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ABSTRACT 

Low availability of sustainable biomass prevents transition of district heating in Europe 

away from fossil fuels. The need for sustainable fuels stems from current energy 

generation structure, which mainly relies on centralised combined heat and power 

operated as baseload units. Our study shows that districts with generation of renewable 
power, heat and synthetic natural gas can reach complete energy system decarbonisation 

even without biomass, only using wind and solar power as primary energy. It requires 

rethinking of interactions between electricity, gas and heating networks and a 

polygeneration solution with power-to-heat and power-to-gas technologies to fully utilise 

local solar and wind power and cover peak demands. Power-to-heat as baseload units 

supported with power-to-gas for seasonal and back-up energy storage are proposed as 

novel district heating approach. The operation of such polygeneration is tested 

successfully using a model of a Finnish district. Carbon dioxide circulation is analysed 

together with capacity requirements to synthetic natural gas and needed wind power 

installation. Resulting complete decarbonisation requires coordination and flexible 

operation of power-to-heat and power-to-gas capacity together with gas-fired combined 

heat and power plants and heat-only boilers, which ensures that renewable power 
production, heating and power needs, security of supply and grid limitations are met. 
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INTRODUCTION 

Today, large District Heating (DH) systems are often well-established co-/poly- 

generation systems that generally consists of conventional centralized Combined Heat and 

Power (CHP) units, used as baseload units, and Heat-Only Boilers (HOB) for peak heating 
needs [1]. For some regions with good biomass availability, e.g., Baltic and Nordic 

countries, such energy systems are often based on biomass fuels. Biomass accounts for 

about 90% of renewable heating in Europe [2]. In general, European DH and cooling 
systems are still mainly based on utilization of fossil fuels such as coal (15%), natural gas 

(46%), and oil (10%) [2], often because of limited availability of local, sustainable and 

affordable biomass fuels [3]. Many towns and cities in Europe have such efficient but 
fossil-based polygeneration systems in place, and face large challenges with their future 

deep decarbonisation targets, e.g., fossil-free energy production in 2030-2050 [4].  

This opens up interest for Power-to-Heat (P2H) and Power-to-Gas (P2G) DH solutions 
based on renewable power. Our study investigates possibilities of the foregoing 

technologies in decarbonisation of a local energy system. 

Similarly to power generation, replacement of fossil-fuelled power plants with variable 
wind and Photovoltaic (PV) solar power production leads to challenges in balancing the 

production fluctuations on different time scales [5, 6]. Storage or other sources of flexibility 

are needed to avoid curtailment during periods of high intermittent generation and ensure 
generation adequacy [7]. For reliable DH generation in urban areas situated in colder 

climates, this challenge could be even more pronounced because of the limited availability 

of solar power [8] and risk of low wind production coinciding the times of peak heating 
demands in wintertime. Our study quantifies this specific problem and estimates the 

possibilities to carbon neutral district energy system in Nordic latitudes. 

P2H technology is needed to convert renewable power into district heat. Large-scale 
Heat Pumps (HP) are already commonly used in DH production in Scandinavia, especially 

Sweden [9]. HPs can start up and be turned off quickly, which makes them a convenient 

source of flexibility [10]. The utilization of large-scale HPs have increased due to relatively 
low electricity prices, requirements for renewable heat production, technology development 

and successful investments [11]. According to analysis of Pieper et al. [12], specific 

investment costs of HPs generally decrease with increase in the capacity. Due to high 
investment costs, P2H plants are not used to cover peak loads [1]. Except for some 

pioneering installations, e.g., ground source HPs in Olot [13] and datacenter waste heat 

recovery by HP system in Mäntsälä [14], the centralized P2H plant have not been used as 
the main source for district heat production, but the available large-scale installations 

supplement the heat source arsenal of the DH systems of cities. Our study shows that the 

idea of utilizing HP as a baseload source of heat can be justified. 
Hydrogen has been long studied as an energy carrier and a storage solution [15].  

Water Electrolysis (WE) systems can convert renewable power and water into renewable 

hydrogen (H2) and oxygen (O2), while conversion losses are mainly waste heat. According 
to Bohn and Lindner [16], utilisation of waste heat can increase total efficiency of 

electrolysis by 15%. Cost and technical characteristics of WE technologies as well as future 

trends are presented in reviews [17-19], all indicating that attractive investment costs and 
performance are within reach before 2030. For a 6 MWel, WE demonstration facility [20] 

show that H2 production costs are strongly dependent on use-case and annual Full Load 

Hours (FLH), anticipating that high FLH are needed for WE and P2G to have a chance to 
reach an economy of interest.  

For urban energy systems with its power and heating sectors, the impact of fossil 

Natural Gas (NG) blended with renewable H2 from WE is studied in Nastasi and  
Lo Basso [21], emphasizing requirements of older building stock to supply of heat at higher 

temperatures that can be generated by CHP and HOB units using such hybrid fuels. Still, the 

maximum H2 content in an operative NG grid is restricted to a few percent by volume by 
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widely varying national limits that depend on the grid operator and connected customer 

devices [22], which imposes strong limitations on direct H2 feed at least into the networks 
connected to national or international gas grid [23]. The case study in Simonis and 

