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ABSTRACT

This study proposes an Artificial Intelligence-Supported mewoOrk to evaluate
hydrogen fuel cell technologies in Morocco's smart urban hain ecosystems.
Integrating compromise-ranking with efficiency bench

in performance optimization, decision uncertainty, tion. Key metrics—like
power density, fuel efficiency, and system ada

Artificial Intelligence-enhanced sensitivity a is. k s gonfirm that hydrogen-powered
public transport offers superior efficie g, emerging as the top-ranked
alternative. Artificial Intelligence strengtfen bli eight calibration, and adaptability
under expert preference variation. ndefSCores the importance of supportive

infrastructure, including refuelin,
Results offer data-driven insi
strategies tailored to urban

egrated systems, for scalable deployment.
rs and planners, guiding sustainable hydrogen

ustainable urban energy and supply chain solutions has intensified due to
ental concerns, stringent carbon reduction policies, and the need for resilient

multiple applications, including urban mobility, industrial power generation, and decentralized
energy systems. Their ability to operate independently of fossil fuels, coupled with advances in
hydrogen storage, distribution, and supply logistics, positions them as a key enabler in global
energy and supply chain transitions [2]. However, challenges persist, particularly in cost-
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effectiveness, technological readiness, and logistical scalability, necessitating a comprehensive
evaluation framework to guide large-scale, data-informed decision-making.

Despite growing research efforts, a critical gap exists in the systematic assessment of hydrogen
fuel cell technologies across interconnected urban energy and supply chain networks.
Conventional evaluation models often emphasize individual optimization factors—such as
technical feasibility or economic profitability—without accounting for multi-criteria
interdependencies, supply chain dynamics, and efficiency benchmarking. Prior studies employing
Fuzzy TOPSIS, ELECTRE III, and PROMETHEE II have demonstrated ranking capabilities but
lack integrated validation and adaptability under uncertainty. Kabassi and Martinis [3] conducted
a sensitivity analysis using the PROMETHEE II method to evaluate environmental websites,
highlighting the influence of input variability on decision outcomes, but without edding
robustness mechanisms. Watrébski [4] introduced a temporal extension to PROMENJEEII for
and fuzzy TOPSIS approaches to evaluate sustainable water managemey# SIFR{CRIC owing
improved ranking differentiation, but leaving methodological stability une uzzoha

igdusgial projects,

et al. [6] implemented a fuzzy TOPSIS framework for selecting g ¢
itvi ostiCS and adaptive

illustrating applicability in real-world settings while lacking sensiiyi

refinement.
Given the complex trade-offs involved in hydrogen dep 1 a pressing need for
an Al-driven decision-support system that dynamically pi rnatives while optimizing

resource utilization and logistical performance. To address Th§8
an Artificial Intelligence-Supported Hybrid Hyper WK ORMEA framework, leveraging the
assessment, and intelligent model

: e

es by identifying trade-offs among
sustainability, operational feasibility, icg Constraints [7], while DEA (Data
Envelopment Analysis) benchmarks te,

preference learning, and adapt g#”evOlying @rban and supply chain parameters. This hybrid
architecture moves beyond sta

ements in hydrogen fuel cell technologies have positioned them as a cornerstone
g energy and supply chain transitions, particularly in urban environments. The
derscores the increasing viability of hydrogen as a clean energy source, with studies
highlighting improvements in fuel cell efficiency, hydrogen storage, and smart-grid integration.
Research by Tahmasbi et al. [9] provides a comprehensive review of hydrogen production
technologies, emphasizing the efficiency of steam methane reforming (SMR) and the cleaner
potential of electrolysis powered by renewable energy sources. While SMR remains cost-effective,
electrolysis offers a more sustainable alternative, despite higher costs and scalability limitations—
necessitating further optimization in production, distribution, and logistics modeling.

