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ABSTRACT 
Conventional energy generating strategies, such as reactive and scheduled maintenance, often 
lead to increased downtime, energy waste, and inefficiencies. This study integrates edge 
analytics with machine learning-based predictive maintenance to boost the reliability and 
sustainability of off-grid energy generating systems. Using Long Short-Term Memory and 
regression models, the approach enables early anomaly detection and fault prediction, reducing 
unplanned outages and maintenance costs. A comparative analysis between standard edge 
analysis and integrated edge-predictive methods shows that the integrated system achieves an 
accuracy of 91.6%, compared to the edge analytics model with an accuracy of 86.2% effectively 
stabilizing short-term fluctuations, generating fewer and more stable alerts, with a coefficient of 
determination R² of 0.98. Results highlight that combining predictive models with edge analytics 
enhances reliability, supports timely interventions, and strengthens system robustness in off-
grid energy generating applications. 
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INTRODUCTION 
Decentralized renewable energy generation systems are a viable method for extending 

access to electricity in remote and energy impoverished regions, improving quality of life and 
social outcomes [1] . Such systems are especially important in areas where expanding the 
traditional electrical grid is not feasible economically or technically [2]. However, their 
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successful deployment and reliability are still a challenge due to the lack of monitoring, 
anomaly detection, and maintenance capabilities [3].  

 
Conventional cloud-based sensor networks utilizing Internet of Things (IoT) sensors to 

monitor renewable energy generation and equipment status in real-time are extensively used 
[4]. However, these systems face significant challenges, including processing latencies, limited 
capacities for real-time analytics, and a reliance on consistent internet connectivity [5]. Due to 
these limitations, the time between when an anomaly occurs and when it is found is increased, 
extending the time spent recovering from an anomaly and operational expenditures, creating 
demand for more innovative and adaptive approaches to monitoring [6]. To mitigate these, 
there is a growing shift towards edge artificial intelligence, where data processing occurs 
locally at the edge device or a local edge server, allowing real-time data processing and decision 
making, especially in environments where latency and bandwidth are critical concerns [7].  

Edge computing has demonstrated potential in a variety of applications, such as renewable 
energy and environmental monitoring [8]. Yet, despite advances in edge analytics for 
monitoring renewable generating energy generation technologies, the detection of energy 
anomalies and maintenance of these systems continue to depend on proactive and scheduled 
maintenance interventions. 

This study addresses these challenges by combining edge intelligence with predictive 
maintenance to enhance operational efficiency and enable real-time anomaly detection in off-
grid energy harvesting systems. Edge analytics facilitates the detection of unusual trends in 
energy generation, which could indicate performance issues or anomalies, especially in 
resource constrained edge computing environments [9]. Additionally, it provides forecasts of 
energy production through automated systems that continuously adapt to evolving data patterns, 
reducing the impracticality of human intervention for timely alerts on maintenance needs and 
anomalies, and delivering relevant information to operators and technicians [10]. The 
integrated use of edge analytics and predictive maintenance enhances decision-making, 
supports proactive maintenance, and reduces system downtime, particularly in isolated areas, 
by leveraging both historical energy trends and equipment performance metrics [11]. 

The current literature reflects significant of edge analytics is expanding the potential of 
energy generation devices for off-grid energy systems. Studies have proposed new edge device 
designed to improve solar energy management systems, enabling real-time analytics and 
decision-making directly at the edge through edge computing. These edge devices provide 
accurate forecasts of energy generation, facilitating optimal energy utilization and planning. 
The system architecture also includes abnormality detection for early detection of deviations 
from normal operation in order to reduce down time and perform maintenance in a timely 
manner [12]. It is recommended that future studies use multiple solar development sites to 
provide significant amounts of data for more analysis and evaluation. These will be evaluated 
for scalability, versatility and performance in various solar applications. 

A cloud and edge computing framework has also been proposed to improve the anomaly 
detection capabilities of PV generation units. The aim is to reduce the high costs associated 
with continuous cloud monitoring and to minimize bandwidth consumption. By processing 
data locally at the edge, this approach significantly decreases latency, resulting in better real-
time performance in off-grid environments. Multiple machine learning models have been 
compared to identify the most accurate and low-latency methods for fault detection [13] Future 
enhancements could include developing predictive models that utilize both historical and real-
time data to identify early warning signals of anomalies, enabling timely repairs and preventing 
costly system downtime. 