Newborough [24] shows that for such limiting circumstances, direct H2 feed provides only a 

very small decarbonisation potential for the needed local gas consumption.  
In addition, H2 storage especially in liquid form which requires substantially less space is 

expensive and inconvenient and, therefore, other chemicals, e.g., ammonia [25] and 

methanol [26], which serve as H2 carriers have been considered. 
P2G, the conversion of renewable power via H2 and methanation (i.e., hydrogenation) 

of carbon dioxide (CO2) into Synthetic fossil-free methane (SNG), has received attention in 

recent years [5], with recognition of key role of fossil-free CO2 [27] besides the renewable 
H2. Renewable energy integration with energy storage to SNG has been found to have 

significant potential at different regions of Europe. For example, in Northern Germany, 

wind power storage by biogas upgrading process was estimated to enable storing up to 1.5 
TWh of electricity annually as renewable gas [28]. In Berlin-Brandenburg region, the 

methanation technology together with gas storage to complement bioenergy, wind and PV 

production was seen as a pathway to high-level renewable energy contribution [29]. In UK, 
use of NG network different energy carriers was found to significantly contribute to 

network’s CO2 emissions [30]. In addition, the interactions of P2G with the gas, electricity, 

heat and/or CO2 markets have been found to partially transfer capacity and flexibility 
problems from the electricity to the gas sector [31] and as a long-term energy storage to 

reduce Levelized Cost of Energy (LCOE) of the energy system [32]. P2G has the advantage 

of existing infrastructure for methane transport, storage, and utilization, compared to H2 
which requires new challenging infrastructure [33]. Still, P2G suffers from additional 

energy losses compared to WE, which, however, can be recovered as waste heat for, e.g., 

DH purposes. A proper DH-integration could therefore enhance P2G as well as P2H 
efficiency, but to the authors’ knowledge, no such integration study has yet been presented. 

Integration of Renewable Energy Sources (RES) into CHP-based DH systems 

exploiting thermal heat storages has been widely modelled [32, 34-37]. It has been found 
that the optimal operation of thermal heat storages depends on the heat demand and power 

price [34]. Also, heat storages has been considered for biomass-fired CHP system and it has 

been found that optimal configuration is different depending on whether economics or 
energetic aspects are considered more important [35]. In addition, balancing large amounts 

of wind power with heat storages in the energy systems, where CHP provides flexibility to 

power production has been analysed [36]. In DH network fed by CHP or HOB, load 
allocation between the plants has been optimized to enable more accurate operation of the 

network [38]. 

Less attention has been paid on HP utilisation in RES integration to DH. According to 
review made by Bloess et al. [39], the most of the modelling approaches related to HP 

utilisation for renewable energy integration concentrate on cost minimisation. Our study 

focuses more on renewable power integration to maximize decarbonisation and efficient 
gas utilisation. In two of the studies concentrating on flexibility maximisation and dispatch 

simulation, the HP solution involved a set of hundred domestic HPs [40] or space heating 

and domestic hot water HPs [41] instead of a centralized HP solution for DH as in our study. 
Although, large amount of small-scale HPs has been shown to enable integrating significant 

amount of wind energy to heating, resulting in system-wide emission reduction when fossil 

fuel burning heating equipment is replaced with HPs [41], such decentralized solution has 
been found to cause difficulties in harvesting of especially downward load modulation [40].  

Models of centralized HP solutions for renewable electricity integration to DH are rare. 

In Østergaard and Andersen [42], centralized HPs are used in modelling approach, but their 
operation is optimized against spot market, instead of evaluating the potential for energy 

system decarbonisation, as done in our study. In Salpakari et al. [43], P2H conversion was 

used in load shifting for wind and PV in Helsinki. They suggested that 80% of the energy of 
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the needed DH could be covered by a centralized HP solution, up to 90% if supporting 

electric boilers were used, but did not account for the performance decrease of the HP 
during peak heating times that need higher DH supply temperatures. Also, during peak 

heating times, the proposed solution relied strongly on the heating power from conventional 

HOB and CHP assets, that were assumed to use conventional fossil fuels like natural gas. 
The study found also that loss of CHP production from existing plants made P2H 

configurations less profitable, but it was indicated that replacing some of the CHP plants 

with variable renewable energy and P2H should be studied. Our study evaluates the new 
technical solutions for renewable energy integration regardless of the existing system merit 

order, which opens up the discussion of whether the original merit order should be respected 

at all if the goal is full decarbonisation. 
In our study, the energy system on a district level and interactions between power, gas 

and DH grids in European subarctic climate regions are analysed in order to evaluate the 

future medium-scale DH and polygeneration system in terms of capacities, utilization rates 
and emissions. A detailed simulation model of a district from the Finnish town of 

Suonenjoki is used to illustrate the energy system operation at medium-scale DH network 

level and possibilities of conversion assets, namely P2H and P2G. The energy consumption, 
building stock and DH grid part of the model has been earlier presented in Paiho et al. [44] 

in the context of assessing energy-efficient refurbishment of buildings at district scale. This 

validated model integrates building and DH network simulation, and was extended in our 
study for the H2020-project PLANET with a polygeneration model for district level P2H, 

P2G, CHP and HOB units. CO2-circulation and renewable Synthetic Natural Gas (SNG) 

production and storage needs of this novel polygeneration system are analysed. The results 
show, how such a district with a novel polygeneration solution consisting of renewable 

power, heat and fuel gas generation can reach a complete energy system decarbonisation, 

without the utilization of biomass. 

METHODS 

The district energy system and interactions between power, gas and DH grids in 

European subarctic climate regions are analysed using a polygeneration model. The parts 
of the model describing conventional DH and power production, interactions between 

power, gas and heat, potential of renewable energy sources as well as simplified merit 

orders used to operate polygeneration systems are described in the following. 

