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ABSTRACT 
This study proposes an Artificial Intelligence-Supported Hyperfuzzy framework to evaluate 
hydrogen fuel cell technologies in Morocco's smart urban and supply chain ecosystems. 
Integrating compromise-ranking with efficiency benchmarking, the model addresses challenges 
in performance optimization, decision uncertainty, and supply integration. Key metrics—like 
power density, fuel efficiency, and system adaptability—are assessed through fuzzy logic and 
Artificial Intelligence-enhanced sensitivity analysis. Findings confirm that hydrogen-powered 
public transport offers superior efficiency and robustness, emerging as the top-ranked 
alternative. Artificial Intelligence strengthens traceability, weight calibration, and adaptability 
under expert preference variation. The study underscores the importance of supportive 
infrastructure, including refueling stations and grid-integrated systems, for scalable deployment. 
Results offer data-driven insights for policymakers and planners, guiding sustainable hydrogen 
strategies tailored to urban mobility and energy supply networks. By advancing decision 
accuracy under real-world uncertainty, this framework provides a replicable model for 
optimizing hydrogen-based solutions in smart cities. 

KEYWORDS 
Artificial intelligence, Hyperfuzzy VIKOR-DEA, Hydrogen fuel cell technologies, Multi-criteria 
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INTRODUCTION 
The demand for sustainable urban energy and supply chain solutions has intensified due to 

escalating environmental concerns, stringent carbon reduction policies, and the need for resilient 
infrastructure in smart cities [1]. Hydrogen fuel cell technologies have gained traction as a viable 
clean energy alternative, offering high energy efficiency, zero emissions, and versatility across 
multiple applications, including urban mobility, industrial power generation, and decentralized 
energy systems. Their ability to operate independently of fossil fuels, coupled with advances in 
hydrogen storage, distribution, and supply logistics, positions them as a key enabler in global 
energy and supply chain transitions [2]. However, challenges persist, particularly in cost-
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effectiveness, technological readiness, and logistical scalability, necessitating a comprehensive 
evaluation framework to guide large-scale, data-informed decision-making. 

Despite growing research efforts, a critical gap exists in the systematic assessment of hydrogen 
fuel cell technologies across interconnected urban energy and supply chain networks. 
Conventional evaluation models often emphasize individual optimization factors—such as 
technical feasibility or economic profitability—without accounting for multi-criteria 
interdependencies, supply chain dynamics, and efficiency benchmarking. Prior studies employing 
Fuzzy TOPSIS, ELECTRE III, and PROMETHEE II have demonstrated ranking capabilities but 
lack integrated validation and adaptability under uncertainty. Kabassi and Martinis [3] conducted 
a sensitivity analysis using the PROMETHEE II method to evaluate environmental websites, 
highlighting the influence of input variability on decision outcomes, but without embedding 
robustness mechanisms. Wątróbski [4] introduced a temporal extension to PROMETHEE II for 
managing alternative fuel consumption, offering dynamic decision support over time, though it 
does not address validation under fuzzy uncertainty. Han et al. [5] compared traditional TOPSIS 
and fuzzy TOPSIS approaches to evaluate sustainable water management strategies, showing 
improved ranking differentiation, but leaving methodological stability unexplored. Shamsuzzoha 
et al. [6] implemented a fuzzy TOPSIS framework for selecting complex industrial projects, 
illustrating applicability in real-world settings while lacking sensitivity diagnostics and adaptive 
refinement. 

Given the complex trade-offs involved in hydrogen deployment, there is a pressing need for 
an AI-driven decision-support system that dynamically prioritizes alternatives while optimizing 
resource utilization and logistical performance. To address this challenge, the study introduces 
an Artificial Intelligence-Supported Hybrid Hyperfuzzy VIKOR-DEA framework, leveraging the 
strengths of compromise-based decision-making, efficiency assessment, and intelligent model 
adaptation. Hyperfuzzy VIKOR manages conflicting objectives by identifying trade-offs among 
sustainability, operational feasibility, and economic constraints [7], while DEA (Data 
Envelopment Analysis) benchmarks technologies using performance indicators and infrastructure 
readiness [8]. The inclusion of AI enhances the model’s ability to handle uncertainty, automate 
preference learning, and adapt to evolving urban and supply chain parameters. This hybrid 
architecture moves beyond static rankings, enabling flexible, real-time optimization across 
multiple dimensions. 

