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ABSTRACT

This study proposes an Artificial Intelligence-Supported Hyperfuzzy framework to evaluate
hydrogen fuel cell technologies in Morocco's smart urban and supply chain ecosystems.
Integrating compromise-ranking with efficiency benchmarking, the model addresses challenges
in performance optimization, decision uncertainty, and supply integration. Key metrics — like
power density, fuel efficiency, and system adaptability — are assessed through fuzzy logic and
Artificial Intelligence-enhanced sensitivity analysis. Findings confirm that hydrogen-powered
public transport offers superior efficiency and robustness, emerging as the top-ranked
alternative. Artificial Intelligence strengthens traceability, weight calibration, and adaptability
under expert preference variation. The study underscores the importance of supportive
infrastructure, including refueling stations and grid-integrated systems, for scalable
deployment. Results offer data-driven insights for policymakers and planners, guiding
sustainable hydrogen strategies tailored to urban mobility and energy supply networks. By
advancing decision accuracy under real-world uncertainty, this framework provides a replicable
model for optimizing hydrogen-based solutions in smart cities.
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INTRODUCTION

The demand for sustainable urban energy and supply chain solutions has intensified due to
escalating environmental concerns, stringent carbon reduction policies, and the need for
resilient infrastructure in smart cities |1]. Hydrogen fuel cell technologies have gained traction
as a viable clean energy alternative, offering high energy efficiency, zero emissions, and
versatility across multiple applications, including urban mobility, industrial power generation,
and decentralized energy systems. Their ability to operate independently of fossil fuels,
coupled with advances in hydrogen storage, distribution, and supply logistics, positions them
as a key enabler in global energy and supply chain transitions [2]. However, challenges persist,
particularly in cost-effectiveness, technological readiness, and logistical scalability,
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necessitating a comprehensive evaluation framework to guide large-scale, data-informed
decision-making.

Despite growing research efforts, a critical gap exists in the systematic assessment of
hydrogen fuel cell technologies across interconnected urban energy and supply chain networks.
Conventional evaluation models often emphasize individual optimization factors — such as
technical feasibility or economic profitability — without accounting for multi-criteria
interdependencies, supply chain dynamics, and efficiency benchmarking. Prior studies
employing Fuzzy TOPSIS, ELECTRE III, and PROMETHEE II have demonstrated ranking
capabilities but lack integrated validation and adaptability under uncertainty. Kabassi and
Martinis [3] conducted a sensitivity analysis using the PROMETHEE II method to evaluate
environmental websites, highlighting the influence of input variability on decision outcomes,
but without embedding robustness mechanisms. Watrobski [4] introduced a temporal
extension to PROMETHEE II for managing alternative fuel consumption, offering dynamic
decision support over time, though it does not address validation under fuzzy uncertainty. Han
et al. |S] compared traditional TOPSIS and fuzzy TOPSIS approaches to evaluate sustainable
water management strategies, showing improved ranking differentiation, but leaving
methodological stability unexplored. Shamsuzzoha et al. [6] implemented a fuzzy TOPSIS
framework for selecting complex industrial projects, illustrating applicability in real-world
settings while lacking sensitivity diagnostics and adaptive refinement.

Given the complex trade-offs involved in hydrogen deployment, there is a pressing need for
an Al-driven decision-support system that dynamically prioritizes alternatives while
optimizing resource utilization and logistical performance. To address this challenge, the study
introduces an Artificial Intelligence-Supported Hybrid Hyperfuzzy VIKOR-DEA framework,
leveraging the strengths of compromise-based decision-making, efficiency assessment, and
intelligent model adaptation. Hyperfuzzy VIKOR manages conflicting objectives by
identifying trade-offs among sustainability, operational feasibility, and economic constraints
[7], while DEA (Data Envelopment Analysis) benchmarks technologies using performance
indicators and infrastructure readiness [8]. The inclusion of Al enhances the model’s ability to
handle uncertainty, automate preference learning, and adapt to evolving urban and supply
chain parameters. This hybrid architecture moves beyond static rankings, enabling flexible,
real-time optimization across multiple dimensions.