Polygeneration model 

The energy system of the modelled district is schematically presented in Figure 1.  

It consists of energy demand and DH network model as well as a polygeneration plant 

model connected to external electricity and gas supply networks. In our study, the focus 

is on the polygeneration model and related generation scenarios for decarbonisation. 
 

 
 

Figure 1. Modelled district energy system 
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In districts with small to medium-size DH networks, generation is often concentrated 

to one or two locations only. For our study, and for the use of H2020 project PLANET 

[45], a single-point polygeneration model was created, describing a local polygeneration 

plant with P2H, P2G, CHP and HOB units connected to the local DH and power grids, 

and having at least a feeding line from the gas grid. 

District heat and power demand 

The energy demand feeding the polygeneration model can be covered by power and 

DH measurements directly, if available. Such measurements must have good enough 

granularity, being at least hourly measurements. Besides district’s aggregated active 

power consumption, a minimum measurement set must contain required DH supply 

temperature (TDH,supply) and mass flow (𝑚̇DH) from the plant to the DH network and its 

heat consumers, and the resulting DH return temperature (TDH,return) to the plant.  

Using the heat capacity of water (cp), such measurement set provides for a small to 

medium DH network the momentary DH consumption (Qcons,DH) as follows: 
 

𝑄cons,DH = 𝑐𝑝 × 𝑚̇DH (𝑇DH,supply −  𝑇DH,return) (1) 

 

Alternatively, a detailed enough model of the buildings’ energy consumption 

behaviour, the DH network dynamics and power consumption can be used. In our study, 

a high fidelity thermal-hydraulic model of the districts buildings and DH network, which 

is presented briefly in Paiho et al. [44], was used to calculate the time and weather 

dependent power and heat demands as well as resulting DH supply and return 

temperatures and mass flows at the DH plant. 

Conventional District Heating and power production 

Gas-fired conventional DH production assets are not restricted to only use fossil 

natural gas, but can also be fired with renewable gas, i.e., biomethane from biogas or 

SNG. They could therefore be valuable assets in a decarbonized future, and are included 

in this decarbonisation analysis. 
 

Gas-fired Heat-Only Boilers.  The thermal efficiency of a condensing gas-fired HOB, 

including the dependency of flue gas recovery efficiency on the incoming DH-return 

temperature, was modelled using theoretical curves from Kuck [46] and Che et al. [47] 

for an excess air coefficient α= 1.05 typical for standard boilers. A linear relationship 

was fitted to the non-condensing temperature regime and a 3rd degree polynomial on the 

condensing regime of the flue gas recovery unit (c.f. Figure 2). 
 

 
 

Figure 2. The effect of DH return temperature on boiler efficiency 
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A limit on the size of heat exchanger for flue gas heat recovery was added. Here a 

limitation of 70% of the theoretical maximum potential was used to fit the theoretical curve 

to the field measurement data of a 2.1 MW gas-fired HOB presented in Che et al. [47]. 
 

Gas-fired Combined Heat and Power units.  The thermal efficiency of a CHP was 

modelled in a similar way as for HOB. In addition, for a requested heat output (QCHP), the 

resulting power output (PCHP) was modelled using the P2H ratio (rCHP) [48] of the CHP, 

which for conventional CHP units is assumed constant: 
 

𝑃CHP = 𝑟CHP × 𝑄CHP   (2) 
 

In the scenarios where P2G was present, the plant was equipped with post-combustion 
carbon capture with capture efficiency of 85% [49]. 

Power-to-Heat 

P2H unit considered in our study was a high-performance HP, supplying the heat to 

DH network. 
 

District Heating level Heat Pump.  A HP providing heat at temperature levels higher 

than a certain threshold, e.g., 70 °C to a DH network or an industrial process, can be 

considered a high-performance HP. The Coefficient of Performance (COP, i.e., ratio of 
useful heat output QHP to power input Pcons,HP) of the HP is modelled using the  

following equation: 
 

COPDH =
𝑄HP

𝑃cons.HP
= 𝜂 ×  

𝑇SINK

𝑇SINK − 𝑇SOURCE
 (3) 

 

where TSINK and TSOURCE are the absolute temperatures (K) of heat exchanger on the hot 

side (sink) and cold side (source), respectively.  is a dimensionless degradation factor, 

describing process imperfections compared to ideal Carnot cycle. In Arpagaus et al. [50], 

a market overview of commercially available high-temperature HPs reports COP-values 

which on average correspond to η = 0.6 (range between 0.4 and 0.7, depending on HP 

design) for an operation environment with TSINK of 363.15 K (90 °C) and TSOURCE  
293.15 K (20 °C) or lower. A value of η = 0.7 corresponds to some HP designs using 

environmentally friendly CO2-based refrigerant, this HP was reported to have a capacity 

to reach TSINK of 383.15 K (110 °C). As a conservative estimate for our model, η = 0.6 

was used for a modern high-performance HP [51]. For TSINK, the momentary value of the 

DH supply temperature was used, while TSOURCE depends on the available waste or 

environmental heat source.  

The resulting values of HP COP for selected temperature ranges of HP source and DH 

supply are shown in Figure 3. 
 

 
 

Figure 3. The effect of HP source and DH supply temperatures on COP 



Weiss, R., et al. 
Decarbonised District Heat, Electricity ... 