 Furthermore, a low-cost, real-time monitoring and anomaly detection system has been 
proposed and evaluated for remote solar farms based on edge analytics and deep learning. 
Applied to actual data collected under soiling conditions, the system demonstrated very low 
resource requirements in terms of processing power and energy consumption, making it 
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particularly suitable for large-scale, decentralized off-grid deployments [14]. Future work 
should involve assessing the system’s effectiveness across a wider range of anomaly types, 
enhancing algorithms to detect various faults, and integrating predictive maintenance features. 

Another approach involves implementing edge intelligence on wireless sensor nodes to 
estimate and predict the output voltage of solar panels. The methodology applies the Python 
Scikit-learn package to test the performance of different regressors on the solar data collected. 
The random forest regressor tends to perform better than the decision tree regressor in 
estimating voltage. The approach relied on only one sensor, the BH1750 light intensity sensor, 
to predict the voltage of the solar panel, opening the possibility of running these models at the 
edge directly on devices [15].  Future study should focus on combining other sensor inputs, 
such as output voltage or temperature data at the time of prediction. Also, other machine 
learning frameworks (ML) and embedded ML models can be explored to find the optimal 
choices for sensor nodes with limited resources and help improve edge intelligence in energy 
harvesting systems even further. 

Prediction of renewable energy generation is critical for operational and management 
decisions for off-grid energy harvesting systems. The application of Long Short-Term Memory 
(LSTM) models for solar energy prediction leveraging time-series data. As a key evaluation 
metric for prediction accuracy, the LSTM models achieved significantly lower RMSE values 
than other stand-alone models, especially when predicting solar irradiance and PV power 
generation [16]. Subsequent studies may involve a fusion between LSTM and edge analytics 
as a means to continue enhancing predictive capabilities for renewable energy harvesting 
predictions. This would also allow for processing and analytics of the data in real time at the 
source, allowing for lower latency and improved responsiveness. 

In addition to forecasting, machine learning (ML) and deep learning models have been 
employed to predict solar panel maintenance needs. These models include LSTM, Decision 
Trees, Random Forests, Bagging, Gradient Boosting, Voting Regressor, and Stacking, offering 
a comprehensive comparison of their performances. Through analysis and experimentation, it 
was found that LSTM architectures work best for time series prediction in this context due to 
their superior predictive performance as compared to the other models tested [17]. 
Incorporating edge analytics can take PV generation unit a step further, allowing them to 
become even more autonomous and resilient, leading to an intelligent maintenance paradigm 
enabled by localized intelligence that can assist in performance improvements and cost savings. 

Furthermore, machine learning methods are increasingly being applied to identify faults 
within renewable microgrids, which often include solar and wind energy sources. These 
systems face challenges due to the inherent uncertainty, irregularity, and weakness of their 
signals, complicating fault detection and classification. Supervised ML models tend to be more 
accurate but can suffer from fault misclassification, while unsupervised models are more 
adaptable but less precise [18]. To enhance fault detection, future studies should focus on 
producing more refined ML algorithms, boosting the performance of models, and enhancing 
their flexibility towards adapting to various kinds of anomalies. Also, the use of data edge 
analytics and monitoring in real-time systems would enhance even further the capacity to detect 
anomalies. 

Real-time processing of data at the edge is an important part of the effective administration 
of energy generating solutions through its capability of on-time diagnosis of anomalies, leading 
to preventive maintenance. Data can thus be processed at the source in real time, minimising 
latency and increasing efficiency of operations [19]. This is particularly important for remote 
energy systems and in a resource-constrained context, where machine learning models can be 
useful for automated identification and classification of anomalies. These types of models are 
low on resource overhead and highly accurate and efficient, including some of the deep 
learning models [20]. In addition, the combination of forecasts of energy generating and 
predictive maintenance also has a strong impact on decisions that will be made and therefore 
on the overall performance of the system. These help to increase efficiency in energy 
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conversion and decrease downtime of the system by relying on machine learning and IoT 
technologies, and thus make energy production more reliable. Examining historical as well as 
real-time data, predictive maintenance algorithms can detect potential failures in advance of 
their occurrence, thereby proactively reducing unplanned downtime and maintenance costs 
[21].Integrating smart energy management systems allows for a more stable and sustainable 
system, decreasing operational costs as well as downtime and making the generating of 
renewable energy more resilient and efficient [22]. 