Applying this Al-augmented framework to hydrogen fuel cell selection in Morocco’s urban
systems, the study delivers a scalable and robust decision-support model, advancing both
sustainable energy planning and resilient supply chain infrastructure. Empirical validation
ensures that policymakers and industry stakeholders receive actionable, data-driven insights,
supporting effective deployment strategies for hydrogen technologies that balance economic
viability with long-term strategic resilience.

LITERATURE REVIEW

Recent advancements in hydrogen fuel cell technologies have positioned them as a
cornerstone of sustainable energy and supply chain transitions, particularly in urban
environments. The literature underscores the increasing viability of hydrogen as a clean energy
source, with studies highlighting improvements in fuel cell efficiency, hydrogen storage, and
smart-grid integration. Research by Tahmasbi et al. [9] provides a comprehensive review of
hydrogen production technologies, emphasizing the efficiency of steam methane reforming
(SMR) and the cleaner potential of electrolysis powered by renewable energy sources. While
SMR remains cost-effective, electrolysis offers a more sustainable alternative, despite higher
costs and scalability limitations — necessitating further optimization in production, distribution,
and logistics modeling.

One emerging trend in hydrogen systems is the integration of Artificial Intelligence and
quantum computing for performance modeling, supply chain analysis, and predictive analytics.



Studies explore Al-driven optimizations that enhance not only operational efficiency but also
upstream and downstream supply chain coordination — particularly in smart city applications
where hydrogen fuel cells are deployed in transportation networks and decentralized power
grids [10]. These advancements address key limitations in real-time demand forecasting and
logistics synchronization, improving resilience and reinforcing hydrogen’s role in achieving
carbon neutrality. Unlike conventional models, Al-empowered hydrogen infrastructures
enable adaptive learning mechanisms, enabling continuous improvement under fluctuating
supply-demand and infrastructural conditions [11].

Expanding the evaluation criteria for hydrogen fuel cell technologies is crucial to ensuring
comprehensive assessments. Prior studies have often emphasized cost-efficiency and energy
yield, neglecting technical performance metrics and logistical dynamics that directly affect
long-term urban sustainability. Recent research points to key additional factors — such as power
density, fuel utilization efficiency, electrochemical performance, thermal management
efficiency, system response time, hydrogen purity requirements, and energy conversion
efficiency — as central to optimizing design, extending service life, and securing consistent
performance across both energy and supply chain networks [12].

e Power Density is critical in urban mobility scenarios, where fuel cell compactness
directly impacts vehicle design and energy delivery. Recent advancements in hybrid
flow power sources and gas-diffusion anodes improve not only energy output but also
facilitate efficient energy packaging and storage across the supply chain [13].

e Fuel Utilization Efficiency, reflecting the percentage of hydrogen converted into
electricity, impacts both sustainability and fuel logistics [14]. Findings from PEMFC
configurations show that real-time Al-enabled humidity control can substantially
reduce hydrogen waste, improving grid integration and fuel supply balance [15].

e Electrochemical Performance measures degradation rates and voltage efficiency under
operational conditions. Bashir et al. [16] highlight the importance of fuel type
optimization — such as methanol vs. methane — while Al-assisted monitoring tools
increasingly enable predictive maintenance and performance stabilization.

e Thermal Management Efficiency is essential for sustained operations in fuel logistics
and storage environments [17]. Machine learning-based thermal optimization strategies,
like particle swarm optimization, now help manage thermal load distribution across
modular supply chain units, increasing overall energy yield and transport viability [18].

e System Response Time affects adaptive load management. Advanced hybrid power
management systems, trained on predictive datasets, significantly enhance real-time
decision-making in both power dispatch and fuel routing within smart urban
environments [19].

e Hydrogen Purity Requirements, enforced by global standards (e.g., ISO 14687:2019),
are crucial for minimizing catalyst degradation. Purification technologies now benefit
from Al-optimized process sequencing and fault detection, enhancing supply chain
integrity from production to end-use [20].

e Energy Conversion Efficiency, gauging usable power output from hydrogen input,
defines both economic feasibility and logistical throughput. As Khan et al. [21] note,
high-conversion efficiency aligns with sustainable performance across centralized and
distributed supply hubs.