Year 2021 
Volume 9, Issue 2, 1080340 

 

7 Journal of Sustainable Development of Energy, Water and Environment Systems 

Power-to-Gas 

A P2G unit producing SNG consists of at least a water electrolyser, and a subsequent 

methanation unit. Optionally, if local utilization is possible, such a configuration can also 

produce useful waste heat and oxygen. 
 

Polymer Electrolyte Membrane Water Electrolysis (PEM-WE).  The PEM-WE 

technology has experienced an increased preference in P2G applications [52]. It has a fast 

response, in the order of seconds and is thus able to provide grid management services, 

such as, e.g., load following and peak shaving [53], and was selected as technology for 

our study. Because of fast response time (compared to simulation time step of one hour), 

the PEM-WE unit could be straight-forward modelled to produce H2 from local excess 

power with a simple conversion efficiency of 70% Higher Heating Value (HHV) [24]. 

Part of the energy lost in this conversion can be recovered as waste heat. In our study, a 

recovery factor of 0.5 was assumed for the PEM energy loss. 
 

Methanation.  In a decentralized employment supporting distributed power 

generation, the methanation process unit must also be responsive and suitable for 

load-following operation. Biological methanation has a far better load-following 

capability than chemical (catalytic) methanation, and laboratory tests have shown that 

immediate load changes from 100% to 0% and several weeks long rest periods can be 

achieved [54]. Also, in contrast to chemical methanation, biological methanation is 

tolerant to several gas impurities such as hydrogen sulphide (H2S) and ammonia (NH3), 

and is easier to handle with low operating temperatures (40-70 °C) [55]. Consequently, 

biological methanation was selected for our study. Because of the load-following 

capability, the methanation unit could be modelled using a simple thermodynamic 

conversion efficiency of 78%. The energy lost in this conversion can efficiently be 

recovered as waste heat. In our study, a recovery factor of 0.9 was assumed for the 

methanation energy loss. 

Solar and wind power 

Generation of local renewable energy using rooftop PV panels and a wind turbine, was 

considered as alternative electricity sources for the polygeneration model of the district. 

 

Local on-shore wind power.  For the location of the district, local wind power potential 

can be calculated using the Virtual Wind Farm model [56], which is part of 

renewables.ninja project [57]. 

Merit orders and power grid limitations 

Heat and electricity generation installations are usually operated in a certain order 

determined by operation costs. Selected orders assumed in our study are described below. 
 

Conventional merit order for District Heating production.  In small and medium-size 

DH networks, the conventional merit order is to operate the CHP as baseload unit and use 

the HOB as peak unit [58]. If cheap or free waste heat is available, such as P2G waste 

heat, this heat is usually utilized first, before using the CHP. In our study, if a HP is 

available within imposed power grid import limitations, it is used as intermediate unit on 

top of the CHP before the HOB is started. This kind of a conventional straightforward 

merit order, which results from the normally low net heat production cost [59] and high 

investment cost of the CHP, is referred to as ‘CHP first’ merit order in our study. 
 

Power-to-Heat merit order for District Heating production.  In contrary to the ‘CHP 

first’ merit order, the HP is used as a baseload unit within imposed power grid import 
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limitations, CHP as intermediate unit, and HOB as peak unit. If P2G waste heat is 

available, this heat is utilized first, before using the HP. This novel kind of a merit order is 

referred to as ‘HP first’ merit order in our study. 
 

Power production merit order and grid limitations.  The merit order of the DH 

production determines the power production of CHP plant. Together with the local solar 

PV and wind power production, the power produced by CHP can locally be utilized to 

cover baseload and P2H consumption, whenever possible. In case of remaining excess 

local renewable power exceeding a selected threshold, the P2G unit is started in the 

polygeneration model. In case of remaining excess power despite P2G operation at full 

capacity, this power was exported within the grid limits for reverse power flow, and 

remaining power exceeding the reverse flow limits was curtailed. 

Targets 

The objectives set for the district may be split into two categories: decarbonisation 

and self-sufficiency, and security of supply and avoided grid expansion. 
 

Decarbonisation and self-sufficiency.  For the district, the primary targets are to meet 

the DH and power demand and to decarbonise this demand as completely as possible. 

Our study assumes that there is no net CO2-import via the (national) power grid on annual 

base, if the district exports on annual base more renewable power to the power grid than it 

imports, regardless of the CO2-emission levels of the power grid. Therefore, to support 

the decarbonisation target, one primary target for the district is also to reach, in terms of 

electrical energy, zero import or net export to the power grid. To achieve this, local 

renewable power generation (wind) power capacity is increased until zero import or net 

export of power is reached. For scenarios with a P2G unit, the self-sufficiency target can 

be to attain a level of SNG fuel production that entirely covers the local fuel needs for the 

operation of CHP and HOB. 
 

Security of supply and avoided grid expansion.  During extended periods with very low 

outdoor temperatures, there will be a peak period in DH energy consumption. At the 

same time, there may be a considerable risk for non-existent solar and wind power 

production. The local DH and power production must meet such challenging peak 

heating periods without exceeding import limits of the power grid. 

CASE DISTRICT WITH MEDIUM-SIZE DISTRICT HEATING NETWORK 

To illustrate the operation of a mid-scale DH network level and its future P2H and 

P2G options in cold climate conditions, the central district from the small town of 

Suonenjoki, located in the middle of Finland (62° 37' 30'' N, 27° 07' 20'' E), was selected 

for detailed study. 

Description of the case district 

Figure 4 presents the buildings and local DH network in the centre of Suonenjoki. 