From the literature review, several research trends are identified in which edge analytics 
and predictive maintenance are used separately to improve the operations and sustainability of 
energy generating systems. However, few studies have implemented both approaches at the 
same time despite their advantages. This study explores the combined use of edge analytics 
and predictive maintenance to improve off-grid energy generating systems with respect to 
reliability and sustainability in remote areas. These results are promising and show that this 
hybrid approach can be an important step forward in future studies and applications. 

The proposed method involves developing an integrated framework that combines edge 
analytics with advanced predictive modelling, utilizing classification and regression Long 
Short-Term Memory (LSTM) models. The framework allows for the onsite identification of 
anomalies and predictive maintenance of systems that harvest renewable energy. The goal of 
this approach is to use data-driven insights at the edge to increase operational efficiency, 
minimized downtime in systems, and cut maintenance costs particularly in off-grid, remote 
operating environments. This hybrid model overcomes limitations in the energy system 
management, leading to a more sustainable and reliable system. This approach ultimately leads 
to an efficient and clean energy transition in off-grid regions. 

Unlike existing works that are dependent on cloud-based analysis and more reactive 
approached, this research presents a stronger move towards a decentralised informed decision 
making by inculcating edge analytics onto renewable systems. This approach of allows for real-
time understanding of data collected without the constraints of constant communication 
between systems and cloud applications, and in furtherance, the constraints attached to such a 
communication. Furthermore, combining the use of both classification and regression models 
presents further enhancements in detection of anomalies and improved accuracy of forecasting 
made.  

  
MATERIALS AND METHODS 

The study proposes an integrated edge analytics and predictive maintenance framework 
tailored for off-grid energy generating systems in resource-limited environments. The system 
ensures real-time data processing, enhances operational efficiency and reliability while 
maintaining high prediction maintenance accuracy. The energy generating system architecture 
is shown in Figure 1. Central to this architecture are solar panels that harvest renewable energy, 
regulated by a charge controller to ensure safe and effective energy transfer to both the energy 
storage system and the load. This harvested energy is stored in batteries, providing a reliable 
power source for continuous operation. A network of sensors continuously monitors energy 
input and environmental conditions, such as temperature and solar irradiance.  
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Figure 1. Energy Generating System Architecture 

At the edge device, several variables were recognized to enhance the efficiency and 
sustainability of energy generating systems in off-grid scenarios. These variables included 
those related to the energy generating system, the collected solar energy and the hour of day. 
Other variables included were system response, such as faults, shading, and failure detection. 
Lastly, environmental variables include solar intensity and temperature. Data was captured by 
the sensor network and aggregated by the edge controller for real-time monitoring and 
predictive analytics.  

The initial phase of data collection involved recording solar metrics, such as current and 
voltage, through sensors attached to the solar photovoltaic system, recordings of solar intensity 
through the BH1750 solar intensity sensor and temperature data with a thermocouple. All 
entries were then time-stamped, allowing for chronological analysis. Data were initially stored 
locally on an SD card, ensuring data integrity in case of a communication failure with their 
central servers. 

The data underwent several essential pre-processing procedures. Initially, solar power 
generation and weather variables were subjected to a normalization technique to enhance 
model training efficiency and facilitate network convergence. Labels identifying the nature and 
date of anomalies were utilized for supervised learning in predictive models. Additional 
features, including smoothed energies, normalized irradiances, scaled hour-of-day, short-term 
averages, and energy change rates, were generated through feature engineering to enhance the 
dataset. The metrics chosen illustrate the trends and variations in energy production that 
provide significant and reliable predictive analysis. 

 

Anomaly detection in edge analytics 
The study assessed an edge analytics method for real-time anomaly detection in off-grid 

solar energy generating systems. The Long Short-Term Memory (LSTM) deep learning model 
was selected for its effectiveness in capturing complex temporal relationships in time series 
energy generating data [18]. 

The architecture consisted of multiple layers, each designed to extract and process critical 
features 
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1. Input Layer: The model was provided with pre-processed multivariate time series 
data, encompassing features such as solar intensity, temperature, energy output, and 
hour of the day. 

2. LSTM Layers: An LSTM layer with 64 memory cells processed the input sequence 
to learn temporal dependencies in the data. This layer produced the final hidden 
state, which acts as a concise representation of the learned temporal dynamics.  