Multi-criteria decision-making (MCDM) models have played a pivotal role in evaluating
fuel cell systems by addressing sustainability trade-offs, efficiency benchmarking, and
uncertainty. Yet, traditional tools like Fuzzy TOPSIS, ELECTRE III, and PROMETHEE II
lack integrated efficiency validation. The Al-supported Hybrid Hyperfuzzy VIKOR-DEA
framework addresses this gap by combining compromise-oriented ranking with performance
benchmarking and adaptive Al feedback mechanisms [22]. Hyperfuzzy VIKOR evaluates
multidimensional criteria under ambiguity, while DEA quantifies relative efficiency. The Al



layer refines weight derivation, adapts to supply chain disruptions, and enhances robustness
across operational scenarios.

Recent studies position hydrogen as a foundational pillar of smart city infrastructure —
supporting transport electrification, microgrid evolution, and intelligent logistics [23], [24].
However, accelerated adoption requires coherent policy development, infrastructure
investment, and supply chain transparency. By embedding Al into the Hyperfuzzy
VIKOR-DEA framework, this research establishes a scalable, intelligent model that supports
real-time, data-driven decision-making. It equips stakeholders with tools for sustainable
hydrogen deployment while balancing economic, environmental, and logistical objectives —
marking a decisive advancement for hydrogen adoption across Morocco’s evolving urban
systems.

METHODS

Morocco has positioned itself as a key player in the global hydrogen economy, with
ambitious plans to integrate green hydrogen into urban energy and supply chain systems. The
country has allocated one million hectares for hydrogen production, with 300,000 hectares
already designated for initial projects. Several international partnerships — including
collaborations with TotalEnergies, ENGIE, and ACWA Power — aim to develop
hydrogen-powered mobility, industrial applications, electricity storage, and logistical
infrastructure for fuel distribution.

Based on Morocco’s hydrogen roadmap and smart city priorities, we identify three key
alternatives for evaluation:

e Hydrogen-Powered Public Transport (Bus & Tram Systems): Targeting reduced urban

emissions and enhanced mobility in Casablanca and Rabat.

e Stationary Fuel Cells for Industrial & Residential Use: Supporting distributed power

and storage as part of Morocco’s renewable energy and infrastructure strategy.

e Hydrogen Refueling Infrastructure for Mobility & Logistics: Enabling efficient

hydrogen supply chain flows to serve transport fleets and private hydrogen vehicles.

The objective is to identify the most efficient and sustainable hydrogen fuel cell
configuration, balancing energy performance with multi-criteria and supply chain trade-offs.
To ensure methodological robustness, a panel of domain experts was selected, including
specialists in hydrogen energy, Al-enabled decision systems, smart logistics, and multi-criteria
optimization. Experts were chosen based on their academic publications and professional
expertise in hydrogen deployment and strategic planning. A modified Delphi process, guided
by iterative Al-aided feedback consolidation, was used to refine selection criteria in line with
real-world complexity.

Data were sourced from peer-reviewed literature, industry deployment reports, national
energy policy documents, and experimental benchmarks. Artificial Intelligence-assisted
preprocessing was used to enhance data reliability — standardizing inconsistent formats, filling
data gaps, and uncovering latent patterns. Fuzzy logic was employed to manage imprecision
and ambiguity in expert assessments, with fuzzy sets capturing metrics such as lifecycle cost,
energy yield, logistical resilience, and infrastructure scalability.

The analytical framework consists of a multi-layered Al-augmented fuzzy decision model.
Experts assign fuzzy importance weights to technical and logistical criteria — such as power
density, fuel utilization efficiency, hydrogen purity, and conversion performance — using
hyperfuzzy linguistic scales. Hyperfuzzy DEMATEL extracts interdependencies among
decision factors, ensuring holistic weight calibration. The Fuzzy VIKOR component identifies
compromise solutions, ranking technologies that balance energy efficiency with deployment
feasibility. DEA benchmarks the resource and supply chain efficiency of top-ranked
alternatives. Al modules assist in refining constraints and running adaptive simulations for
model responsiveness. Final rankings are stress-tested using ARPASS, a stability analysis tool



combining standard deviation thresholds and entropy-based sensitivity checks, to ensure
decision consistency across expert variability and data uncertainty. Figure 1 represents the
structured decision-making framework.

