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ABSTRACT

Conventional energy generating strategies
lead to increased downtime, energy
analytics with machine learning-ba
sustainability of off-grid energy ge

scheduled maintenance, often
cies. This study integrates edge
enance to boost the reliability and
. Using Long Short-Term Memory and
omaly detection and fault prediction, reducing

unplanned outages and main' omparative analysis between standard edge
analysis and integrated e e mgthods shows that the integrated system achieves an
accuracy of 91.6%, comfl alytics model with an accuracy of 86.2% effectively
stabilizing short-terp ating fewer and more stable alerts, with a coefficient of

determination R? ot highlight that combining predictive models with edge analytics
enhances religiki iMely interventions, and strengthens system robustness in off-

le energy systems, Edge analytics, loT-based monitoring, Real-time analytics,
intenance, “Operation efficiency.”

Decentralized renewable energy generation systems are a viable method for extending
access to electricity in remote and energy impoverished regions, improving quality of life and
social outcomes [1] . Such systems are especially important in areas where expanding the
traditional electrical grid is not feasible economically or technically [2]. However, their
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successful deployment and reliability are still a challenge due to the lack of monitoring,
anomaly detection, and maintenance capabilities [3].

Conventional cloud-based sensor networks utilizing Internet of Things (IoT) sensors to
monitor renewable energy generation and equipment status in real-time are extensively used
[4]. However, these systems face significant challenges, including processing latencies, limited
capacities for real-time analytics, and a reliance on consistent internet connectivity [5]. Due to
these limitations, the time between when an anomaly occurs and when it is found is increased,
extending the time spent recovering from an anomaly and operational expenditures, creating
demand for more innovative and adaptive approaches to monitoring [6]. To mitigate these,
there is a growing shift towards edge artificial intelligence, where data processi#® occurs
locally at the edge device or a local edge server, allowing real-time data processing a ision

energy and environmental monitoring [8]. Yet, despite advances i
monitoring renewable generating energy generation technologies, the
anomalies and maintenance of these systems continue to depend o
maintenance interventions.

This study addresses these challenges by combining ed@
maintenance to enhance operational efficiency and enabl :
grid energy harvesting systems. Edge analytics facilita tion of unusual trends in
energy generation, which could indicate perfor anomalies, especially in
resource constrained edge computing environmes ally, it provides forecasts of

reducing the impracticality of human inte
anomalies, and delivering relevant i
integrated use of edge analytics a

by leveraging both historical e

The current literature refle
energy generation devices,
designed to improve
decision-making d1r

equipment performance metrics [11].
f edge analytics is expanding the potential of
gy systems. Studies have proposed new edge device
agement systems, enabling real-time analytics and
through edge computmg These edge devices prov1de

A\ order to reduce down time and perform maintenance in a timely
ended that future studies use multiple solar development sites to

#lility and performance in various solar applications.
dge computing framework has also been proposed to improve the anomaly

data locally at the edge, this approach significantly decreases latency, resulting in better real-
time performance in off-grid environments. Multiple machine learning models have been
compared to identify the most accurate and low-latency methods for fault detection [13] Future
enhancements could include developing predictive models that utilize both historical and real-
time data to identify early warning signals of anomalies, enabling timely repairs and preventing
costly system downtime.

Furthermore, a low-cost, real-time monitoring and anomaly detection system has been
proposed and evaluated for remote solar farms based on edge analytics and deep learning.
Applied to actual data collected under soiling conditions, the system demonstrated very low
resource requirements in terms of processing power and energy consumption, making it



particularly suitable for large-scale, decentralized off-grid deployments [14]. Future work
should involve assessing the system’s effectiveness across a wider range of anomaly types,
enhancing algorithms to detect various faults, and integrating predictive maintenance features.

Another approach involves implementing edge intelligence on wireless sensor nodes to
estimate and predict the output voltage of solar panels. The methodology applies the Python
Scikit-learn package to test the performance of different regressors on the solar data collected.
The random forest regressor tends to perform better than the decision tree regressor in
estimating voltage. The approach relied on only one sensor, the BH1750 light intensity sensor,
to predict the voltage of the solar panel, opening the possibility of running these models at the
edge directly on devices [15]. Future study should focus on combining other sensor inputs,
such as output voltage or temperature data at the time of prediction. Also, oth achine
learning frameworks (ML) and embedded ML models can be explored to find opgimal
choices for sensor nodes with limited resources and help improve edge intelli nergy
harvesting systems even further.