3. Dropout Layer: A dropout layer was incorporated following the LSTM layer to 
improve model performance and mitigate overfitting. This layer randomly 
deactivated a portion of neurons during training, enhancing robustness.  

4. The output from the LSTM, after undergoing dropout processing, was input into a 
fully connected dense layer consisting of 32 neurons utilizing ReLU activation. This 
layer converts temporal features into a more distinct representation relevant for 
classification tasks.  

5. The output layer consisted of a fully connected layer with four neurons, each 
representing a distinct class: normal, fault, shading, or failure.  
 

Predictive maintenance for off-grid Energy generating systems 
By analysing past sensor data, the system was capable of classifying each time step in four 

possible working conditions: normal operation, fault, shading, or failure. This was done by 
developing a multi-output Long Short-Term Memory network capable of performing multiple 
regressions and classifications from sequential sensor data. This method used voltage, current, 
irradiance, temperature, and time feature sequences to study energy generation from the system 
and detect deviations from normal operating conditions. Converting the models’ predictions 
into actions, predictive intervention alerts were sent to technicians in case of a potential failure 
detection, with information about the nature of the anomaly and recommended preventive 
actions. A fully connected regression equation (1) is also applied to predict energy output, thus 
enabling proper and accurate management of the system proactively: 

𝐸𝐸𝑡𝑡 =  𝑊𝑊𝑟𝑟 .ℎ𝑡𝑡 + 𝑏𝑏𝑟𝑟                                                                                    (1) 

The predicted energy, denoted as Et, is computed using a fully connected regression layer 
characterised by a weight matrix Wr and a bias term br. This layer processed the hidden state 
vector ht, which is the output from the LSTM layer after analysing the input sequence, to 
produce an accurate forecast of future energy generation. 

The training function was designed as a regression branch that would predict solar energy 
from time features. The loss was calculated using Mean Squared Error (MSE) (2), which 
increases the cost of large errors between predicted energy and actual energy values: 

𝑀𝑀𝑀𝑀𝑀𝑀 =  1
𝑁𝑁
∑ (𝑥𝑥𝑖𝑖  −  𝑥𝑥�𝑖𝑖)2𝑛𝑛
𝑖𝑖=1                                                                              (2) 

Where xi represents the ground truth energy and the 𝑥𝑥�𝑖𝑖 represent the predicted energy, and N 
is the number of training samples. 

The classification branch was tasked with identifying the system’s operating condition: normal, 
fault, shading, or failure. The loss is calculated using Categorical Cross-Entropy (3), which 
compares the predicted class distribution with the actual class labels: 

ℒ𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = ∑ ∑ 𝑥𝑥𝑖𝑖𝑖𝑖 . 𝑙𝑙𝑙𝑙𝑙𝑙𝑃𝑃�𝑖𝑖𝑖𝑖𝐶𝐶
𝐽𝐽=1

𝑁𝑁
𝑖𝑖=1                                                                              (3) 

Performance evaluation metrics 
The following key metrics are analysed using the dataset-driven approach to assess the system 

performance. The Accuracy equation (4) is used: 
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𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =  𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹+𝐹𝐹𝐹𝐹

                                                                                 (4) 

where TP = True Positives, TN = True Negatives, FP = False Positives, FN = False Negatives. 
This metric determines the efficacy of AI-driven fault prediction based on labelled datasets. 
Coefficient of determination (R2) equation (5) is also used: 

𝑅𝑅2 = 1 −  ∑ (𝑥𝑥𝑖𝑖 − 𝑥𝑥�𝑖𝑖)2𝑁𝑁
𝑖𝑖=1

∑  (𝑥𝑥𝑖𝑖 − 𝑥̅𝑥)2𝑁𝑁
𝑖𝑖=1

                                                                                           (5) 

Here, xi is the measured energy at time stamp i, while 𝑥𝑥�𝑖𝑖 while is the predicted energy at this 
time. Additionally, 𝑥̅𝑥 is the mean of all actual energy values observed across the dataset. 

Implementation Workflow 
Through a data-driven scenario analysis, the study integrated edge analytics and predictive 

maintenance specifically for off-grid energy generating systems. Data were collected from an off-
grid solar energy system, with sensors that measured solar intensity, voltage, current, and 
temperature, along with timestamps of readings. The data sets were divided into overlapping 
sliding windows of fixed length, with labels assigned according to the state of the system at the 
end of each window. This labelling produced sequences amenable to input into LSTM networks. 