Defining Decision
Alternatives and Criteria
¥

Constructing
Hyperfuzzy Dec15|on Matrix

Applylng
Hyperfuzzy DEMATEL
!

Computing Total

Integral Values

| (VIKOR-Based Ranking) |
v

Integrating Expert
| Preference Adjustment |
¥
Conducting DEA-Based
Efficiency Analysis |
v
Performing Stability
Assessment
| (ARPASS + Sensitiivity) |
v

Synthesizing Final
| Rankings and Insights |

Figure 1. Hyperfuzzy framework

RESULTS

The Hyperfuzzy Decision Matrix is a crucial step in evaluating Morocco’s hydrogen fuel
cell technologies. It integrates multi-layered uncertainty modeling, allowing experts to assess
alternatives under varying conditions [25]. This approach refines decision granularity,
ensuring robust rankings. Each criterion is represented using triangular fuzzy numbers:

Xij = (@, by, &) (1)

where a,;, is the lower boundary of expert evaluation, 5;, is the most likely value given by
experts and ¢;; is the upper boundary.

Table 1 summarizes the mathematical structure and interpretative boundaries of the triangular
fuzzy numbers used in constructing the Hyperfuzzy Decision Matrix.

Table 1. Triangular Fuzzy Numbers

Mathematical Interpretation
Representation P
Lower Boundary Represents the minimum expected performance value under
a,;, worst-case conditions, typically within [0.60, 0.75]
Most Likely Value Expected neutral evaluation based on expert judgment, typically
b, ranging between [0.75, 0.85]
Upper Boundary Maximum performance potential under ideal conditions, usually

Cy falling within [0.85, 0.95]




To ensure comparability, fuzzy values are normalized using:

norm __ 5] min
G = @
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X

where ap, i, and a,,,x are the minimum and maximum values across all alternatives.
Table 2 presents the expert evaluations of each hydrogen fuel cell alternative based on
Morocco’s urban energy priorities.

Table 2. Hyperfuzzy Decision Matrix with Expanded Data
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The expert evaluations suggest that stationary fuel cells rank highest in electrochemical
performance and hydrogen purity, making them ideal for industrial and residential applications.
Hydrogen-powered transport excels in system response time and energy conversion efficiency,
positioning it as the preferred alternative for urban mobility. Meanwhile, hydrogen refueling
infrastructure demonstrates strong thermal management efficiency, ensuring stable hydrogen
distribution and fuel stability. The fuzzy values indicate uncertainty margins, capturing varying
expert assessments, where the upper bounds (0.95) signify optimal performance levels under
ideal conditions.

The next step involves Criteria Weight Determination via Hyperfuzzy DEMATEL, which
refines the relative importance of evaluation criteria based on interdependencies and causal
relationships [26].

To quantify the influence relationships among criteria, a direct-relation matrix is
constructed using expert evaluations. The Hyperfuzzy DEMATEL method employs pairwise
comparisons to assess the degree of influence each criterion has on others [27].

The direct-relation matrix is defined as:

D = [dj] (3)

where d;; represents the direct influence of criterion 7 on criterion j. The normalized influence
weights are derived using:

W, = i=1dij 4@
T I X dy



This ensures that criteria with higher influence receive greater weight in the final ranking.
Table 3 below presents the direct influence of each criterion on others based on expert
assessments and Morocco’s hydrogen priorities.