The approximately 100 buildings in the area had a total floor area of ca. 116,000 m2. 

Buildings represent several types: mainly residential but also school, hospital, office and 

other public and industrial buildings. Major part of the building stock was built between 

1960 and 1980. Most of the buildings are connected to the DH network but there are also 

other types of heating systems, such as direct electrical heating. 

The total annual energy use in buildings amounts to approximately 16.7 GWh of 

district heat and 9.1 GWh of electricity. The climate conditions are characterized with 

average outdoor temperature 4.2 °C with summer high of 27.4 °C and winter low  

−31.8 °C. The potential of solar PV production is ca. 810 kWh/kWp. 
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Figure 4. Schematic diagram of Suonenjoki DH network and building stock 

District’s power and heat consumption 

DH and power consumptions are dependent on both heating needs and user-patterns. 

To estimate these consumptions, a validated physical simulation model of the example 

district was used [44]. This detailed model includes residential power and domestic hot 

water consumption patterns, electric heating, building rooftop-PV, thermal mass and heat 

demands of buildings, temperature levels at buildings’ heating substations, as well as 

pressures, mass flows, supply and return temperatures in pipes of the DH network. 

One-year simulation runs with the weather conditions of 2016 were performed in 

order to obtain simulation data with hourly resolution, from which resulting DH and 

power consumptions (displayed in Figure 5) as well as DH supply and resulting return 

temperatures of the DH grid (Figure 6), which were used in our study. 
 

 
 

Figure 5. Simulated DH and power consumption in Suonenjoki district 
 

 
 

Figure 6. DH supply and return temperatures in Suonenjoki district 
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Security of supply.  From Figure 5 and Figure 7, it can be seen that there is a peak 

period in DH energy consumption in the beginning of the year (approximately 1.5 week 
long period with very low outdoor temperature), while at the same time almost no wind 

nor solar power is produced. The DH and power production must meet this challenging 

peak heating period so that the import limits of the power grid are not exceeded. 

District’s polygeneration scenarios 

A baseline scenario ‘Baseline’ describing the starting point scenario with current 

conventional CHP and HOB assets was created, solely based on gas-fired DH-production. 

CHP production capacity was set to 2,500 kW DH/1,000 kW power, (at a P2H ratio set to 

be rCHP = 0.4, typical for systems with high heat demand) [48], to reach a typical high 

utilization over 5,000 FLH, while a HOB capacity of 4,660 kW was needed to completely 

cover the remaining peak demand. Power grid limits for import and reverse flow to and 
from the district were selected to be 3,000 kW, i.e., 50% higher than the estimated  

2,000 kW power consumption peak for the district with conventional polygeneration 

system (c.f. Figure 5). 

The first evolution scenario ‘noP2H-CHP first’ for decarbonizing the power use 

describes the introduction of local solar and wind power to reach a 100% self-sufficiency 

in power on yearly basis, without any P2H or P2G assets on the DH production side. 

In the subsequent scenarios, the P2H and P2H + P2G related scenarios, a lake 

water-source HP was added with the same DH capacity as the CHP. The ‘P2H only’ 
scenarios have only the HP added, while the ‘P2H + P2G’ scenarios have a P2G unit with 

a capacity set to a level that delivers the needed SNG for the CHP and HOB operation.  

In case of remaining excess local renewable power exceeding a selected threshold of  

200 kW, the P2G unit was started. The objectives of the scenarios are summarized in 

Table 1 below. 
 

Table 1. Objectives of the scenarios 

 
Scenario Description 

 Self-sufficient in renewable electricity Self-sufficient in renewable gas DH de-carbonisation HP runs before CHP 

Baseline No No No No HP 

noP2H-CHP first 100% No No No HP 

P2H only-CHP first 100% No Partial (11%) No 

P2H only-HP first 100% No Partial (84%) Yes 

P2H + P2G-CHP first 100% 100% 100% No 

P2H + P2G-HP first 100% 100% 100% Yes 

 

For the HP added in the scenarios, our study assumes lake water as heat source. For a 
large Finnish lake, we approximate TSOURCE using a yearly sine wave characterized with a 

minimum of 2 °C (lake bottom temperature in wintertime) and a maximum of 12 °C 

(summertime, higher water layers). This approximation corresponds to the measured lake 

water temperatures of the Finnish large lake Kallavesi (located at 62° 45' N, 27° 47' E, 

and having a maximum depth of 75 m) at 40 m depth during wintertime and 15 m during 

summertime [60]. 

In the scenarios, the local wind power of the district was calculated with the Virtual 

Wind Farm model [56]. For this calculation, the library model of the ‘Vestas V90’ 
turbine with a rated capacity of 2,000 kW was selected, and a hub height of 80 m was 

assumed. The resulting hourly time series was multiplied to the needed total wind power 

capacity of each scenario.  

Local solar PV power was calculated using the physical simulation model [44] of the 

example district. In the example district, rooftop-PV was assumed to be installed on all 

roofs of public buildings (hospital, school, ice arena, swimming hall, etc.) having 

relatively good solar potential. Technically possible panel area was assumed to be 50% of 

this roof area. For panel azimuths and tilt angles, the available data on roof slopes were 
used with the exception of flat roofs, for which the assumptions made were south 
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orientation and a slope angle of 40°, which gives optimal solar electricity production in 

[61]. No open-field installations were assumed. The resulting local solar PV production 

was calculated using hourly local irradiation measurements for 2016 and the 
building-integrated PV sub-models [62] of the physical simulation model [44] of the 

example district. 