Two complementary deep learning models were then proposed to allow the monitoring and 
maintenance of the system. First, a LSTM-based sequence classification model was created to 
detect the state of the system among four different labels. Normal, stable energy output, fault, 
sudden energy fluctuations indicating a malfunction, shading, reduced harvest due to obstructions, 
failure, or no energy output during sun hours.  

Second, a multi-step LSTM-based energy forecasting model was developed to forecast the 
energy output for the future using past solar energy output along with environmental features. This 
anticipatory nature of the predictions provides an ideal base for proactive maintenance since it 
acts as a forecast for expected behaviour of the system under observation for future time moments, 
and a preventative approach can be taken before failures are detected. 

Both models were trained using supervised learning techniques with dataset partitions for 
training and testing to evaluate accuracy. The trained models were used in real-time at the edge to 
classify system states and predict future energy profiles based on a sliding window of sequential 
data. Unlike classic statistics, these LSTM-based models were able to adapt to noise, seasonality, 
and slow deterioration and exhibit increased accuracy, recall, and overall reliability. 

To smooth predictions and decrease false alarms, a sliding window was used during inference. 
Whenever more than one abnormal classification, fault, shading, or failure exists within a specific 
time window, the system gives an early alarm, allowing for maintenance interventions at shorter 
times. This process is largely preventative in that it works to ensure that there are no total system 
failures, resultant downtime, or additional wear and tear on the system. 

Scenario-based simulations were performed to assess the performance of the system under 
realistic conditions. In this case, existing datasets were processed using edge analytics combined 
with LSTM anomaly detection techniques to differentiate shading, failures, faults and normal 
operation in off-grid energy generating systems. The intent was to provide real-time alerts within 
a predictive modelling capability that informed the operator of a potential failure before the point 
of total system failure. The goal was to reduce downtime and increase the life of the energy 
systems by providing constant and intelligent monitoring. 

The analysis aimed to evaluate the potential of the system to generate alerts only in the 
presence of persistent and verified anomalies, and therefore minimize false positives and increase 
reliability. The primary metrics for comparing edge analytics versus edge analytics combined with 
predictive maintenance included detection accuracy, timing and stability of alerts, overall 
performance and reliability, and prediction capabilities. This use case assessment also illustrated 
the benefits of merging predictive algorithms with edge analytics in enhancing proactive 
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management of systems, increasing operational efficiency and improving robustness of off-grid 
energy generating systems. 

RESULTS  
This section presents the scenario-based analysis results to assess the operational efficiency 

and reliability of energy generating systems, utilizing edge analytics-powered predictive 
maintenance. To test the performance of the proposed system, anomaly detection was executed 
on datasets captured at the edge with an IoT sensor network. 

To understand the effectiveness of the various anomaly detection and maintenance 
techniques, the study compared the performance of edge analytics and integrated edge analytics 
with predictive maintenance models. Table 1 shows the performance on classifying anomalies 
for both configurations: 

 
Table 1. Anomaly classification performance comparison 

Model Type Precision (%) Recall (%) F1-Score (%) Accuracy (%) 

Edge Analytics 85.9 87.5 85.0 86.2 
Edge Analytics + 

Predictive Maintenance 89.7 91.2 90.8 91.6 

 
Across all the review metrics, combining edge analytics with predictive maintenance gives 

observable stronger performance, especially in F1-Score and Accuracy. This combination 
suggests a more reliable approach to achieving improved system responsiveness and foresight 
by capturing potential faults, reducing false positives or misses. The 3.86% increase from 
85.9% to 89.7% gives the system confidence from reduced false alarms and greater resource 
optimization. The Edge Analytics model achieved an accuracy of 86.2%, with a relatively high 
sensitivity but also a greater tendency to issue false alarms. In contrast, the integrated system 
with predictive maintenance improved overall accuracy to 91.6%, with significantly better F1-
score and precision.  

Timing metrics summarizing the promptness and reliability of anomaly detection are 
presented in Table 2: 

 
Table 2. Anomaly detection timing and alert stability 

Model Type Mean Time Between 
Alerts (hours) 

Average Anomaly 
Duration (hours) 

Edge Analytics 2.3 1.2 
Edge Analytics + Predictive 

Maintenance 3.7 3.5 

 
The Edge Analytics model was to be the most reactive and also had more frequent alerts. 