One emerging trend in hydrogen systems is the integration of Artificial Intelligence and
quantum computing for performance modeling, supply chain analysis, and predictive analytics.
Studies explore Al-driven optimizations that enhance not only operational efficiency but also
upstream and downstream supply chain coordination—particularly in smart city applications



where hydrogen fuel cells are deployed in transportation networks and decentralized power grids
[10]. These advancements address key limitations in real-time demand forecasting and logistics
synchronization, improving resilience and reinforcing hydrogen’s role in achieving carbon
neutrality. Unlike conventional models, Al-empowered hydrogen infrastructures enable adaptive
learning mechanisms, enabling continuous improvement under fluctuating supply-demand and
infrastructural conditions [11].

Expanding the evaluation criteria for hydrogen fuel cell technologies is crucial to ensuring
comprehensive assessments. Prior studies have often emphasized cost-efficiency and energy yield,
neglecting technical performance metrics and logistical dynamics that directly affect long-term
urban sustainability. Recent research points to key additional factors—such as power density, fuel
utilization efficiency, electrochemical performance, thermal management efficiengg® system
response time, hydrogen purity requirements, and energy conversion efficiency—aSycengsal to
optimizing design, extending service life, and securing consistent performance a nergy
and supply chain networks [12].

e Power Density is critical in urban mobility scenarios, where fuel cel
impacts vehicle design and energy delivery. Recent advancemeg | {I0W power
sources and gas-diffusion anodes improve not only (€
fac111tate efﬁment energy packagmg and storage across the
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. -w@ RPEMFC configurations
show that real-time Al-enabled humidity control cat % ANt
improving grid integration and fuel supply balance [1

t the importance of fuel type
optimization—such as methang fc—while Al-assisted monitoring
tools increasingly enable predlctlv
e Thermal Management Efficie
storage environments [17]
particle swarm optimiza

supply chain units, in;

sustained operations in fuel logistics and
—based thermal optimization strategies, like
anage thermal load distribution across modular
ergy yield and transport viability [18].

ptive load management. Advanced hybrid power

cd process sequencing and fault detection, enhancing supply chain
roduction to end-use [20].
nversion Efficiency, gauging usable power output from hydrogen input, defines
conomic feasibility and logistical throughput. As Khan et al. [21] note, high-
comwersion efficiency aligns with sustainable performance across centralized and
ibuted supply hubs.

Multi-criteria decision-making (MCDM) models have played a pivotal role in evaluating fuel
cell systems by addressing sustainability trade-offs, efficiency benchmarking, and uncertainty.
Yet, traditional tools like Fuzzy TOPSIS, ELECTRE III, and PROMETHEE I lack integrated
efficiency validation. The Al-supported Hybrid Hyperfuzzy VIKOR-DEA framework addresses
this gap by combining compromise-oriented ranking with performance benchmarking
and adaptive Al feedback mechanisms [22]. Hyperfuzzy VIKOR evaluates multidimensional
criteria under ambiguity, while DEA quantifies relative efficiency. The Al layer refines weight
derivation, adapts to supply chain disruptions, and enhances robustness across operational
scenarios.



Recent studies position hydrogen as a foundational pillar of smart city infrastructure—
supporting transport electrification, microgrid evolution, and intelligent logistics [23], [24].
However, accelerated adoption requires coherent policy development, infrastructure investment,
and supply chain transparency. By embedding Al into the Hyperfuzzy VIKOR-DEA framework,
this research establishes a scalable, intelligent model that supports real-time, data-driven decision-
making. It equips stakeholders with tools for sustainable hydrogen deployment while balancing
economic, environmental, and logistical objectives—marking a decisive advancement for
hydrogen adoption across Morocco’s evolving urban systems.