Table 3. Hyperfuzzy DEMATEL Direct-Relation Matrix

Hydrogen

Fuel . Thermal  System Energy
Power .. ... " .  Electrochemic .
Densi Utilization al Performance Management Response Requirem Conversion
v Efficiency Efficiency = Time celnts Efficiency
Power Density  0.00 0.30 0.40 0.35 0.25 0.45 0.50
Fuel
Utilization 0.40 0.00 0.35 0.40 0.50 0.40 0.45
Efficiency
Electrochemic 35 49 0.00 0.45 050 035 0.40
al Performance
Thermal
Management  0.30 0.35 0.45 0.00 0.40 0.50 0.55
Efficiency
System 595 050 0.50 0.40 000 045 0.50
Response Time
Hydrogen
Purity 0.45 0.40 0.35 0.50 0.45 0.00 0.55
Requirements
Energy
Conversion  0.50 0.45 0.40 0.55 0.50 0.55 0.00
Efficiency

The highest influence values indicate strong interdependencies among criteria, shaping
Morocco’s hydrogen fuel cell selection. Energy conversion efficiency (0.55) and thermal
management efficiency (0.55) exert dominant influence, reinforcing their critical role in fuel cell
performance. System response time (0.50) and electrochemical performance (0.50) also exhibit
high connectivity, ensuring dynamic adaptability and stability in hydrogen infrastructure.
Hydrogen purity requirements (0.55) significantly affect fuel utilization efficiency, highlighting
the importance of high hydrogen quality for optimal energy conversion.

With the criteria weights determined via Hyperfuzzy DEMATEL, the focus now shifts to
Total Integral Value-Based Ranking, which aggregates continuous preference values using
integral computations to refine selection [28]. Applying integral-based ranking ensures
continuous preference aggregation across hydrogen fuel cell alternatives. The total integral
value is computed using a multi-stage integral approach, refining decision granularity.

The integral value for each alternative is derived using:

1 1

I; = j#i(x) dx +Afﬂ,i(x) dx (5)
0

0

where Ais the adjustment factor for secondary preference weighting and pu';(x) represents
derivative-based preference shifts.
To enhance precision, the normalized integral value is determined:
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where I, and I;,,4 are the minimum and maximum integral values across all alternatives.
Table 4 presents the computed integral values for each hydrogen fuel cell alternative.

Table 4. Total Integral Value-Based Ranking Results

Alternative I; jerm Rank
Hydrogen-Powered Public
Transport 0.85 0.92 1
Stationary Fuel Cells 0.82 0.89 2
Hydrogen Refueling
Infrastructure 0.78 0.85 3

The highest integral value (0.85) confirms that hydrogen-powered transport ranks as the
most optimal alternative, ensuring efficient energy conversion and rapid system response.
Stationary fuel cells follow closely, demonstrating strong electrochemical performance and
hydrogen purity, making them ideal for industrial and residential applications. Hydrogen
refueling infrastructure ranks third, highlighting its importance in fuel distribution but lower
adaptability in direct energy conversion.

The next phase applies Worst-Case Weighting for Extreme-Scenario Validation, ensuring
ranking resilience under high uncertainty conditions. It refines decision robustness by
adjusting ranking scores under worst-case conditions, ensuring stability across hydrogen fuel
cell alternatives [29].

The adjusted weight assignment is computed using:

B f*—ﬁ,-> (fij—f->
w]—max<f*_f_ +y o (7

where f* is the ideal best value for criterion j, f ~is the worst observed value for criterion j, f;; is

the performance score of alternative i for criterion j and y is the extreme-case sensitivity
coefficient.
To ensure ranking stability, the worst-case normalized score is derived using:

n

=1
st =) ay (= ®
l EAVAES
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where S/°"*! represents the worst-case scenario ranking score for alternative i.

Table 5 presents the adjusted scores for each hydrogen fuel cell alternative under extreme
uncertainty conditions.

Table 5. Worst-Case Weighted Rankings

Alternative Worst-Case Score S;V°st Rank
Hydrogen-Powered Public Transport 0.82 1
Stationary Fuel Cells 0.78 2

Hydrogen Refueling Infrastructure 0.72 3




The highest worst-case score (0.82) confirms that hydrogen-powered transport maintains
its top ranking under extreme uncertainty conditions, reinforcing its operational resilience.
Stationary fuel cells follow closely, demonstrating strong electrochemical stability, ensuring
long-term efficiency. Hydrogen refueling infrastructure ranks third, highlighting its
importance in fuel distribution but lower adaptability in direct energy conversion.