Conversely, the model combining edge analytics and predictive maintenance showed a lag.    
While it is noticeable that the combined Edge analytics model and Predictive model react 
slower than the Edge analytics model on standalone, this demerit can be allowed because the 
combined model gives us better results from the F1-Score and Accuracy metrics, giving us 
reduced false alarms. 

The edge analytics framework used a supervised time series learning LSTM classification 
model that was trained on solar energy generating system data. To categorize the operating 
condition of the PV system, it was created to identify one of four states: normal, fault, shading, 
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and failure, based on the input features of solar voltage, solar current, solar irradiance, and 
time-based statistics. 

Figure 2 depicts the distribution of anomaly classes for the validation set, where most of 
the samples were labelled as normal, indicating the reliability and stable operation of the solar 
system within the analysed timeframe. The model was able to detect different cases of 
anomalous behaviour; a substantial number were labelled as Failure, which are associated with 
complete drops of energy production that are possibly caused by major faults or shading. 
Shading was identified, defined as a lower energy production with sufficient solar exposure, 
along with faults, defined as an abnormal energy profile under average irradiance conditions 

 
Figure 2.  Distribution of detected anomaly classes 

An edge analytics approach combined with predictive maintenance was sought to improve 
the ability of the existing system to interpret and learn from time series data of energy 
generating. To do this, a LSTM-based regression model was developed and trained. This model 
used historical sensor data of energy output, smoothed solar intensity, time of day, moving 
averages of energy output, gradients in energy output, and temperature to predict normalized 
energy output over time. 

The energy prediction model's performance was assessed based on its ability to predict 
normalized energy from actual measurements. The actual energy and the predicted energy 
curves, as displayed in Figure 3, are in close agreement, suggesting that the model learned the 
temporal structure of the solar energy signal well. Quantitatively, this effectiveness is also 
evidenced by the model’s R2 value of .98 between predicted and actual values. Also, the low 
MSE of 0.00096 and root RMSE of 0.031 imply almost no deviation, indicating a confirming 
high prediction accuracy and reliability of the model in representing the energy generating 
patterns. 
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Figure 3. Comparison of actual and predicted normalized energy outputs. 

The expected states of the maintenance alert, over time, are depicted in Figure 4, based on 
the trained edge analytics with a predictive maintenance learning model. The model organized 
the system conditions in four operational categories: green for normal operation, orange for 
fault risk, blue for shading risk, and red for failure risk. Mapping these alerts over time gives 
early warning signals and contextual diagnostics to use in a risk-based maintenance paradigm.  

Figure 4 shows how the classifier's projected outputs are transformed into a colour-coded 
alert system that categorizes each time step into different risk levels: green for normal, orange 
for fault risk, blue for shading, and red for failure risk. This tiered alerting method allowed 
operators to prioritize responses, with red warnings indicating total circumstances that required 
immediate intervention and orange or blue signals indicating possible onset of concerns, 
allowing for early preventative interventions. The fault categorization is consistent with best 
practices in predictive maintenance, which emphasize identification of anomalies but also their 
severity and nature to permit suitable responses [23]. 
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Figure 4.  Predicted maintenance alert states over time 

The main source of the economic efficiency over time of the proposed edge-based 
predictive maintenance framework is the capability of the system to reduce operational costs, 
to increase the lifetime of a system, and to decrease the unplanned downtime. By localizing the 
intelligence at the edge, the system is able to operate without the need of an expensive cloud 
infrastructure and costly data transmission. The selection and the use of classification and 
regression LSTM models enable them to be very accurate in their forecasting and also in the 
detection of anomalies at the earliest stage, thus, intervention in due time can prevent the 
occurrence of expensive failures. The principle of using the least expensive maintenance 
routine over time results in reduced occurrences of costly emergency repairs. In addition, the 
scalability and independence of the system lead to less human intervention, thus saving on 
labour costs. All these factors, considered together, result in the high return on investment 
(ROI) that makes the framework a financially viable solution for long-term deployment in 
decentralized energy systems. 

