energy Industrial plan. Furthermore, 
it maximizes the use of stored energy that is generated from renewable energy sources and helps 
to store them effectively for periods when high demand occurs and possibly prevents the plant at 
some times from utilizing non-renewable sources. In addition to improving the efficiency and 
lifespans of the overall energy system, it conserves resources by using less fuel. Flow batteries 
that generate safe, zero-carbon energy storage solutions must be integrated with the work of 
upstream engineers in order to be delivered in a system design. 

 
 
 
 
 
 
 
 
 

 
Case 7: The Dual Predator Optimization algorithm, applied to an analysis of the Net Present 

Costs (NPC) of the different energy components of Rangpur in Figure 10, outlines the economic 
implications of adopting an integrated generation facility for the defined hybrid energy system, 
providing excellent detail on financial feasibility. At $20,649.88 for all components, this is a rather 
costly investment to perform this system in this area. The electrolyzer has the highest NPC 

Table I. Emission of gases per year 

Quantity Value(kg/yr) 
Carbon Dioxide 0 

Carbon monoxide 0 
Sulfur Dioxide 0 

Nitrogen Oxides 0 

 

 
Figure 9. Average hydrogen production for a specific year 
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($7,859.85). The cost is very high, which suggests that the hydrogen production technology, an 
essential technology for energy storage and release, is very expensive, which may be due to its 
high technology and material needs. Next in line is the load-flowing element, a crucial component 
for the energy distribution throughout the system, costing $5,378.25, again highlighting the 
significant infrastructure investment associated with effective energy distribution. The 
photovoltaic systems that utilize energy from the sun make up another big piece of the investment, 
accounting for $3,936.89. Solar panels, while declining in price over the years, still take a large 
capital investment and likely represent the ballpark market rate for such technology. The 
investment can be lower in terms of dollars per kilowatt for wind turbines ($1,840.38) because of 
regional wind profiles and the technology maturing and driving down costs over time. Items like 

the System Converter and Hydrogen Tank come in at $422.35 and $279.28, respectively, so they 
shouldn't put too much of a dent in your wallet. While these are the basic components of the 
technology to convert energy produced into energy that can be readily used and that of hydrogen 
storage, they also suggest that the technology is approaching economic viability. At the low end, 
the battery and generator cost $476.09 and $456.79, respectively. This lower cost is indicative of 
their secondary system roles as energy storage and backup power, roles that are essential to 
maintaining system reliability but do not carry the same technology investment needs as 
generation components. 

4.2 Commercial analysis  
For a commercial analysis between DPO and HOMER Pro, need to focus on several key 

aspects, The comparison between the DPO Algorithm and Homer Pro demonstrated in the Table 
II. It can be seen that both models achieve a 100% renewable factor with zero emissions and load 
shedding. However, the DPO Algorithm significantly reduces the cost of electricity as shown in 
the table that for DPO Algorithm it is 4.08 Taka and 6.12 Taka for Homer Pro, indicating better 
economic performance. Additionally, DPO Algorithm has lower Net Present Costs (NPC) 
($20,649.88) than Homer Pro (20,807.10). Both DPO Algorithm has no load shedding and 0 
kg/year of harmful gas emission. 
 

Table II. Comparison between Homer Pro and DPO Algorithm 

Description DPO Algorithm Homer Pro 

Cost of Electricity (in Taka) 4.08 6.12 

Renewable factor (% percentage) 100 100 

Net Present Costs (in USD) 20,649.88 20,807.10 

Load shedding (kW) 0 0 

Figure 10. The Total Net Present Cost Analysis of Various Energy Components in Rangpur 
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Harmful gas emission (kg/yr) 0 0 
 
The summary of the results is presented in the Table III below: 
 

Table III. Summary of Case Studies and Results 

 

5.  CONCLUSION 
 
In this paper, a new metaheuristic optimization method called Dual Predator Optimization 