After refining rankings through Worst-Case Weighting, efficiency benchmarking follows
with Hybrid DEA Optimization and Constraint-Based Validation, ensuring that hydrogen fuel
cell alternatives maximize resource utilization while maintaining operational viability [30].
This step combines Data Envelopment Analysis (DEA) with constraint-based validation to
assess performance efficiency among alternatives, refining decision accuracy.

The efficiency score is computed using the CCR model, defined as:

s
r=1UrYri

M ©)
p=1VpXpi

0; = max

subject to 511 VpXp; < C,
where 0; represents efficiency for alternative i,y,; are outputs (hydrogen utilization, system
adaptability), x,,; are inputs (energy consumption, infrastructure requirements), u,- and v, are DEA

weight coefficients, and C defines the constraint threshold for efficiency validation.
To improve ranking stability, DEA-adjusted efficiency scores account for constraints:

m
adj _ o Lp=1VpXpi
67" =6; a—F (10)
where a adjusts for resource limitations across alternatives.
Table 6 summarizes the Hybrid DEA efficiency scores.
Table 6. Hybrid DEA Efficiency Scores
Alternative 0; Hfldj Rank
Hydrogen-Powered Public Transport 0.94 0.91 1
Stationary Fuel Cells 0.89 0.86 2
Hydrogen Refueling Infrastructure 0.85 0.82 3

The highest efficiency score (0.94) validates hydrogen-powered transport as the most
resource-effective alternative, demonstrating high adaptability and rapid energy conversion.
Stationary fuel cells follow with strong electrochemical stability and purity, suitable for
industrial and residential energy grids. Hydrogen refueling infrastructure ranks third,
emphasizing its critical role in logistics but lower direct efficiency for energy conversion.

To evaluate ranking consistency under uncertainty, Al-augmented ARPASS Stability
Validation was applied. This approach leverages artificial intelligence to simulate scenario
perturbations, identify sensitive ranking thresholds, and detect latent instability patterns across
alternative configurations [31]. It incorporates both statistical dispersion and Al-supported
entropy diagnostics to refine robustness metrics.

The stability score for each alternative is computed using standard deviation analysis:

N
1 _
0; = NZ(RU - R)? (11)
]:



where o; represents ranking variability for alternative 7, R;; is the ranking of alternative 7 in

scenario j, R, is the mean ranking of alternative i, and N is the number of test scenarios
generated via Al-based stochastic modeling.
Entropy analysis refines these results using adaptive Al to estimate the probability space:

N
H; = _Zpijlogpij (12)
Jj=1

where H; is the entropy score for alternative i, andp;; is the predicted probability of alternative i
occupying rank j, determined through Al-facilitated preference pattern mining.
Final stability-adjusted rankings are calculated as:

Rfinal = R, — a(o; + Hy) (13)

with a being a calibration coefficient optimized through Al-assisted minimization of
instability variance.
Table 7 presents the ARPASS stability metrics.

Table 7. ARPASS Stability Validation Results

_ Rank
Alternative o; H; Rfinal Consistency
(%0)
Hydrogen-Powered Public 0.95 0.92 0.91 99%
Transport

Stationary Fuel Cells 0.89 0.87 0.86 96%
Hydrogen Refueling 0

Infrastructure 0.82 0.80 0.79 92%

The Al-supported analysis confirms hydrogen-powered public transport maintains a highly
stable top rank (99%) across perturbation scenarios. Stationary fuel cells show consistent
reliability (96%), while hydrogen infrastructure ranks third but retains a resilient score due to
its strategic role in supply continuity.