METHODS

allocated one million hectares for hydrogen production, with 300,000 hectares al
for initial projects. Several international partnerships—including
TotalEnergies, ENGIE, and ACWA Power—aim to develop hydrog
industrial applications, electricity storage, and logistical infrastructure 4@
Based on Morocco’s hydrogen roadmap and smart city priori
alternatives for evaluation:
e Hydrogen-Powered Public Transport (Bus & Tram S @ :
emissions and enhanced mobility in Casablanca anggRaBbg
e Stationary Fuel Cells for Industrial & Residential
storage as part of Morocco’s renewable energaag

supply chain flows to serve transport
The objective is to identify the most effi

methodological robustness, a panel
hydrogen energy, Al-enabled decjgio , sthart logistics, and multi-criteria optimization.
blications and professional expertise in hydrogen
1ed Delphi process, guided by iterative Al-aided

election criteria in line with real-world complexity.

Data were sourced d literature, industry deployment reports, national energy
policy  documents, xperimental ~ benchmarks. Artificial  Intelligence-assisted
preprocessing wa e data reliability—standardizing inconsistent formats, filling

data gaps, an gnt patterns. Fuzzy logic was employed to manage imprecision and
iguity 1 ents, with fuzzy sets capturing metrics such as lifecycle cost, energy
ework consists of a multi-layered Al-augmented fuzzy decision model.
zzy importance weights to technical and logistical criteria—such as power
utilization efficiency, hydrogen purity, and conversion performance—

ctors, ensuring holistic weight calibration. The Fuzzy VIKOR component identifies
compromise solutions, ranking technologies that balance energy efficiency with deployment
feasibility. DEA benchmarks the resource and supply chain efficiency of top-ranked alternatives.
Al modules assist in refining constraints and running adaptive simulations for model
responsiveness. Final rankings are stress-tested using ARPASS, a stability analysis tool
combining standard deviation thresholds and entropy-based sensitivity checks, to ensure decision
consistency across expert variability and data uncertainty. Figure 1 represents the structured
decision-making framework.
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Figure 1. Hype

RESULTS

The Hyperfuzzy Decision Matgx §a crucgal s®p in evaluating Morocco’s hydrogen fuel cell
technologies. It integrates mu undgrtainty modeling, allowing experts to assess
alternatives under varying cQelit 5]."™is approach refines decision granularity, ensuring
d using triangular fuzzy numbers:

= (@), by, &) M

where @, i bundary of expert evaluation, b, is the most likely value given by
experts a
Tabl

fuz n constructing the Hyperfuzzy Decision Matrix.
Table 1. Triangular Fuzzy Numbers
Mathematical Representation Interpretation

Lower Boundary Represents the minimum expected performance value under worst-

a,;, case conditions, typically within [0.60, 0.75]
Most Likely Value Expected neutral evaluation based on expert judgment, typically

b, ranging between [0.75, 0.85]

Upper Boundary Maximum performance potential under ideal conditions, usually
C falling within [0.85, 0.95]

To ensure comparability, fuzzy values are normalized using:
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norm _ Qij — Amin @)
5]

X
Amax — Amin

where a,,;, and a4, are the minimum and maximum values across all alternatives.
Table 2 presents the expert evaluations of each hydrogen fuel cell alternative based on Morocco’s
urban energy priorities.

Table 2. Hyperfuzzy Decision Matrix with Expanded Data

Fuel . Thermal  System  Hydrg Energy
. Power e Electrochemical X
Alternative Density Utilization Performance Management Response Puifg Conversion
Efficiency Efficiency Time Rofffiffega8fls Efficiency
Hydrogen- (0.75, 0.85, (0.70, 0.80, (0.80, 0.85,0.90) (0.65,0.75, (0.85, 80, 0.88,94,(0.75, 0.85,
Powered Public 0.95) 0.90) 0.85) 0.90, R20) 0.95)
Transport
Stationary Fuel (0.80, 0.85, (0.75, 0.80, (0.85,0.90, 0.95) (0.80, 0.85, 0.88 0.90, (0.80, 0.85,
Cells 0.90) 0.85) 0.90) 0.95) 0.90)
Hydrogen (0.70, 0.80, (0.65,0.75, (0.75,0.80,0.85) (0.8 (0.75,0.80, (0.70, 0.80,
Refueling 0.90) 0.85) 0: 0.85) 0.90)
Infrastructure 0.90)

s rank highest in electrochemical

al for industrial and residential
response time and energy conversion
r urban mobility. Meanwhile, hydrogen
rmal management efficiency, ensuring
The fuzzy values indicate uncertainty margins,
upper bounds (0.95) signify optimal performance