As example, the resulting curves of solar and wind power generation (kW) within the 

district are shown in Figure 7 for the full decarbonisation scenario ‘P2H + P2G-HP first’. 
 

 
 

Figure 7. Estimated wind and solar power generation within the example district,  

scenario ‘P2H + P2G-HP first’ 

RESULTS AND DISCUSSION 

The calculation results for the scenarios described above and using the data of the 

year 2016 on weather and estimated renewable generation for the location of the example 

district are summarised in Table 2. Detailed duration curves for the district heat 

production are also displayed in Appendix 1. 

 
Table 2. Results for calculation year 2016 

 
 SI-unit Baseline noP2H P2H only P2H + P2G 

Merit order (= baseload unit)  CHP CHP CHP HP CHP HP 

HOB capacity (DH) [kW] 4,660 4,660 2,160 2,160 2,160 2,160 
CHP capacity (DH) [kW] 2,500 2,500 2,500 2,500 2,500 2,500 

HP capacity (DH) [kW] - - 2,500 2,500 2,500 2,500 

P2G capacity (power input) [kW] - - - - 7,000 1,250 
PV capacity (nom.) [kW] - 1,270 1,270 1,270 1,270 1,270 

Wind power capacity (nom.) [kW] - 1,200 1,500 5,200 16,500 8,000 

HOB FLH [hours] 545 545 85 85 65 80 

CHP FLH [hours] 5,560 5,560 5,560 940 3,550 790 

HP FLH [hours] - - 940 5,560 540 5,005 
P2G FLH [hours] - - - - 3,780 4,960 

PV FLH [hours] - 860 860 860 860 860 

Wind FLH [hours] - 2,116 2,116 2,116 2,116 2,116 

CHP power production [MWh] 5,560 5,560 5,560 940 3,550 790 
PV power production [MWh] - 1,090 1,090 1,090 1,090 1,090 

Wind power production [MWh] - 2,540 3,170 11,000 34,910 16,930 

Power consumption* [MWh] 9,100 9,100 9,640 12,840 35,970 18,690 

Power net export [MWh] −3,540 90 180 190 3,580 120 
Wind power curtailment [MWh] - 0 0 10 120 60 

NG or SNG consumption [MWh] 23,060 23,060 20,590 3,640 13,140 3,080 

SNG production [MWh] - - - - 13,130 3,080 

Flue-gas CO2 emissions [ton] 4,570 4,570 4,080 720 2,600 610 

CO2 captured for P2G [ton] - - - - −2,210 −520 
CO2 deficit for P2G (import) [ton] - - - - −390 −90 

District‘s local CO2 emissions [ton] 4,570 4,570 4,080 720 0 0 

CO2 emissions from grid power** [ton] 1,050 −30 −15 −56 −1,060 −35 

Local CO2 emission reduction [%] - 0 11 84 100 100 
Total CO2 emission reduction** [%] - 19 28 88 119 101 

* Including P2H and P2G
 

** Assuming emission factor of 296 g CO2/kWh for EU average electrical grid in 2016 [63]
 

Polygeneration and decarbonization results 

The results obtained in the scenarios are briefly described below, and the impact on 

security of heat supply and needs for power grid expansion are discussed in the end of 

this section. 
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The scenario for decarbonizing only the power use.  The scenario ‘noP2H-CHP first’ 

could reach with a modest 1,200 kW wind power installation a full decarbonisation of the 

district’s power consumption, but not the DH consumption. The district’s direct net 

CO2-emissions would be 4,570 ton CO2/year because of CHP and HOB operation for DH 

production. To reach a full decarbonisation, the needed fuel amount of 23,060 MWh 

must be bought as SNG or biomethane from outside the district. 

 

The scenario with Heat Pump and prioritised Combined Heat and Power.   

The scenario ‘P2H only-CHP first’ could reach with a modest 1,500 kW wind power 

installation a full decarbonisation of the district’s power consumption including the 

power needed by the HP, but only marginally decarbonised the DH consumption.  

The district’s direct net CO2-emissions would remain at the level of 4,080 ton CO2/year, 

i.e., only a 20% reduction compared to the baseline, because of prioritized CHP operation 

for DH production. To reach a full decarbonisation, the needed external 20,590 MWh of 

renewable gas fuel must be bought as SNG or biomethane from outside the district. 

 

The scenario with prioritized Heat Pump and Combined Heat and Power.   

The scenario ‘P2H only-HP first’ needed a 5,200 kW wind power installation to reach a 

full decarbonisation of the district’s power consumption including the power needed by 

the HP, and decarbonized the DH consumption by 84%. The districts direct net 

CO2-emissions would drop to 720 ton CO2/year, because of prioritized HP operation for 

DH production, and to reach a full decarbonisation the needed external fuel amount 

dropped to 3,640 MWh of renewable gas. 

 

The scenario with Heat Pump, Power-to-Gas and prioritised Combined Heat and 

Power.  The scenario ‘P2H + P2G-CHP first’ needed a large 16,500 kW wind power 

installation, combined with a large 7,000 kW (in terms of electrolyser power input) P2G 

installation, to reach a full decarbonisation of the both district’s power and DH 

consumption including the power needed by the HP and P2G unit. Approximately  

2,600 ton CO2/year would be used by the P2G unit, corresponding to all CO2 of the 

polygeneration system’s flue gas, i.e., enabling a full CO2-reuse. However, because 

post-combustion carbon capture is estimated to have a capture efficiency of 85%, 390 ton 

flue gas CO2/year would be lost into the air and must be obtained from other CO2-sources, 

e.g., Direct Air Capture (DAC) or imported from outside the district. 