To further assess ranking resilience, an Al-enhanced sensitivity analysis module was
implemented. This module uses intelligent perturbation algorithms to simulate variations in
input weights, criteria importance, and expert preference distributions [32]. It systematically
computes deviation across N simulations:

N base perturbed
Y IRP — R,
AR, ==Y 4 (14)
N

where AR; represents ranking deviation of alternative i, Rlbjase is the original ranking for

perturbed

scenario j, is the ranking after perturbation, and N is the total number of sensitivity

scenarios.
The normalized deviation score ensures comparability:
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where AR i, and AR« define extreme ranking deviations.
Table 8 displays the sensitivity analysis results.
Table 8. Sensitivity Analysis Results
) ' norm Rank Stability
Alternative AR; S; (%)
Hydrogen-Powered Public Transport 0.05 0.92 98%
Stationary Fuel Cells 0.08 0.89 94%
Hydrogen Refueling Infrastructure 0.12 0.85 90%

The highest rank stability (98%) reaffirms that hydrogen-powered transport remains the
most robust alternative across Al-driven sensitivity scenarios. Stationary fuel cells exhibit high
stability (94%), while the hydrogen refueling alternative reflects slightly greater sensitivity to
logistic and infrastructural uncertainties, explaining its 90% stability score.

DISCUSSION

The results obtained through the Artificial Intelligence-Supported Hyperfuzzy
VIKOR-DEA framework provide a detailed and multi-dimensional evaluation of Morocco’s
hydrogen fuel cell technologies, emphasizing both sustainable energy and supply chain
optimization imperatives in smart urban systems. The ranking outcomes confirm that
hydrogen-powered public transport demonstrates the highest efficiency, adaptability, and
deployment resilience — positioning it as the most viable solution for integrated smart city and
logistics systems. The integral-based ranking approach, enhanced by Al-driven sensitivity
modeling, ensured accurate handling of criteria interdependencies, while worst-case weighting
scenarios reinforced decision robustness by accounting for extreme uncertainty and
infrastructure constraints. These findings align with prior literature combining fuzzy MCDM
methodologies, Al-enhanced decision support, and constraint-based optimization.

Table 9 and Figure 2 summarize the main findings from the sensitivity analysis and
ranking evaluations.

Table 9. Quantitative Insights from Sensitivity Analysis and Performance Evaluations

Hydrogen-Powere  Stationary Fuel Hydrogen Refueling

Evaluation Metric d Transport Cells Infrastructure
Final Efficiency Score 6;% 0.91 0.86 0.82
Worst-Case Rankin
Stability STt & 0.82 0.78 0.72
4
Sen;igg;{iypzﬂf‘;ym 98% 94% 90%
V]
Entropy-Based Ranking
Robustness H, 0.92 0.87 0.80
Normalized Integral
Ranking nons 0.92 0.89 0.85
l
Ranking Position Across All Lt rnd 3rd

Models
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Figure 2. Performance evaluation of Hydgrogen Fuel Cell technologies

The integration of Al-supported sensitivity analysis proved critical in validating model
robustness. The ARPASS stability validation framework — enhanced through automated
perturbation algorithms and entropy detection — confirmed that hydrogen-powered transport
maintained a consistently dominant position across diverse weighting scenarios. This confirms
the framework’s ability to accommodate expert subjectivity and operational volatility, echoing
insights from Wang et al. [33], who demonstrated that Al-enhanced entropy models bolster
decision resilience in energy technology prioritization. Similarly, Pawlicki et al. [34]
emphasized the necessity of multi-layered statistical validation, including standard deviation
refinements, to maintain ranking accuracy under uncertainty.

Comparative assessment with traditional VIKOR and TOPSIS methods shows that while
conventional models provide baseline prioritizations, they lack the adaptive learning
capabilities and supply chain contextualization delivered by the Al-supported hybrid model.
Sohani et al. [35] noted that static TOPSIS rankings fail to capture evolving dynamics in
hydrogen deployment environments. In contrast, the current framework leverages Al-adaptive
fuzzy logic to deliver dynamic prioritizations reflective of real-world fluctuations in supply,
infrastructure readiness, and system efficiency.

The integration of DEA optimization with Al-guided constraint calibration advances
performance benchmarking beyond static assumptions. Unlike conventional MCDM models,
which often overlook real-world logistics, this approach simulates capacity limitations, fuel
supply chain efficiency, and infrastructure scalability. The DEA-derived efficiency scores
support existing international evidence on the superior utilization efficiency of hydrogen-based
transit systems compared to other fuel cell deployments [36].