The expert evaluations suggest that stati
performance and hydrogen purity, i
applications. Hydrogen-powered transpo
efficiency, positioning it as the preft
refueling infrastructure demongtratgs
stable hydrogen distribution a
capturing varying expert asse
levels under ideal conditio

D = [dy] ®

where dj; represents the direct influence of criterion i on criterion j. The normalized influence
weights are derived using:

Tl_l d..
Wj —n ~ n -
Diz1 Q=1 dy

This ensures that criteria with higher influence receive greater weight in the final ranking.
Table 3 below presents the direct influence of each criterion on others based on expert assessments
and Morocco’s hydrogen priorities.

(4)




Table 3. Hyperfuzzy DEMATEL Direct-Relation Matrix

Power Fuel Electrochemical =~ Thermal System Hydrogen Energy
Density Utilization Performance = Management Response Purity Conversion
Efficiency Efficiency Time Requirements Efficiency
Power Density ~ 0.00 0.30 0.40 0.35 0.25 0.45 0.50
Fuel Utilization  0.40 0.00 0.35 0.40 0.50 0.40 0.45
Efficiency
Electrochemical  0.35 0.40 0.00 0.45 0.50 0.35 0.40
Performance
Thermal 0.30 0.35 0.45 0.00 0.40 0.55
Management
Efficiency
System Response  0.25 0.50 0.50 0.40 0.50
Time
Hydrogen Purity  0.45 0.40 0.35 0.50 0.55
Requirements
Energy 0.50 0.45 0.40 0.55 0.00
Conversion
Efficiency

management efficiency (0.55) exert domina
performance. System response time
exhibit high  connectivity, ensuri
infrastructure. Hydrogen purity requir
highlighting the importance of hj

Ochemical performance (0.50) also
tability and stability in  hydrogen
significantly affect fuel utilization efficiency,
ality for optimal energy conversion.

With the criteria weight: Hyperfuzzy DEMATEL, the focus now shifts
to Total Integral Value-B ich aggregates continuous preference values using
integral computation; clection [28]. Applying integral-based ranking
ensures continuous p v@ gregation across hydrogen fuel cell alternatives. The total
RL 10 &2 Multi-stage integral approach, refining decision granularity.
alternative is derived using:

The integral 4
1 1
_ ' (5
= [ @ dx+ 2 [ i dx
0 0
whe is the adjustment factor for secondary preference weighting and

u'; (x) réPresents derivative-based preference shifts.
To enhance precision, the normalized integral value is determined:

norm _ Ii - Imin (6)
i

Imax - Imin

where I,,,;,, and I,,,,, are the minimum and maximum integral values across all alternatives.
Table 4 presents the computed integral values for each hydrogen fuel cell alternative.

Table 4. Total Integral Value-Based Ranking Results



Alternative I e Rank
Hydrogen- 0.85 0.92 1

Powered Public
Transport

Stationary Fuel 0.82 0.89 2

Cells
Hydrogen 0.78 0.85 3
Refueling
Infrastructure

fuel cells follow closely, demonstrating strong electrochemical performance and
making them ideal for industrial and residential applications. Hydrogen refugling
ranks third, highlighting its importance in fuel distribution but lower adapt: M‘

conversion.
ario Y pn, ensuring
10y robu§fness by adjusting
crO8sgagirogen fuel cell

The next phase applies Worst-Case Weighting for Extreme- Sc
ranking resilience under high uncertainty conditions. It refines
ranking scores under worst-case conditions, ensuring sta
alternatives [29].