Prediction of renewable energy generation is critical for operatioy ement
decisions for off-grid energy harvesting systems. The application of Long R vViemory
(LSTM) models for solar energy prediction leveraging time- serle ( evaluation
metric for prediction accuracy, the LSTM models achieved sigzi MSE values
than other stand-alone models, especially when predicting 1 and PV power
generation [16]. Subsequent studies may involve a fusio and edge analytics
as a means to continue enhancing predlctive capablh s wable energy harvesting

deep learning models have been
models include LSTM, Decision
Trees, Random Forests, Bagging, Gradi g, V tthg Regressor, and Stacking, offering
a comprehensive comparison of their rough analysis and experimentation, it
was found that LSTM architectures §ork best T@g time series prediction in this context due to
a as yompared to the other models tested [17].

Incorporating edge analytics_c neration unit a step further, allowing them to
become even more autong igent, leading to an intelligent maintenance paradigm
enabled by localized intghli assist in performance improvements and cost savings

Furthermore, maef pay ethods are increasingly being applied to identify faults

within renewablcgmajcrogitds ich often include solar and wind energy sources. These

wfrom fault misclassification, while unsupervised models are more
ecise [18]. To enhance fault detection, future studies should focus on
ed ML algorithms, boosting the performance of models, and enhancing
wards adapting to various kinds of anomalies. Also, the use of data edge
onitoring in real-time systems would enhance even further the capacity to detect

Real-time processing of data at the edge is an important part of the effective administration
of energy generating solutions through its capability of on-time diagnosis of anomalies, leading
to preventive maintenance. Data can thus be processed at the source in real time, minimising
latency and increasing efficiency of operations [19]. This is particularly important for remote
energy systems and in a resource-constrained context, where machine learning models can be
useful for automated identification and classification of anomalies. These types of models are
low on resource overhead and highly accurate and efficient, including some of the deep
learning models [20]. In addition, the combination of forecasts of energy generating and
predictive maintenance also has a strong impact on decisions that will be made and therefore
on the overall performance of the system. These help to increase efficiency in energy



conversion and decrease downtime of the system by relying on machine learning and IoT
technologies, and thus make energy production more reliable. Examining historical as well as
real-time data, predictive maintenance algorithms can detect potential failures in advance of
their occurrence, thereby proactively reducing unplanned downtime and maintenance costs
[21].Integrating smart energy management systems allows for a more stable and sustainable
system, decreasing operational costs as well as downtime and making the generating of
renewable energy more resilient and efficient [22].

From the literature review, several research trends are identified in which edge analytics
and predictive maintenance are used separately to improve the operations and sustainability of
energy generating systems. However, few studies have implemented both approaches at the
same time despite their advantages. This study explores the combined use of ed alytics
and predictive maintenance to improve off-grid energy generating systems witliRgespgct to
reliability and sustainability in remote areas. These results are promising ang at this
hybrid approach can be an important step forward in future studies and applicd

The proposed method involves developing an integrated frameworl

b edge

analytics with advanced predictive modelling, utilizing classification Long
Short-Term Memory (LSTM) models. The framework allows for . idedtification of
anomalies and predictive maintenance of systems that harvest g The goal of
this approach is to use data-driven insights at the edge to ional efficiency,

minimized downtime in systems, and cut maintenance ¢
operating environments. This hybrid model overcomé
management, leading to a more sustainable and reliable sy
to an efficient and clean energy transition in off-g 1

making by inculcating edge analytics ont,
time understanding of data collect
between systems and cloud applicati
communication. Furthermore, ¢ 1
presents further enhancements 1fiyde
made.

se of both classification and regression models
nomalies and improved accuracy of forecasting

MATERIALS AND

The study p
tailored for

¥(Central to this architecture are solar panels that harvest renewable energy,
rge controller to ensure safe and effective energy transfer to both the energy
and the load. This harvested energy is stored in batteries, providing a reliable

input and environmental conditions, such as temperature and solar irradiance.
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those related to the energy generating system, the
Other variables included were system respon
Lastly, environmental variables include so
the sensor network and aggregated b
predictive analytics.

The initial phase of data collecti
otovoltaic system, recordings of solar intensity

through the BH1750 solar intchgi d temperature data with a thermocouple. All
entries were then time-stag g i r chronological analysis. Data were initially stored
locally on an SD card #itegrity in case of a communication failure with their
central servers.