Although hydrogen-powered public transport emerged as the most strategic option, the
findings also underscore the systemic importance of refueling infrastructure as a supply chain
backbone. Current logistics limitations highlight the need for Al-informed investment planning
in storage, purity assurance, and decentralized distribution networks. Comparative insights
confirm that grid-aligned infrastructure and purity regulation remain persistent global
challenges [37]. Entropy-based sensitivity metrics further reinforce that stationary fuel
cells—though slightly lower ranked — offer high long-term supply chain adaptability and
should be prioritized as part of Morocco’s diversified hydrogen roadmap.

CONCLUSION

The findings of this study offer a comprehensive evaluation of hydrogen fuel cell
technologies within Morocco’s evolving urban energy and supply chain framework. By
leveraging an Artificial Intelligence-Supported Hybrid Hyperfuzzy VIKOR-DEA approach,
the ranking results provide valuable insights into optimal deployment strategies for



hydrogen-based alternatives in smart cities. The integration of fuzzy uncertainty modelling —
enhanced by Al-driven data preprocessing and stability learning — ensures that expert
evaluations capture the complexities of real-world decision-making, enhancing ranking
accuracy despite varying criteria dependencies. The sensitivity analysis reinforces these
conclusions by demonstrating robust stability, ensuring that the recommended alternative
remains optimal under fluctuating expert preferences, logistical disruptions, and data
variations.

Hydrogen-powered public transport emerges as the most viable alternative, exhibiting high
efficiency, adaptability, and resource utilization. However, the study also underscores the
importance of complementary infrastructure and coordinated supply chain elements, such as
hydrogen refueling stations and grid-integrated stationary fuel cells, in fostering a holistic
hydrogen ecosystem. Comparative assessments with studies from Germany, Japan, and
California indicate that similar trends exist globally — where mobility applications outperform
other hydrogen implementations in early-stage adoption phases. Despite these parallels,
Morocco’s unique geographic and energy profile presents distinctive challenges and
opportunities that should be further examined, particularly in the context of logistical
scalability and policy-aligned supply chain integration.

One of the key limitations of this study is the subjective nature of expert-based evaluations.
While fuzzy logic provides a structured way to model uncertainty, expert assessments
inevitably introduce biases related to individual experience, industry trends, and policy
expectations. Future research should explore Al-based predictive modeling and machine
learning-assisted preference calibration to supplement expert judgment, thereby minimizing
subjective influences on decision-making.

Another limitation lies in the restricted scope of criteria and alternatives considered in this
evaluation. While the selected parameters address major technical and economic concerns,
additional dimensions — such as Al-evaluated environmental impacts, hydrogen storage
mechanisms, and policy-driven adoption incentives — could further refine the decision
framework. Incorporating broader datasets, including real-world performance metrics from
pilot projects and supply chain analytics, would enhance the generalizability of results.

Future studies should also emphasize quantitative data integration to strengthen
case-specific applications. Advanced simulation models integrating hydrogen production
scalability, logistics network design, and lifecycle emissions could provide a more dynamic
evaluation framework. The inclusion of multi-objective optimization techniques, such as
Al-powered metaheuristic algorithms, would allow for more complex trade-off analysis —
offering policymakers and industry leaders deeper insights into cost-effective and sustainable
hydrogen deployment strategies.

Overall, this study provides a strong methodological foundation for hydrogen fuel cell
selection in Morocco’s smart urban infrastructure and supply systems, yet opportunities for
further refinement remain. Expanding the criteria set, minimizing subjective biases, and
advancing Al-supported quantitative methodologies will be critical to ensuring that
hydrogen-based solutions are deployed with maximum efficiency, sustainability, and
resilience. These future directions will contribute to Morocco’s hydrogen roadmap and help
accelerate its transition toward a smarter, cleaner, and more interconnected energy-supply
system.

STATEMENTS AND DECLARATIONS

The authors utilized Al-powered language model to support writing refinement, clarity
enhancement, and consistency in technical terminology. All content was subsequently
reviewed, validated, and finalized by the authors to ensure intellectual integrity and scholarly
accuracy.
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