 

The scenario with prioritized Heat Pump, Power-to-Gas and Combined Heat and 

Power.  The scenario ‘P2H + P2G-HP first’ needed only an 8,000 kW wind power 

capacity, i.e., less than half compared to previous ‘P2H + P2H-CHP first’ scenario due to 

the prioritized HP operation. The full decarbonisation of the district’s power and DH 

production is still reached with P2H and P2G. The needed P2G capacity would, anyhow, 

be dramatically reduced to 1,250 kW, which is only one fifth of the previous scenario, 

due to increased HP heat production. The reduction in P2G capacity reduces needed 

investment considerably. Approximately 610 tons of CO2/year would be used by the P2G 

unit, and a full CO2-reuse would be enabled. Only 90 tons of flue gas CO2/year would be 

lost into the air and must be obtained from other CO2-sources. The resulting DH and 

electricity production, electricity consumption and exchange with external electrical 

network for this scenario are presented on Figure 8. 

Figure 8a-b depicts the utilization of different generation types in DH and power 

production. Baseload-type utilisation of HP can be clearly seen, while the P2G plant 

continuously operates throughout the year with high utilisation but in an intermittent 

mode with many start-ups and shut-downs, capturing the wind power intermittency.  

CHP plant is utilised only during rather rare periods of peak heat consumption, with less 



Weiss, R., et al. 
Decarbonised District Heat, Electricity ... 

Year 2021 
Volume 9, Issue 2, 1080340 

 

13 Journal of Sustainable Development of Energy, Water and Environment Systems 

than 10 start-ups of the CHP during the year. HOB is only activated during the  

coldest weeks. 
 

 

(a) 

 

(b) 

 

(c) 

 

(d) 
 

Figure 8. DH production (a); power consumption (b); power production (c) and net grid exchange 

for the ‘P2H + P2G-HP first’ scenario, enabling 100% decarbonisation (d) 
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Security of supply and avoided grid expansion.  For all scenarios, the needed DH 

could be supplied to the customers, even during the coldest winter week without wind 

and solar power production, as shown for the ‘P2H + P2G, HP first’ scenario in Figure 8. 

At the same time, the estimated current power grid limitations could be met for both 

power export and import. This target was met despite the quite large wind power 

installations in the scenarios with P2G units, where 2.7-5.5 times larger wind power 

installation compared to the grid reverse power limit could be handled or absorbed within 

the district itself. 

Sensitivity analysis of complete decarbonisation scenario 

In complete decarbonisation scenario, the CHP plant is not likely to achieve high 

capacity utilisation (FLH). Unless the plant is not required for such purposes as provision 

of grid services or emergency power supply, it might turn out beneficial not to have a 

CHP plant in the system at all. In this case, the HOB would fulfil the remaining heat 

requirement not covered by waste heat from P2G and P2H units. 

 

Decarbonisation with Power-to-Heat and Power-to-Gas.  The results of a sensitivity 

analysis in the scenario ‘P2H + P2G-HP first’ are shown in Figure 9. In case of 

decarbonisation of the modelled district when heat is generated by HOBs only (without 

CHP), and the system is decarbonised using P2H, then a large 6.5 MW P2G and 15 MW 

wind power capacity would be required. This requirement decreases substantially with 

first 1,500 kW of HP installation, as displayed in Figure 9, showing a clearly decreasing 

trend in needed capacity for both P2G and wind power installations, until flattening after 

P2H installations reach 3 MW. 

 

  
 

Figure 9. HP vs. needed P2G and wind power capacities to reach complete decarbonisation of 
heating (left) and corresponding FLH of heat production units (right) 

 

Compared to the original scenario ‘P2H + P2G-HP first’, keeping the HP at 2,500 kW 

but leaving the CHP out would have decreased the needed WP installation by 300 kW to 

8,200 kW and P2G installation by 320 kWe to 880 kWe nominal sizes, which is shown in 

Figure 9. For very large HP installations, over 3,500 kW, this difference would more or 

less disappear. However, at smaller HP installations, this dimensioning difference, i.e., 

saving, would have been much larger, over 2,000 kW of the needed P2G and 1,500 kW of 

the needed wind power capacity if capacity of P2H in the system would only be 500 kW. 

This clear saving would however come with the loss of capacity for emergency reserves 

or grid services the CHP could provide for the decarbonised system. 
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Decarbonisation with Power-to-Heat and excessive wind power production.   

A complete decarbonisation, i.e., 100% or more reduction in the total CO2 emissions of 

the district energy system can also be reached with only P2H and excess wind power, 
without using P2G. The scenario ‘P2H-HP first’ was further analysed for this case, for 

various nominal sizes of the local wind power installation. The local wind power was 

utilised to cover local electricity consumption as well as consumption of the 2,500 kW 

P2H installation, and excess wind power was fed to external electrical grid within the 

limits of identified existing grid interface. The fed wind power replaces average grid 

power production, and corresponding national grid CO2 reduction was accounted for. 