DISCUSSION 
The findings of this work show the significant improvements through the application of 

edge analytics and predictive maintenance for off-grid energy generating systems. The hybrid 
approach significantly enhances anomaly detection performance, achieving a higher precision 
of 89.7% compared to 85.9% and a recall of 91.2% to 87.5% than the edge-only model. This 
is an increase in F1 score from 85.0% to 90.8% and overall accuracy from 86.2% to 91.6% 
which suggests that the joint system not only increased the percentage of true positives but also 
decreased false positives. 

The results align with recent studies showing how Internet of Things monitoring, through 
deep learning processing, improves precision and performance in executing maintenance 
operations by identifying early signs of minor system degradation [24]. The most interesting 
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aspect of the higher precision is that it may be a consequence of the hybrid model being better 
at filtering false positive alerts. This combination has proven to be a more reliable and efficient 
method of detecting faults, ultimately leading to a more proactive and focused maintenance of 
off-grid energy systems [25]. Detection thresholds are a delicate balance in anomaly detection 
systems, as thresholds which are too high can lead to a proliferation of false alarms and 
thresholds which are too low will mean that actual faults go undetected. 

There is a clear trade-off between stability and responsiveness in the detection of anomalies. 
This edge analytics-only model identified anomalies very quickly, but had a high false positive 
rate. This sensitivity increased the probability of a response to small, often inconsequential 
spikes or noise, which can result in false alarms and unnecessary maintenance. On the other 
hand, the combined approach of edge analytics and predictive maintenance, although it takes 
longer to initially detect an anomaly, produced fewer sustained true positive alerts. 

This suggests that the integrated system had a sustained deviation requirement before it 
raised an alarm; it averages short-term fluctuations to prevent false positive events. This is 
consistent with the characteristic of forecasting models that attempt to identify the presence of 
important divergences in patterns and not short-term fluctuations, to make more accurate 
predictions [26]. This is a conservative method, which could be sensible when collecting 
energy in off-grid systems, where false alarms are expensive since these systems are in remote 
locations with difficult servicing. This integrated approach sacrifices the speed of collection 
and response, a sacrifice that is more than acceptable in this context to prevent unnecessary 
interventions. 

The edge analytics LSTM classifier was trained on time series features of voltage, current, 
irradiance, as well as time-based statistics, to classify every interval of data into one of four 
labels: normal, fault, shading, and failure. The class distribution in Figure 2 also reveals that 
the majority of the data points are classified as normal, which corresponds to the normal 
operation of the solar energy generating system when the solar intensity is normal. This class 
imbalance is typical in anomaly detection models, where the models learn a normal baseline 
and classify other inputs as deviating from normality [27]. 

The model was able to identify several other types of anomalies, despite the skewed ratio. 
Fault events were observed as small spikes or drops in the energy output meter when the solar 
intensity was normal, indicating a temporary problem. This situation reflected decreased 
energy production and shading, which was accurately diagnosed at high irradiance. Failure 
labels were applied to scenarios with minimal energy production, which exhibited sharp and 
persistent declines that likely indicate catastrophic defects, such as hardware failure or 
significant power outages. These alerts are important because they can alert to immediate 
maintenance needs, indicating system breakdowns. 

In addition, the classifier was able to separate the different types of degradation patterns, as 
also by a previous study of Ibrahim et al. (2022), which showed that machine learning schemes 
are suitable to evaluate the health of PV systems by recognising abnormal states [28]. From a 
practical sense, the important aspect of this multi-class classification is that apart from 
identifying the presence of anomalous behaviour, the system also infers the probable reason 
for the anomaly, be it shading, faults or component failure, which allows for a more focused 
inspection of the array. The fact that this sensitivity exists for multiple classes is aligned with 
the objective of predictive maintenance, where the AI model should be used to alert when 
behaviour is deviating from the normal, so that interventions can be made proactively to 
prevent further deterioration [24]. 

To give the model forecasting capabilities, a predictive LSTM regression model was trained 
on the sequential sensor data to predict normalised energy output. The model analysed the time 
series data in both directions, forwards and backwards, to incorporate relevant context from the 
immediate past and future. As illustrated in Figure 3, the actual energy closely follows the 
predicted energy depicted over the test period. Quantitative evaluation confirms the model’s 
robustness; it achieved an R² value of 0.98, indicating that approximately 98% of the variance 
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in the energy signal is explained by the model. The very low RMSE of 0.031 further 
underscores the model’s precision in capturing short-term fluctuations and daily solar patterns. 
These results compare favourably with other advanced deep learning models used in renewable 
energy forecasting, demonstrating the superior capacity of this approach to model complex, 
non-linear PV dynamics [29]. 