Applying this AI-augmented framework to hydrogen fuel cell selection in Morocco’s urban 
systems, the study delivers a scalable and robust decision-support model, advancing both 
sustainable energy planning and resilient supply chain infrastructure. Empirical validation ensures 
that policymakers and industry stakeholders receive actionable, data-driven insights, supporting 
effective deployment strategies for hydrogen technologies that balance economic viability with 
long-term strategic resilience. 
LITERATURE REVIEW 

Recent advancements in hydrogen fuel cell technologies have positioned them as a cornerstone 
of sustainable energy and supply chain transitions, particularly in urban environments. The 
literature underscores the increasing viability of hydrogen as a clean energy source, with studies 
highlighting improvements in fuel cell efficiency, hydrogen storage, and smart-grid integration. 
Research by Tahmasbi et al. [9] provides a comprehensive review of hydrogen production 
technologies, emphasizing the efficiency of steam methane reforming (SMR) and the cleaner 
potential of electrolysis powered by renewable energy sources. While SMR remains cost-effective, 
electrolysis offers a more sustainable alternative, despite higher costs and scalability limitations—
necessitating further optimization in production, distribution, and logistics modeling. 

One emerging trend in hydrogen systems is the integration of Artificial Intelligence and 
quantum computing for performance modeling, supply chain analysis, and predictive analytics. 
Studies explore AI-driven optimizations that enhance not only operational efficiency but also 
upstream and downstream supply chain coordination—particularly in smart city applications 
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where hydrogen fuel cells are deployed in transportation networks and decentralized power grids 
[10]. These advancements address key limitations in real-time demand forecasting and logistics 
synchronization, improving resilience and reinforcing hydrogen’s role in achieving carbon 
neutrality. Unlike conventional models, AI-empowered hydrogen infrastructures enable adaptive 
learning mechanisms, enabling continuous improvement under fluctuating supply-demand and 
infrastructural conditions [11]. 

Expanding the evaluation criteria for hydrogen fuel cell technologies is crucial to ensuring 
comprehensive assessments. Prior studies have often emphasized cost-efficiency and energy yield, 
neglecting technical performance metrics and logistical dynamics that directly affect long-term 
urban sustainability. Recent research points to key additional factors—such as power density, fuel 
utilization efficiency, electrochemical performance, thermal management efficiency, system 
response time, hydrogen purity requirements, and energy conversion efficiency—as central to 
optimizing design, extending service life, and securing consistent performance across both energy 
and supply chain networks [12]. 

• Power Density is critical in urban mobility scenarios, where fuel cell compactness directly 
impacts vehicle design and energy delivery. Recent advancements in hybrid flow power 
sources and gas-diffusion anodes improve not only energy output but also 
facilitate efficient energy packaging and storage across the supply chain [13]. 

• Fuel Utilization Efficiency, reflecting the percentage of hydrogen converted into electricity, 
impacts both sustainability and fuel logistics [14]. Findings from PEMFC configurations 
show that real-time AI-enabled humidity control can substantially reduce hydrogen waste, 
improving grid integration and fuel supply balance [15]. 

• Electrochemical Performance measures degradation rates and voltage efficiency under 
operational conditions. Bashir et al. [16] highlight the importance of fuel type 
optimization—such as methanol vs. methane—while AI-assisted monitoring 
tools increasingly enable predictive maintenance and performance stabilization. 

• Thermal Management Efficiency is essential for sustained operations in fuel logistics and 
storage environments [17]. Machine learning–based thermal optimization strategies, like 
particle swarm optimization, now help manage thermal load distribution across modular 
supply chain units, increasing overall energy yield and transport viability [18]. 