The data und ssential pre-processing procedures. Initially, solar power
generation and jables were subjected to a normalization technique to enhance
model traini nd facilitate network convergence. Labels identifying the nature and
date of tilized for supervised learning in predictive models. Additional

featurgs, 1 i oothed energies, normalized irradiances, scaled hour-of-day, short-term
change rates, were generated through feature engineering to enhance the
rics chosen illustrate the trends and variations in energy production that
n¥icant and reliable predictive analysis.

Anomaly detection in edge analytics

The study assessed an edge analytics method for real-time anomaly detection in off-grid
solar energy generating systems. The Long Short-Term Memory (LSTM) deep learning model
was selected for its effectiveness in capturing complex temporal relationships in time series
energy generating data [18].

The architecture consisted of multiple layers, each designed to extract and process critical
features



1. Input Layer: The model was provided with pre-processed multivariate time series
data, encompassing features such as solar intensity, temperature, energy output, and
hour of the day.

2. LSTM Layers: An LSTM layer with 64 memory cells processed the input sequence
to learn temporal dependencies in the data. This layer produced the final hidden
state, which acts as a concise representation of the learned temporal dynamics.

3. Dropout Layer: A dropout layer was incorporated following the LSTM layer to
improve model performance and mitigate overfitting. This layer randomly
deactivated a portion of neurons during training, enhancing robustness.

4. The output from the LSTM, after undergoing dropout processing, was input into a
fully connected dense layer consisting of 32 neurons utilizing ReLU activaffon. This
layer converts temporal features into a more distinct representation

classification tasks.
5. The output layer consisted of a fully connected layer with fout %

representing a distinct class: normal, fault, shading, or failure

Predictive maintenance for off-grid Energy generating systems

By analysing past sensor data, the system was capable of time step in four
possible working conditions: normal operation, fault, s e. This was done by
developing a multi-output Long Short-Term Memory net e of performing multiple
regressions and classifications from sequential sensg s method used voltage, current,
enclgy generation from the system
and detect deviations from normal operatin Qonverting the models’ predictions
into actions, predictive intervention alerts
detection, with information about the
actions. A fully connected regressio i iS\@s0 applied to predict energy output, thus
enabling proper and accurate ma ent of thégystem proactively:

(1)

s computed using a fully connected regression layer
#nd a bias term by. This layer processed the hidden state
b the LSTM layer after analysing the input sequence, to

characterised by a wed
vector h;, which 1
produce an accut
The traingme jva® designed as a regression branch that would predict solar energy
- s was calculated using Mean Squared Error (MSE) (2), which
increases ost offlarge errors between predicted energy and actual energy values:
MSE = ¥, (x; — %) )

rolt; represents the ground truth energy and the X; represent the predicted energy, and N
is the number of training samples.
The classification branch was tasked with identifying the system’s operating condition: normal,
fault, shading, or failure. The loss is calculated using Categorical Cross-Entropy (3), which
compares the predicted class distribution with the actual class labels:

Leiass = Zévzl Z}::l Xij- logpij 3)

Performance evaluation metrics

The following key metrics are analysed using the dataset-driven approach to assess the system
performance. The Accuracy equation (4) is used:



TP+TN

Accuracy = ———— 4)
TP+TN+FN+FP

where TP = True Positives, TN = True Negatives, FP = False Positives, FN = False Negatives.
This metric determines the efficacy of Al-driven fault prediction based on labelled datasets.
Coefficient of determination (R?) equation (5) is also used:

N L _ 22
Rzzl_m (5)

ZIL'\I:]_ (xi - f)z

Here, x; is the measured energy at time stamp 7, while X; while is the predicted energy at this
time. Additionally, X is the mean of all actual energy values observed across the dataset

Implementation Workflow

Through a data-driven scenario analysis, the study integrated edge analytic

maintenance specifically for off-grid energy generating systems. Data were (€ n oft-
grid solar energy system, with sensors that measured solar intensity, méht, and
temperature, along with timestamps of readings. The data sets we i8gd intofoverlapping

#@System at the

sliding windows of fixed length, with labels assigned according to thg
1 LSTM networks.