(DPO) has been proposed, which combines the strengths of Grey Wolf Optimization (GWO) and 
Whale Optimization Algorithm (WOA) and also, further addresses the shortcomings of the 
mentioned algorithms. The results of the DPO method are promising, showing a significant 
reduction in both the Cost of Electricity (COE) and the Loss of Power Supply Probability (LPSP). 
Specifically, the DPO method achieves a decrement of an average 15-20% in COE, making it 
highly efficient in reducing energy costs. Furthermore, the LPSP is reduced by an average of 7.5%, 
which is an also a significant improvement over the other mentioned established methods such as 
GAO (7.2%) and WOA (7.7%). With zero load shedding and 100% renewable energy utilization, 
DPO sets a novel milestone ensuring greater operational efficiency and improved sustainability. 
It’s capabilities to lead in renewable energy technologies and hydrogen production are 
demonstrated by its 21.10% efficiency advantage over GWO and its 17.60% hydrogen production 
advantage over WOA, which highlights its superior technology and energy management 
effectiveness. To conclude, the results are competitive enough to other established algorithms to 
provide sustainable optimization solutions to the hybrid energy systems. However, as future 
upgradation to this proposed algorithm, further investigation is needed to analyze the DPO 
algorithm’s scalability and how it may perform in larger and more complex energy systems. While 

Case No. Description Key Findings 

Case 1 

Cost of Electricity 
(COE) analysis using 

DPO, GWO, and 
WOA 

DPO achieved the lowest COE, reducing costs by 
13-27% compared to other algorithms 

Case 2 
Loss of Power Supply 

Probability (LPSP) 
evaluation 

DPO showed a 7.2% improvement over GWO and 
7.7% over WOA, achieving a nearly 60% LPSP 

reduction 

Case 3 
Renewable Energy 

Utilization 
Comparison 

DPO ensured ~100% renewable energy utilization 
throughout the year, outperforming WOA and 

GWO by 3-5% 

Case 4 Load Shedding 
Analysis 

DPO resulted in zero load shedding, whereas WOA 
and GWO had 8-10 kW/month on average 

Case 5 Hydrogen Production 
Comparison 

DPO produced 17.60% more hydrogen than WOA 
and 21.10% more than GWO 

Case 6 Carbon Emissions 
Reduction 

DPO resulted in zero emissions of CO₂, CO, SO₂, 
and NOx, making it a carbon-free energy solution 

Case 7 Net Present Cost 
(NPC) Analysis 

DPO showed an optimal cost distribution, with the 
highest cost associated with the electrolyzer, 
followed by energy storage and PV systems 

Commercial  
analysis 

Comparison between 
Homer Pro and DPO 

Algorithm 

DPO Algorithm showed lower cost of electricity 
and net present cost than Homer Pro. 
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the system can scale up and down to accommodate fluctuating energy needs, integrating machine 
learning algorithms into real-time prediction and balancing could further optimize it. A possibility 
would be to further develop the idea with other renewable energy sources such as biomass or 
hydropower included in a hybrid system, suggests DPO. Embracing flow batteries would bring 
the goals of a resource-efficient and CO2 neutral energy system one step nearer to fruition. 
 

NOMENCLATURE 

𝐻𝐻2𝑓𝑓  Per-hour Hydrogen production 
 𝐾𝐾𝐾𝐾𝐻𝐻2 Flow rate of hydrogen per kW 
𝑂𝑂2𝑓𝑓  Per-hour oxygen production 
𝑛𝑛𝑏𝑏   Brake thermal efficiency of the diesel generator 
𝑛𝑛𝑔𝑔  Generator efficiency 
𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜  Overall efficiency 
 𝑣𝑣11  Speed (m/s) at the corresponding height  
b Constant parameters  
COE Cost of Energy 
DE Differential Evolution 
G Solar radiation  
GTO Gorilla Troops Optimization 
HESS Hybrid energy storage system 
HPRL Hybrid policy-based reinforcement learning  
LPSP Loss of Power Supply Probability 
Pinput Electrolyzer power used 
PN-solar Rated power under reference conditions 
Prat Rated power  
PSO Particle Swarm Optimization 
Psolarout Output power (kW) of solar 
Pwi-output Wind turbine's kilowatt-output power 
Q(t) Fuel consumption  
RF Renewable Fraction 
RL Reinforcement learning  
TC Total cost  
TL Total load 
v21 Wind speed (m/s) at hub height 
Vc-in Cut-out wind speed  
Vcut-off  Cut-in wind speed 
Vrat Nominal wind speed 
WOA Whale Optimization Algorithm 
WT Wind Turbines 
𝛼𝛼 Friction coefficient  
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