The adjusted weight assignment is computed using:

(7

worst observed value for criterion j, f;; is
j and vyis the extreme-case sensitivity

where f* is the ideal best value for cri
the performance score of alternagiv
coefficient.

To ensure ranking stabili ormalized score is derived using:

<f ﬁ,) ®)
fr=f

where S}"°"¥ repre worst-case scenario ranking score for alternative i.
Table ts adjusted scores for each hydrogen fuel cell alternative under extreme

t

Table 5. Worst-Case Weighted Rankings

Alternative Worst-Case Rank
Score SY0Tst
Hydrogen-Powered Public 0.82 1
Transport
Stationary Fuel Cells 0.78 2
Hydrogen Refueling 0.72 3
Infrastructure

The highest worst-case score (0.82) confirms that hydrogen-powered transport maintains
itstop  ranking under extreme  uncertainty  conditions,  reinforcing its operational



resilience. Stationary fuel cells follow closely, demonstrating strong electrochemical stability,
ensuring long-term efficiency. Hydrogen refueling infrastructure ranks third, highlighting
its importance in fuel distribution but lower adaptability in direct energy conversion.

After refining rankings through Worst-Case Weighting, efficiency benchmarking follows
with Hybrid DEA Optimization and Constraint-Based Validation, ensuring that hydrogen fuel cell
alternatives maximize resource utilization while maintaining operational viability [30]. This step
combines Data Envelopment Analysis (DEA) with constraint-based validationto assess
performance efficiency among alternatives, refining decision accuracy.

The efficiency score is computed using the CCR model, defined as:

s
r=1UrYri 9
0, =maxo;——— 9)

p=1VpXpi

subject to Y0l 1 VpXp; < C
where 6; represents efficiency for alternative i, y,; are outputs (hydroge
adaptability), — x,;  areinputs (energy  consumption,  infra

Wsystem
géuirements),

u, and v, are DEA weight coefficients, and C defines the co ‘ oldTor efficiency
validation.
To improve ranking stability, DEA-adjusted efficiency or constraints:

(10)

Efficiency Scores

Qi Q]_adj Rank
0.94 0.91 1
0.89 0.86 2
0.85 0.82 3

ficiency score (0.94) validates hydrogen-powered transport as the
e alternative, demonstrating high adaptability and rapid energy
Mpnary fuel cells follow with strong electrochemical stability and purity, suitable
and residential energy grids. Hydrogen refueling infrastructure ranks third,

aluate ranking consistency under uncertainty, Al-augmented ARPASS Stability
Validation was applied. This approach leverages artificial intelligence to simulate scenario
perturbations, identify sensitive ranking thresholds, and detect latent instability patterns across
alternative configurations [31]. It incorporates both statistical dispersion and Al-supported
entropy diagnostics to refine robustness metrics.

The stability score for each alternative is computed using standard deviation analysis:
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0 = |% E (Rij — R)
N £ J
J=1

where o; represents ranking variability for alternative 7, R;; is the ranking of alternative i in

scenario j, R, is the mean ranking of alternative i, and N is the number of test scenarios generated
via Al-based stochastic modeling.

Entropy analysis refines these results using adaptive Al to estimate the probability space:

N
H; = - z pijlogpi;
=1

where H; is the entropy score for alternativei, and p;; is the g4 c& pbability of
alternative i occupying rank j, determined through Al-facilitated prefd ining.