• System Response Time affects adaptive load management. Advanced hybrid power 
management systems, trained on predictive datasets, significantly enhance real-time 
decision-making in both power dispatch and fuel routing within smart urban environments 
[19]. 

• Hydrogen Purity Requirements, enforced by global standards (e.g., ISO 14687:2019), are 
crucial for minimizing catalyst degradation. Purification technologies now benefit 
from AI-optimized process sequencing and fault detection, enhancing supply chain 
integrity from production to end-use [20]. 

• Energy Conversion Efficiency, gauging usable power output from hydrogen input, defines 
both economic feasibility and logistical throughput. As Khan et al. [21] note, high-
conversion efficiency aligns with sustainable performance across centralized and 
distributed supply hubs. 

Multi-criteria decision-making (MCDM) models have played a pivotal role in evaluating fuel 
cell systems by addressing sustainability trade-offs, efficiency benchmarking, and uncertainty. 
Yet, traditional tools like Fuzzy TOPSIS, ELECTRE III, and PROMETHEE II lack integrated 
efficiency validation. The AI-supported Hybrid Hyperfuzzy VIKOR-DEA framework addresses 
this gap by combining compromise-oriented ranking with performance benchmarking 
and adaptive AI feedback mechanisms [22]. Hyperfuzzy VIKOR evaluates multidimensional 
criteria under ambiguity, while DEA quantifies relative efficiency. The AI layer refines weight 
derivation, adapts to supply chain disruptions, and enhances robustness across operational 
scenarios. 
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Recent studies position hydrogen as a foundational pillar of smart city infrastructure—
supporting transport electrification, microgrid evolution, and intelligent logistics [23], [24]. 
However, accelerated adoption requires coherent policy development, infrastructure investment, 
and supply chain transparency. By embedding AI into the Hyperfuzzy VIKOR-DEA framework, 
this research establishes a scalable, intelligent model that supports real-time, data-driven decision-
making. It equips stakeholders with tools for sustainable hydrogen deployment while balancing 
economic, environmental, and logistical objectives—marking a decisive advancement for 
hydrogen adoption across Morocco’s evolving urban systems. 

METHODS 
Morocco has positioned itself as a key player in the global hydrogen economy, with ambitious 

plans to integrate green hydrogen into urban energy and supply chain systems. The country has 
allocated one million hectares for hydrogen production, with 300,000 hectares already designated 
for initial projects. Several international partnerships—including collaborations with 
TotalEnergies, ENGIE, and ACWA Power—aim to develop hydrogen-powered mobility, 
industrial applications, electricity storage, and logistical infrastructure for fuel distribution. 

Based on Morocco’s hydrogen roadmap and smart city priorities, we identify three key 
alternatives for evaluation: 

• Hydrogen-Powered Public Transport (Bus & Tram Systems): Targeting reduced urban 
emissions and enhanced mobility in Casablanca and Rabat. 

• Stationary Fuel Cells for Industrial & Residential Use: Supporting distributed power and 
storage as part of Morocco’s renewable energy and infrastructure strategy. 

• Hydrogen Refueling Infrastructure for Mobility & Logistics: Enabling efficient hydrogen 
supply chain flows to serve transport fleets and private hydrogen vehicles. 

The objective is to identify the most efficient and sustainable hydrogen fuel cell configuration, 
balancing energy performance with multi-criteria and supply chain trade-offs. To ensure 
methodological robustness, a panel of domain experts was selected, including specialists in 
hydrogen energy, AI-enabled decision systems, smart logistics, and multi-criteria optimization. 
Experts were chosen based on their academic publications and professional expertise in hydrogen 
deployment and strategic planning. A modified Delphi process, guided by iterative AI-aided 
feedback consolidation, was used to refine selection criteria in line with real-world complexity. 

Data were sourced from peer-reviewed literature, industry deployment reports, national energy 
policy documents, and experimental benchmarks. Artificial Intelligence-assisted 
preprocessing was used to enhance data reliability—standardizing inconsistent formats, filling 
data gaps, and uncovering latent patterns. Fuzzy logic was employed to manage imprecision and 
ambiguity in expert assessments, with fuzzy sets capturing metrics such as lifecycle cost, energy 
yield, logistical resilience, and infrastructure scalability. 