end of each window. This labelling produced sequences amen:
Two complementary deep learning models were then prago v

maintenance of the system. First, a LSTM-based sequene @ iffgation model was created to

detect the state of the system among four different labels. Ng

sudden energy fluctuations indicating a malfunctio g, redyced harvest due to obstructions,

failure, or no energy output during sun hours.
Second, a multi-step LSTM-based ener,

energy output for the future using past sola;

del was developed to forecast the
ng with environmental features. This

fatlures are detected.
learning techniques with dataset partitions for

and a preventative approach can
Both models were trained

bef

ergy profiles based on a sliding window of sequential
-based models were able to adapt to noise, seasonality,
gncreased accuracy, recall, and overall reliability.

largely preventative in that it works to ensure that there are no total system
time, or additional wear and tear on the system.

simulations were performed to assess the performance of the system under
itions. In this case, existing datasets were processed using edge analytics combined

operatiofl in off-grid energy generating systems. The intent was to provide real-time alerts within
a predictive modelling capability that informed the operator of a potential failure before the point
of total system failure. The goal was to reduce downtime and increase the life of the energy
systems by providing constant and intelligent monitoring.

The analysis aimed to evaluate the potential of the system to generate alerts only in the
presence of persistent and verified anomalies, and therefore minimize false positives and increase
reliability. The primary metrics for comparing edge analytics versus edge analytics combined with
predictive maintenance included detection accuracy, timing and stability of alerts, overall
performance and reliability, and prediction capabilities. This use case assessment also illustrated
the benefits of merging predictive algorithms with edge analytics in enhancing proactive



management of systems, increasing operational efficiency and improving robustness of off-grid
energy generating systems.

RESULTS

This section presents the scenario-based analysis results to assess the operational efficiency
and reliability of energy generating systems, utilizing edge analytics-powered predictive
maintenance. To test the performance of the proposed system, anomaly detection was executed
on datasets captured at the edge with an IoT sensor network.

To understand the effectiveness of the various anomaly detection and maintenance
techniques, the study compared the performance of edge analytics and integrated edge analytics
with predictive maintenance models. Table 1 shows the performance on classifyinggomalies
for both configurations:

Table 1. Anomaly classification performance comparisg

Model Type Precision (%)  Recall (%) F1-Sco cy (%)

Edge Analytics 85.9 87.5
Edge Analytics +

Predictive Maintenance 89.7 91.2

observable stronger performance, especially 4
suggests a more reliable approach to achievy
by capturing potential faults, reducing
85.9% to 89.7% gives the system co
optimization. The Edge Analytics mdflel achie
sensitivity but also a greater te c issig false alarms. In contrast, the integrated system
with predictive maintenance imBgov accuracy to 91.6%, with significantly better F1-
score and precision.

Timing metrics su omptness and reliability of anomaly detection are
presented in Table 2:

le 2."Anomaly detection timing and alert stability

. Mean Time Between Average Anomaly
yp Alerts (hours) Duration (hours)
ge Analytics 23 1.2
- -
Analytics + Predictive 37 35

Maintenance

The Edge Analytics model was to be the most reactive and also had more frequent alerts.
Conversely, the model combining edge analytics and predictive maintenance showed a lag.
While it is noticeable that the combined Edge analytics model and Predictive model react
slower than the Edge analytics model on standalone, this demerit can be allowed because the
combined model gives us better results from the F1-Score and Accuracy metrics, giving us
reduced false alarms.

The edge analytics framework used a supervised time series learning LSTM classification
model that was trained on solar energy generating system data. To categorize the operating
condition of the PV system, it was created to identify one of four states: normal, fault, shading,
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and failure, based on the input features of solar voltage, solar current, solar irradiance, and
time-based statistics.

Figure 2 depicts the distribution of anomaly classes for the validation set, where most of
the samples were labelled as normal, indicating the reliability and stable operation of the solar
system within the analysed timeframe. The model was able to detect different cases of
anomalous behaviour; a substantial number were labelled as Failure, which are associated with
complete drops of energy production that are possibly caused by major faults or shading.
Shading was identified, defined as a lower energy production with sufficient solar exposure,
along with faults, defined as an abnormal energy profile under average irradiance conditions

LSTM Classification Anomaly Types
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Anomaly Class
igur . Distribution of detected anomaly classes
An edg y poach combined with predictive maintenance was sought to improve
the abili the ¢ system to interpret and learn from time series data of energy

gene th®§, a LSTM-based regression model was developed and trained. This model
use ensor data of energy output, smoothed solar intensity, time of day, moving

era enefgy output, gradients in energy output, and temperature to predict normalized
en 0 over time.