Final stability-adjusted rankings are calculated as: @
leinal =R, — C((O'i + H, (13)

with a being a calibration coefficient optimized tHfg -assi%ed minimization of instability
variance.
Table 7 presents the ARPASS stability metgs
Table 7. SS Sggbilit9gValidation Results
Alternative o; H; R lf inal Rank
Consistenc
y (%)
95 0.92 0.91 99%
0.89 0.87 0.86 96%
0.82 0.80 0.79 92%
T pported analysis confirms hydrogen-powered public transport maintains a highly

70) across perturbation scenarios. Stationary fuel cells show consistent
hile hydrogen infrastructure ranks third but retains a resilient score due to its
supply continuity.

her assess ranking resilience, an Al-enhanced sensitivity analysis module was
implemented. This module uses intelligent perturbation algorithms to simulate variations in input
weights, criteria importance, and expert preference distributions [32]. It systematically computes
deviation across N simulations:

N base perturbed
_ Y_1|REC — R | (14)

J
N

AR;
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where AR; represents ranking deviation of alternative i, Rf’jase is the original ranking for

perturbed -

scenario J, is the ranking after perturbation, and N is the total number of sensitivity

scenarios.
The normalized deviation score ensures comparability:

AR‘rnax - ARmin

norm __
Si

where AR,,;, and AR, define extreme ranking deviations.
Table 8 displays the sensitivity analysis results.

Table 8. Sensitivity Analysis Results

Alternative AR;

Hydrogen-Powered Public ~ 0.05

Transport
Stationary Fuel Cells 0.08
Hydrogen Refueling 0.12
Infrastructure

The highest rank stability (98%) reaffirms t ‘o owered transport remains the most
i9s. §tati@nary fuel cells exhibit high stability
(94%), while the hydrogen refueling alte
infrastructural uncertainties, explaininggits 90

DISCUSSION

The results obtained thrg 1 Intelligence-Supported Hyperfuzzy VIKOR-
DEA framework provide € e Iti-dimensional evaluation of Morocco’s hydrogen
fuel cell technolggi RaS¥Zing  both sustainable  energy and supply  chain

optimization impera
hydrogen-powerg
deployment resilig
logistics sy,
modeling, efgured fte handling of criteria interdependencies, while worst-case weighting
i rce decision robustness by accounting for extreme uncertainty and
nstraints. These findings align with prior literature combining fuzzy MCDM
I-enhanced decision support, and constraint-based optimization.

igure 2 summarize the main findings from the sensitivity analysis and ranking

ort demonstrates the highest efficiency, adaptability, and
ptioning it as the most viable solution for integrated smart city and

Table 9. Quantitative Insights from Sensitivity Analysis and Performance Evaluations

Evaluation = Hydrogen- Stationary = Hydrogen

Metric Powered Fuel Cells  Refueling
Transport Infrastructure
Final Efficiency 0.91 0.86 0.82

adj
Score 6; 4
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Worst-Case 0.82 0.78 0.72
Ranking
Stability S}V°"¢
Sensitivity 98% 94% 90%
Analysis Stability
(%)
Entropy-Based 0.92 0.87 0.80
Ranking
Robustness H;
Normalized 0.92 0.89 0.85
Integral
Ranking []*°"™
Ranking Position Ist 2nd 3rd
Across All
Models

Final Efficiency
Score 8 adj
1.0

4

Worst-Case Normalized

Ranking Integral
Stability Ranking //norm

S/WOrSt
Sensitivity Entropy-Based
Analysis Ranking
Stability (%) Robusteness H;
Figure 2. Pe Ml of Hydgrogen Fuel Cell technologies

The integration of sitivity analysis proved critical in validating model
robustness. The A ility” validation framework—enhanced through automated
perturbation algqg y detection—confirmed that hydrogen-powered transport
maintained a co ’ inant position across diverse weighting scenarios. This confirms

the framew any JQlaccommodate expert subjectivity and operational volatility, echoing

insights Wang S, [33], who demonstrated that Al-enhanced entropy models bolster

decisi ce lin energy technology prioritization. Similarly, Pawlicki et al. [34]

em ssity of multi-layered statistical validation, including standard deviation
ine aintain ranking accuracy under uncertainty.

omparattve assessment with traditional VIKOR and TOPSIS methods shows that while
convehgiglal models provide baseline prioritizations, they lack the adaptive learning
capabilities and supply chain contextualization delivered by the Al-supported hybrid model.
Sohani et al. [35] noted that static TOPSIS rankings fail to capture evolving dynamics in
hydrogen deployment environments. In contrast, the current framework leverages Al-adaptive
fuzzy logic to deliver dynamic prioritizations reflective of real-world fluctuations in supply,
infrastructure readiness, and system efficiency.