The analytical framework consists of a multi-layered AI-augmented fuzzy decision model. 
Experts assign fuzzy importance weights to technical and logistical criteria—such as power 
density, fuel utilization efficiency, hydrogen purity, and conversion performance—
using hyperfuzzy linguistic scales. Hyperfuzzy DEMATEL extracts interdependencies among 
decision factors, ensuring holistic weight calibration. The Fuzzy VIKOR component identifies 
compromise solutions, ranking technologies that balance energy efficiency with deployment 
feasibility. DEA benchmarks the resource and supply chain efficiency of top-ranked alternatives. 
AI modules assist in refining constraints and running adaptive simulations for model 
responsiveness. Final rankings are stress-tested using ARPASS, a stability analysis tool 
combining standard deviation thresholds and entropy-based sensitivity checks, to ensure decision 
consistency across expert variability and data uncertainty. Figure 1 represents the structured 
decision-making framework. 
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Figure 1. Hyperfuzzy framework 

 

RESULTS 
The Hyperfuzzy Decision Matrix is a crucial step in evaluating Morocco’s hydrogen fuel cell 

technologies. It integrates multi-layered uncertainty modeling, allowing experts to assess 
alternatives under varying conditions [25]. This approach refines decision granularity, ensuring 
robust rankings. Each criterion is represented using triangular fuzzy numbers: 

 
𝑋𝑋𝑖𝑖𝑖𝑖 = (𝑎𝑎𝚤𝚤𝚤𝚤,�  𝑏𝑏𝚤𝚤𝚤𝚤,�  𝑐𝑐𝚤𝚤𝚤𝚤 � ) (1) 

 
where 𝑎𝑎𝚤𝚤𝚤𝚤,�  is the lower boundary of expert evaluation, 𝑏𝑏𝚤𝚤𝚤𝚤,�  is the most likely value given by 
experts and 𝑐𝑐𝚤𝚤𝚤𝚤 �  is the upper boundary. 
Table 1 summarizes the mathematical structure and interpretative boundaries of the triangular 
fuzzy numbers used in constructing the Hyperfuzzy Decision Matrix. 
 

Table 1. Triangular Fuzzy Numbers 

Mathematical Representation Interpretation 
Lower Boundary 

𝑎𝑎𝚤𝚤𝚤𝚤 �  
Represents the minimum expected performance value under worst-

case conditions, typically within [0.60, 0.75] 
Most Likely Value 

𝑏𝑏𝚤𝚤𝚤𝚤 �  
Expected neutral evaluation based on expert judgment, typically 

ranging between [0.75, 0.85] 
Upper Boundary 

𝑐𝑐𝚤𝚤𝚤𝚤 �  
Maximum performance potential under ideal conditions, usually 

falling within [0.85, 0.95] 
 

To ensure comparability, fuzzy values are normalized using: 
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𝑥𝑥𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 =
𝑎𝑎𝑖𝑖𝑖𝑖 − 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚

𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚
 (2) 

 
where 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 are the minimum and maximum values across all alternatives. 
Table 2 presents the expert evaluations of each hydrogen fuel cell alternative based on Morocco’s 
urban energy priorities. 

 
Table 2. Hyperfuzzy Decision Matrix with Expanded Data 

Alternative Power 
Density 

Fuel 
Utilization 
Efficiency 

Electrochemical 
Performance 

Thermal 
Management 

Efficiency 

System 
Response 

Time 

Hydrogen 
Purity 

Requirements 

Energy 
Conversion 
Efficiency 

Hydrogen-
Powered Public 

Transport 

(0.75, 0.85, 
0.95) 

(0.70, 0.80, 
0.90) 

(0.80, 0.85, 0.90) (0.65, 0.75, 
0.85) 

(0.85, 
0.90, 
0.95) 

(0.80, 0.85, 
0.90) 

(0.75, 0.85, 
0.95) 

Stationary Fuel 
Cells 

(0.80, 0.85, 
0.90) 