T rgy prediction model's performance was assessed based on its ability to predict
normalized energy from actual measurements. The actual energy and the predicted energy
curves, as displayed in Figure 3, are in close agreement, suggesting that the model learned the
temporal structure of the solar energy signal well. Quantitatively, this effectiveness is also
evidenced by the model’s R? value of .98 between predicted and actual values. Also, the low
MSE of 0.00096 and root RMSE of 0.031 imply almost no deviation, indicating a confirming
high prediction accuracy and reliability of the model in representing the energy generating
patterns.

Journal of Sustainable Development of Energy, Water and Environment Systems 9
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Energy Prediction
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The expected states of the maint ime, are depicted in Figure 4, based on
the trained edge analytics with a pge ance learning model. The model organized
the system conditions in four i0gal calggories: green for normal operation, orange for
fault risk, blue for shading risk ilure risk. Mapping these alerts over time gives
early warning signals and ostics to use in a risk-based maintenance paradigm.

Figure 4 shows ho
alert system that cate ed®f time step into different risk levels: green for normal, orange
for fault risk, blyg™e ¥ tamyand red for failure risk. This tiered alerting method allowed
operators to prioi

and orange or blue signals indicating possible onset of concerns,
Weftative interventions. The fault categorization is consistent with best
maintenance, which emphasize identification of anomalies but also their
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Predictive Maintenance Alerts
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The main source of the econo \nc er time of the proposed edge-based

predictive maintenance frameworlk y of the system to reduce operational costs,
to increase the lifetime of a systg ded¥ease the unplanned downtime. By localizing the
intelligence at the edge, the operate without the need of an expensive cloud
infrastructure and costly dn. The selection and the use of classification and
regression LSTM modg

framework a financially viable solution for long-term deployment in
systems.

DISCU

Th dings of this work show the significant improvements through the application of
edge analytics and predictive maintenance for off-grid energy generating systems. The hybrid
approach significantly enhances anomaly detection performance, achieving a higher precision
of 89.7% compared to 85.9% and a recall of 91.2% to 87.5% than the edge-only model. This
is an increase in F1 score from 85.0% to 90.8% and overall accuracy from 86.2% to 91.6%
which suggests that the joint system not only increased the percentage of true positives but also
decreased false positives.

The results align with recent studies showing how Internet of Things monitoring, through
deep learning processing, improves precision and performance in executing maintenance
operations by identifying early signs of minor system degradation [24]. The most interesting

Journal of Sustainable Development of Energy, Water and Environment Systems 11



aspect of the higher precision is that it may be a consequence of the hybrid model being better
at filtering false positive alerts. This combination has proven to be a more reliable and efficient
method of detecting faults, ultimately leading to a more proactive and focused maintenance of
off-grid energy systems [25]. Detection thresholds are a delicate balance in anomaly detection
systems, as thresholds which are too high can lead to a proliferation of false alarms and
thresholds which are too low will mean that actual faults go undetected.

There is a clear trade-off between stability and responsiveness in the detection of anomalies.
This edge analytics-only model identified anomalies very quickly, but had a high false positive
rate. This sensitivity increased the probability of a response to small, often inconsequential
spikes or noise, which can result in false alarms and unnecessary maintenance. On the other

consistent with the characteristic of forecasting models that attempt to id .
important divergences in patterns and not short-term fluctuations, to %

predictions [26]. This is a conservative method, which could bg 3
energy in off-grid systems, where false alarms are expensive si %
SN eed of collection
O prevent unnecessary

locations with difficult servicing. This integrated approach s
and response, a sacrifice that is more than acceptable in
interventions.

The edge analytics LSTM classifier was trained gn timeS€ries fedtures of voltage, current,
irradiance, as well as time-based statistics, to clagity Sgery 1Bgerval of data into one of four

labels: normal, fault, shading, and failure. Th ution in Figure 2 also reveals that
the majority of the data points are classi hich corresponds to the normal
operation of the solar energy generatin ¢ solar intensity is normal. This class
imbalance is typical in anomaly detcggi cre the models learn a normal baseline

The model was able to iden al oflier types of anomalies, despite the skewed ratio.
Fault events were observed ag s i drops in the energy output meter when the solar
intensity was normal, ing rary problem. This situation reflected decreased
energy production and as accurately diagnosed at high irradiance. Failure
labels were applied t % witll minimal energy production, which exhibited sharp and

persistent declings i dicate catastrophic defects, such as hardware failure or
significant powe B\ These alerts are important because they can alert to immediate
maintenanc

, the I8 er was able to separate the different types of degradation patterns, as
us stidy of Ibrahim et al. (2022), which showed that machine learning schemes
te the health of PV systems by recognising abnormal states [28]. From a
®the important aspect of this multi-class classification is that apart from
presence of anomalous behaviour, the system also infers the probable reason
aly, be it shading, faults or component failure, which allows for a more focused
inspection of the array. The fact that this sensitivity exists for multiple classes is aligned with
the objective of predictive maintenance, where the Al model should be used to alert when
behaviour is deviating from the normal, so that interventions can be made proactively to
prevent further deterioration [24].