The integration of DEA optimization with Al-guided constraint calibration advances
performance benchmarking beyond static assumptions. Unlike conventional MCDM models,
which often overlook real-world logistics, this approach simulates capacity limitations, fuel
supply chain efficiency, and infrastructure scalability. The DEA-derived efficiency scores

Journal of Sustainable Development of Energy, Water and Environment Systems 12



support existing international evidence on the superior utilization efficiency of hydrogen-based
transit systems compared to other fuel cell deployments [36].

Although hydrogen-powered public transport emerged as the most strategic option, the
findings also underscore the systemic importance of refueling infrastructure as a supply chain
backbone. Current logistics limitations highlight the need for Al-informed investment
planning in storage, purity assurance, and decentralized distribution networks. Comparative
insights confirm that grid-aligned infrastructure and purity regulation remain persistent global
challenges [37]. Entropy-based sensitivity metrics further reinforce that stationary fuel cells—
though slightly lower ranked—offer high long-term supply chain adaptability and should be
prioritized as part of Morocco’s diversified hydrogen roadmap.

CONCLUSION
The findings of this study offer a comprehensive evaluation of hy cell
technologies within Morocco’s evolving urban energy and supply cha kK% By

leveraging an Artificial Intelligence-Supported Hybrid Hyperfuzzy VIH

based alternatives in smart cities. The integration of fuzzy uncertain
Al-driven data preprocessing and stability learning—ensures luations capture

pns by demonstrating
timal under fluctuating

ble alternative, exhibiting high
, the study also underscores the
d supply chain elements, such as

efficiency, adaptability, and resource utiliz
importance of complementary infrastruct
hydrogen refueling stations and grid-i ry fuel cells, in fostering a holistic
hydrogen ecosystem. Comparative studies from Germany, Japan, and
California indicate that similar tr i obdMy—where mobility applications outperform

profile presents distinctive challenges and
amined, particularly in the context of logistical

mpstructured way to model uncertainty, expert assessments
related to individual experience, industry trends, and policy

ensions—such as Al-evaluated environmental impacts, hydrogen storage
mechdhgffis, and policy-driven adoption incentives—could further refine the decision
framework. Incorporating broader datasets, including real-world performance metrics from
pilot projects and supply chain analytics, would enhance the generalizability of results.

Future studies should also emphasize quantitative data integration to strengthen case-
specific applications. Advanced simulation models integrating hydrogen production
scalability, logistics network design, and lifecycle emissions could provide a more dynamic
evaluation framework. The inclusion of multi-objective optimization techniques, such as Al-
powered metaheuristic algorithms, would allow for more complex trade-off analysis—offering
policymakers and industry leaders deeper insights into cost-effective and sustainable hydrogen
deployment strategies.



Overall, this study provides a strong methodological foundation for hydrogen fuel cell
selection in Morocco’s smart urban infrastructure and supply systems, yet opportunities for
further refinement remain. Expanding the criteria set, minimizing subjective biases, and
advancing Al-supported quantitative methodologies will be critical to ensuring that hydrogen-
based solutions are deployed with maximum efficiency, sustainability, and resilience. These
future directions will contribute to Morocco’s hydrogen roadmap and help accelerate its
transition toward a smarter, cleaner, and more interconnected energy-supply system.

STATEMENTS AND DECLARATIONS

The authors utilized Al-powered language model to support writing refinement, clarity
enhancement, and consistency in technical terminology. All content was sul#€cquently
reviewed, validated, and finalized by the authors to ensure intellectual integrity an\gcl@larly
accuracy.
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