(0.75, 0.80, 
0.85) 

(0.85, 0.90, 0.95) (0.80, 0.85, 
0.90) 

(0.70, 
0.80, 
0.90) 

(0.85, 0.90, 
0.95) 

(0.80, 0.85, 
0.90) 

Hydrogen 
Refueling 

Infrastructure 

(0.70, 0.80, 
0.90) 

(0.65, 0.75, 
0.85) 

(0.75, 0.80, 0.85) (0.85, 0.90, 
0.95) 

(0.80, 
0.85, 
0.90) 

(0.75, 0.80, 
0.85) 

(0.70, 0.80, 
0.90) 

 
The expert evaluations suggest that stationary fuel cells rank highest in electrochemical 

performance and hydrogen purity, making them ideal for industrial and residential 
applications. Hydrogen-powered transport excels in system response time and energy conversion 
efficiency, positioning it as the preferred alternative for urban mobility. Meanwhile, hydrogen 
refueling infrastructure demonstrates strong thermal management efficiency, ensuring 
stable hydrogen distribution and fuel stability. The fuzzy values indicate uncertainty margins, 
capturing varying expert assessments, where the upper bounds (0.95) signify optimal performance 
levels under ideal conditions. 

The next step involves Criteria Weight Determination via Hyperfuzzy DEMATEL, which 
refines the relative importance of evaluation criteria based on interdependencies and causal 
relationships [26]. 

To quantify the influence relationships among criteria, a direct-relation matrix is constructed 
using expert evaluations. The Hyperfuzzy DEMATEL method employs pairwise comparisons to 
assess the degree of influence each criterion has on others [27]. 

The direct-relation matrix is defined as: 
 

D = �dij� (3) 

 
where dij  represents the direct influence of criterion i on criterion j. The normalized influence 
weights are derived using: 
 

 𝑊𝑊𝑗𝑗 =
∑ dij
𝑛𝑛
𝑖𝑖=1

∑ ∑ dij
𝑛𝑛
𝑗𝑗=1

𝑛𝑛
𝑖𝑖=1

 (4) 

 
This ensures that criteria with higher influence receive greater weight in the final ranking. 
Table 3 below presents the direct influence of each criterion on others based on expert assessments 
and Morocco’s hydrogen priorities. 
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Table 3. Hyperfuzzy DEMATEL Direct-Relation Matrix 

 
Power 

Density 
Fuel 

Utilization 
Efficiency 

Electrochemical 
Performance 

Thermal 
Management 

Efficiency 

System 
Response 

Time 

Hydrogen 
Purity 

Requirements 

Energy 
Conversion 
Efficiency 

Power Density 0.00 0.30 0.40 0.35 0.25 0.45 0.50 
Fuel Utilization 

Efficiency 
0.40 0.00 0.35 0.40 0.50 0.40 0.45 

Electrochemical 
Performance 

0.35 0.40 0.00 0.45 0.50 0.35 0.40 

Thermal 
Management 

Efficiency 

0.30 0.35 0.45 0.00 0.40 0.50 0.55 

System Response 
Time 

0.25 0.50 0.50 0.40 0.00 0.45 0.50 

Hydrogen Purity 
Requirements 

0.45 0.40 0.35 0.50 0.45 0.00 0.55 

Energy 
Conversion 
Efficiency 

0.50 0.45 0.40 0.55 0.50 0.55 0.00 

 
The highest influence values indicate strong interdependencies among criteria, shaping 

Morocco’s hydrogen fuel cell selection. Energy conversion efficiency (0.55) and thermal 
management efficiency (0.55) exert dominant influence, reinforcing their critical role in fuel cell 
performance. System response time (0.50) and electrochemical performance (0.50) also 
exhibit high connectivity, ensuring dynamic adaptability and stability in hydrogen 
infrastructure. Hydrogen purity requirements (0.55) significantly affect fuel utilization efficiency, 
highlighting the importance of high hydrogen quality for optimal energy conversion.  