To give the model forecasting capabilities, a predictive LSTM regression model was trained
on the sequential sensor data to predict normalised energy output. The model analysed the time
series data in both directions, forwards and backwards, to incorporate relevant context from the
immediate past and future. As illustrated in Figure 3, the actual energy closely follows the
predicted energy depicted over the test period. Quantitative evaluation confirms the model’s
robustness; it achieved an R? value of 0.98, indicating that approximately 98% of the variance




in the energy signal is explained by the model. The very low RMSE of 0.031 further
underscores the model’s precision in capturing short-term fluctuations and daily solar patterns.
These results compare favourably with other advanced deep learning models used in renewable
energy forecasting, demonstrating the superior capacity of this approach to model complex,
non-linear PV dynamics [29].

The integration of inputs, including solar intensity, time of day, short-term energy averages,
gradients, and temperature, allowed the model to produce reliable forecasts of anticipated
energy generation, thereby enhancing energy management precision. The system utilises
continuous data analysis for early anomaly detection and executes proactive maintenance
measures, in contrast to reactive maintenance, which entails scheduled quarterly inspections

By tracking alerts over time, the system provided early warning s %
CQll

decline before an entire shutdown occurred. This risk-based diagiostiON
intelligent intervention scheduling. Where several shading-rislkeal 3 uccessive sunny
skSygecafhmended inverter

days indicated the need for panel cleaning, and developing fai
and sensor inspections. This solution integrated the essenti H

In off-grid scenarios, where unplanned outages cag be pa

immediate alerts, it tends to over-trigg
balanced and accurate alert stream,

monitoring is transforming
management [32].
Furthermore, deployigé
forecasting capabilitie
system health. This in
to service interrups
systems [33].

ics to minimize latency and combining it with
to maintain a continuous, comprehensive view of
enables early intervention, preventing failures that lead
antly enhancing the resilience of off-grid energy harvesting

CONCLUSION(S
This st

vesligates an integrated edge analytics and predictive maintenance for health

ergy generating systems. A scenario-based analysis was conducted to evaluate
1Wgness of the proposed system using a dataset collected from an energy generating
Sys dming the study period. The results demonstrate that integrating edge analytics with
predich aintenance models enhances anomaly detection performance, achieving a higher
accuracy of 91.6% compared to the edge analytics model with an accuracy of 86.2% reducing
false alarms. Timing metrics revealed a trade-off between responsiveness and stability in
anomaly detection. The integrated model requires a sustained duration before raising an alarm,
effectively smoothing out short-term fluctuations and reducing the false positive rate. The class
distribution of data indicates that most data points are classified as normal, reflecting the stable
operation of the energy generating system. Furthermore, assessing the health of the system,
classification distinguishes different degradation patterns, identifying anomalies into shading,
faults or failure, thus facilitating targeted maintenance. Predictive maintenance is achieved
through energy forecasting enabled by regression models with a coefficient of determination,




R2 of 0.98, and predicted anomaly alert visualisation output. By mapping these alerts over
time, the system delivers early warning signals of performance degradation before failure. This
risk-based diagnostic approach enables the maintenance of the energy generating system,
reducing unplanned outages, enhancing conversion efficiency and sustainability of the systems
in off-grid regions

In summary, this analysis and research enhanced health monitoring systems by
incorporating real-time surveillance and proactive maintenance powered by on-site anomaly
detection and predictive maintenance, leading to increased system longevity, sustainable use
and reduced deterioration. Furthermore, the integration of descriptive, diagnostic, and
contextual data analyses supports smarter, evidence-based energy planning, thereby enhancing
the reliability and scalability of off-grid solar systems. It is evident that the collectigh of data

for predictive maintenance to be applied, resulting in unhindered operation.
foundation for enhanced, pliable and practical sustainable decentralized power s
those in remote or off-grid environments.
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