The integration of inputs, including solar intensity, time of day, short-term energy averages, 
gradients, and temperature, allowed the model to produce reliable forecasts of anticipated 
energy generation, thereby enhancing energy management precision. The system utilises 
continuous data analysis for early anomaly detection and executes proactive maintenance 
measures, in contrast to reactive maintenance, which entails scheduled quarterly inspections 
and servicing of generators, batteries, and inverters [30]. The forecasting method offers a more 
dynamic and responsive maintenance framework. The results in this study provide a basis for 
establishing thresholds that signify potential issues when variations from projected energy 
outputs occur. These thresholds facilitate the system's generation of prompt notifications for 
maintenance or required adjustments, hence enhancing dependability and efficiency. 

By tracking alerts over time, the system provided early warning signs of performance 
decline before an entire shutdown occurred. This risk-based diagnostic technique permitted 
intelligent intervention scheduling. Where several shading-risk alarms on successive sunny 
days indicated the need for panel cleaning, and developing failure risks recommended inverter 
and sensor inspections. This solution integrated the essential benefits of AI-driven maintenance 
by lowering downtime and maintenance costs while increasing reliability [31]. 

In off-grid scenarios, where unplanned outages can be particularly disruptive, the advantage 
of obtaining advance notice of potential faults and differentiating fault types becomes 
especially significant. The integrated edge-predictive approach significantly enhances system 
reliability. While the edge-only LSTM model provided rapid anomaly detection crucial for 
immediate alerts, it tends to over-trigger. Incorporating a predictive layer results in a more 
balanced and accurate alert stream, offering higher reliability and contextual understanding. 
This reflects broader industry trends, where applying machine learning and IoT for real-time 
monitoring is transforming maintenance strategies from reactive responses to proactive 
management [32]. 

Furthermore, deploying edge analytics to minimize latency and combining it with 
forecasting capabilities allows operators to maintain a continuous, comprehensive view of 
system health. This integrated approach enables early intervention, preventing failures that lead 
to service interruptions and significantly enhancing the resilience of off-grid energy harvesting 
systems [33]. 

CONCLUSION(S) 
This study investigates an integrated edge analytics and predictive maintenance for health 

monitoring of energy generating systems. A scenario-based analysis was conducted to evaluate 
the effectiveness of the proposed system using a dataset collected from an energy generating 
system during the study period.  The results demonstrate that integrating edge analytics with 
predictive maintenance models enhances anomaly detection performance, achieving a higher 
accuracy of 91.6% compared to the edge analytics model with an accuracy of 86.2% reducing 
false alarms. Timing metrics revealed a trade-off between responsiveness and stability in 
anomaly detection. The integrated model requires a sustained duration before raising an alarm, 
effectively smoothing out short-term fluctuations and reducing the false positive rate. The class 
distribution of data indicates that most data points are classified as normal, reflecting the stable 
operation of the energy generating system.  Furthermore, assessing the health of the system, 
classification distinguishes different degradation patterns, identifying anomalies into shading, 
faults or failure, thus facilitating targeted maintenance. Predictive maintenance is achieved 
through energy forecasting enabled by regression models with a coefficient of determination, 
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R2 of 0.98, and predicted anomaly alert visualisation output. By mapping these alerts over 
time, the system delivers early warning signals of performance degradation before failure. This 
risk-based diagnostic approach enables the maintenance of the energy generating system, 
reducing unplanned outages, enhancing conversion efficiency and sustainability of the systems 
in off-grid regions 

In summary, this analysis and research enhanced health monitoring systems by 
incorporating real-time surveillance and proactive maintenance powered by on-site anomaly 
detection and predictive maintenance, leading to increased system longevity, sustainable use 
and reduced deterioration. Furthermore, the integration of descriptive, diagnostic, and 
contextual data analyses supports smarter, evidence-based energy planning, thereby enhancing 
the reliability and scalability of off-grid solar systems. It is evident that the collection of data 
and real-time analysis of the data as the system operates gives insight into metrics that allow 
for predictive maintenance to be applied, resulting in unhindered operation. This work lays a 
foundation for enhanced, pliable and practical sustainable decentralized power systems especially 
those in remote or off-grid environments. 
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