With the criteria weights determined via Hyperfuzzy DEMATEL, the focus now shifts 
to Total Integral Value-Based Ranking, which aggregates continuous preference values using 
integral computations to refine selection [28]. Applying integral-based ranking 
ensures continuous preference aggregation across hydrogen fuel cell alternatives. The total 
integral value is computed using a multi-stage integral approach, refining decision granularity. 

The integral value for each alternative is derived using: 
 

𝐼𝐼𝑖𝑖 = �𝜇𝜇𝑖𝑖(𝑥𝑥)𝑑𝑑𝑑𝑑 + 𝜆𝜆�𝜇𝜇′𝑖𝑖(𝑥𝑥)𝑑𝑑𝑑𝑑
1

0

1

0

  (5) 

 
where 𝜆𝜆 is the adjustment factor for secondary preference weighting and 
𝜇𝜇′𝑖𝑖(𝑥𝑥) represents derivative-based preference shifts. 

To enhance precision, the normalized integral value is determined: 
 

𝐼𝐼𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 =
𝐼𝐼𝑖𝑖 − 𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚

𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚 − 𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚
  (6) 

 
where 𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚 and 𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚 are the minimum and maximum integral values across all alternatives. 
Table 4 presents the computed integral values for each hydrogen fuel cell alternative. 

 
Table 4. Total Integral Value-Based Ranking Results 
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Alternative 𝐼𝐼𝑖𝑖 𝐼𝐼𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 Rank 
Hydrogen-

Powered Public 
Transport 

0.85 0.92 1 

Stationary Fuel 
Cells 

0.82 0.89 2 

Hydrogen 
Refueling 

Infrastructure 

0.78 0.85 3 

 
The highest integral value (0.85) confirms that hydrogen-powered transport ranks as the most 

optimal alternative, ensuring efficient energy conversion and rapid system response. Stationary 
fuel cells follow closely, demonstrating strong electrochemical performance and hydrogen purity, 
making them ideal for industrial and residential applications. Hydrogen refueling infrastructure 
ranks third, highlighting its importance in fuel distribution but lower adaptability in direct energy 
conversion.  

The next phase applies Worst-Case Weighting for Extreme-Scenario Validation, ensuring 
ranking resilience under high uncertainty conditions. It refines decision robustness by adjusting 
ranking scores under worst-case conditions, ensuring stability across hydrogen fuel cell 
alternatives [29]. 

The adjusted weight assignment is computed using: 
 

𝜔𝜔𝑗𝑗 = max�
𝑓𝑓∗ − 𝑓𝑓𝑖𝑖𝑖𝑖
𝑓𝑓∗ − 𝑓𝑓−�

+ γ �
𝑓𝑓𝑖𝑖𝑖𝑖 − 𝑓𝑓−

𝑓𝑓∗ − 𝑓𝑓−� (7) 

 
where 𝑓𝑓∗ is the ideal best value for criterion j, 𝑓𝑓−is the worst observed value for criterion j, 𝑓𝑓𝑖𝑖𝑖𝑖 is 
the performance score of alternative i for criterion j and γ is the extreme-case sensitivity 
coefficient. 

To ensure ranking stability, the worst-case normalized score is derived using: 
 

𝑆𝑆𝑖𝑖𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 = �𝜔𝜔𝑗𝑗

𝑛𝑛

𝑗𝑗=1

�
𝑓𝑓∗ − 𝑓𝑓𝑖𝑖𝑖𝑖
𝑓𝑓∗ − 𝑓𝑓−� (8) 

 
where 𝑆𝑆𝑖𝑖𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 represents the worst-case scenario ranking score for alternative i. 
Table 5 presents the adjusted scores for each hydrogen fuel cell alternative under extreme 
uncertainty conditions. 