The results of this sensitivity analysis in the ‘P2H-HP first’ scenario, including the 

sensitivity to the CO2-emission factors, are shown in Figure 10. 
In this case, the district energy system could efficiently reach a complete 

decarbonisation if the national grid had considerable CO2 emissions that could be 

reduced. For EU-average power grid emissions (296 g CO2/kWh in 2016 [63]), a full 

decarbonisation could be reached if the local wind power installation capacity was 

increased from 5,700 kW to 7,000 kW, reaching 20% over-production annually. For the 

Finnish power grid, with lower average emission factor (113 g CO2/kWh in 2016 [63]), 

the increase in local wind power installation capacity has to be greater, up to 9,000 kW, 

reaching 50% annual over-production. 
However, for a practically carbon-free power grid like in Sweden (13 g CO2/kWh in 

2016 [63]), this indirect way of decarbonisation could not be utilized, since practically no 

additional carbon reduction would be achievable. Consequently, in such clean power 

system, a complete decarbonisation of the heating sector cannot be reached by simply 

feeding wind power into the clean power grid, and decarbonisation measures must 

instead be taken on the heating itself, e.g., by increasing capacity of HPs and utilization of 

green fuels. 

In addition, the use of larger wind power installations resulted in strongly increasing 
curtailment losses, where 15% of added wind power was lost at a 9,000 kW wind power 

installation, and 60% of added wind power was lost at a 15,000 kW wind power 

installation. These significant curtailment losses could be avoided using the  

P2G installations. 
 

  
 

Figure 10. Impact of wind power generation capacity on district’s self-sufficiency level (left) and 
total CO2 emission reduction of the corresponding district energy system (including heat and 

electricity) using P2H 

Comparison to earlier studies 

The earlier study of Kötter et al. [32] found that regional electricity and heat demand 

could be covered by 100% RES also in the Rhineland Palatine region with help of P2G 

and P2H, even if their study did not explicitly investigate DH. In their cost-optimized 
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wind-scenario, 56% of produced energy was covered with wind power and 19% with PV, 

the rest being hydropower and gas-fired CHP. In our study, no hydropower was assumed 

to be available. In our ‘P2H-only’ scenarios, with P2H as baseload, 84% of local CO2 

emission reduction was obtained using PV and wind power generation. Adding P2G 

storage further decreases the emissions to negative total emissions. In our study, the PV 

panels were installed on roofs of public buildings, which limited the share of PV output in 

total generation (6% ‘P2G HP-first’ scenario) and the share of wind power was larger.  

It is likely that availability of roof surface for PV installation limited the output of PV. 

In our study, by meriting heat pump production, CHP production can be significantly 

decreased. Similar need for decreasing CHP production to was also observed by 

Salpakari et al. [43], who proposed that replacing CHP with P2H should be studied.  

In one of their renewable energy scenarios, significant loss of CHP production was found 

when used together with P2H, which made the configuration unprofitable. The full load 

hours used in the study of Salpakari et al. [43] were in line with the results of our study 

for the scenarios with prioritized heat pump and CHP, but not utilising P2G. Salpakari  

et al. [43] did not reach 100% decarbonization in their study, most likely because P2G 

was not investigated by them. 

CONCLUSIONS 

DH production in Europe is still largely covered by fossil fuels most often by natural 

gas. In Northern Europe, biomass accounts for most of the baseload heating. This study 

shows that a complete decarbonisation of the example district’s power and heating 

energy can be reached even without the availability of biomass, if sufficient P2H and 

P2G capacity is integrated to the DH grid, and sufficiently more wind- and solar power is 

installed or contracted to replace all the fossil fuels. To reach this target, the P2H and P2G 

capacity, together with the legacy gas-fired CHP and HOB, must be coordinated and 

flexibly operated, which ensures that both the extensive wind- and solar power is used 

and both heating and power needs as well as hard power grid limitations are met.  

It was shown that the merit order of the polygeneration, normally meriting CHP as 

baseload, should be changed towards P2H and P2G as baseload and CHP as intermittent 

or peak unit to avoid expensive over-investments to wind and P2G capacity. By meriting 

HP production, CHP production can be significantly decreased, which decreases the need 

for CO2 reduction and SNG in the system. This leads to both reduced P2G capacity and 

reduced electricity need for P2G, which again decreases the need for wind power.  

Ultimately, the need for P2G capacity and wind power could be further reduced, if the 

polygeneration system is operated completely without a CHP unit, relying only on the 

P2H, P2G and HOB heating capacities. However, leaving out the CHP unit might not 

always be possible, as it would reduce the amounts of emergency reserves and grid 

services available to the power system below a certain security level. 
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NOMENCLATURE 

cp heat capacity [J/kgK] 

𝑚̇ mass flow [kg/s] 

P electric power [W] 

Q heat power [W] 
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r power-to-heat ratio - 

T absolute temperature [K] 

Greek letters 

 excess air coefficient  

 dimensionless degradation factor  

Subscripts and superscripts 

CHP combined heat and power 

cons consumption 

DH district heat 

e electrical (capacity) 

HP heat pump 

return return 

sink sink 

source source 

supply supply 

Abbreviations 

CHP Combined Heat and Power 

COP Coefficient of Performance 

DH District Heating 

FLH Full Load Hours 

HHV Higher Heating Value 

HOB Heat Only Boiler 

HP Heat Pump 

HX Heat Exchanger 

LCOE Levelized Cost of Energy 

LHV Lower Heating Value 

NG Natural Gas 

P2G Power-to-Gas 

P2H Power-to-Heat 

PEM Polymer Electrolyte Membrane 

RES Renewable Energy Sources 

PV Photovoltaic 

SNG Synthetic Natural Gas 

WE Water Electrolyser 
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