 
Table 5. Worst-Case Weighted Rankings 

Alternative Worst-Case 
Score 𝑆𝑆𝑖𝑖𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 

Rank 

Hydrogen-Powered Public 
Transport 

0.82 1 

Stationary Fuel Cells 0.78 2 
Hydrogen Refueling 

Infrastructure 
0.72 3 

 
The highest worst-case score (0.82) confirms that hydrogen-powered transport maintains 

its top ranking under extreme uncertainty conditions, reinforcing its operational 



Tamtam, F., Amzil, M., et al. 
Artificial Intelligence-Supported Hyperfuzzy Framework for…  

Year 2025 
Volume 13, Issue 4, 1130620 

 
 

Journal of Sustainable Development of Energy, Water and Environment Systems 9 

 

resilience. Stationary fuel cells follow closely, demonstrating strong electrochemical stability, 
ensuring long-term efficiency. Hydrogen refueling infrastructure ranks third, highlighting 
its importance in fuel distribution but lower adaptability in direct energy conversion.  

After refining rankings through Worst-Case Weighting, efficiency benchmarking follows 
with Hybrid DEA Optimization and Constraint-Based Validation, ensuring that hydrogen fuel cell 
alternatives maximize resource utilization while maintaining operational viability [30]. This step 
combines Data Envelopment Analysis (DEA) with constraint-based validation to assess 
performance efficiency among alternatives, refining decision accuracy. 

The efficiency score is computed using the CCR model, defined as: 
 

𝜃𝜃𝑖𝑖 = 𝑚𝑚𝑚𝑚𝑚𝑚
∑ 𝑢𝑢𝑟𝑟𝑦𝑦𝑟𝑟𝑟𝑟𝑠𝑠
𝑟𝑟=1

∑ 𝑣𝑣𝑝𝑝𝑥𝑥𝑝𝑝𝑝𝑝𝑚𝑚
𝑝𝑝=1

  (9) 

 
subject to ∑ 𝑣𝑣𝑝𝑝𝑥𝑥𝑝𝑝𝑝𝑝𝑚𝑚

𝑝𝑝=1 ≤ 𝐶𝐶 
where 𝜃𝜃𝑖𝑖  represents efficiency for alternative i, 𝑦𝑦𝑟𝑟𝑟𝑟  are outputs (hydrogen utilization, system 
adaptability), 𝑥𝑥𝑝𝑝𝑝𝑝  are inputs (energy consumption, infrastructure requirements), 
𝑢𝑢𝑟𝑟  and 𝑣𝑣𝑝𝑝  are DEA weight coefficients, and 𝐶𝐶  defines the constraint threshold for efficiency 
validation. 

To improve ranking stability, DEA-adjusted efficiency scores account for constraints: 
 

𝜃𝜃𝑗𝑗
𝑎𝑎𝑎𝑎𝑎𝑎 = 𝜃𝜃𝑖𝑖 − 𝛼𝛼

∑ 𝑣𝑣𝑝𝑝𝑥𝑥𝑝𝑝𝑝𝑝𝑚𝑚
𝑝𝑝=1

𝐶𝐶   (10) 

 
where 𝛼𝛼 adjusts for resource limitations across alternatives. 
Table 6 summarizes the Hybrid DEA efficiency scores. 

 
Table 6. Hybrid DEA Efficiency Scores 

Alternative 𝜃𝜃𝑖𝑖 𝜃𝜃𝑗𝑗
𝑎𝑎𝑎𝑎𝑎𝑎 Rank 

Hydrogen-Powered Public 
Transport 

0.94 0.91 1 

Stationary Fuel Cells 0.89 0.86 2 
Hydrogen Refueling 

Infrastructure 
0.85 0.82 3 

 
The highest efficiency score (0.94) validates hydrogen-powered transport as the 

most resource-effective alternative, demonstrating high adaptability and rapid energy 
conversion. Stationary fuel cells follow with strong electrochemical stability and purity, suitable 
for industrial and residential energy grids. Hydrogen refueling infrastructure ranks third, 
emphasizing its critical role in logistics but lower direct efficiency for energy conversion. 

To evaluate ranking consistency under uncertainty, AI-augmented ARPASS Stability 
Validation was applied. This approach leverages artificial intelligence to simulate scenario 
perturbations, identify sensitive ranking thresholds, and detect latent instability patterns across 
alternative configurations [31]. It incorporates both statistical dispersion and AI-supported 
entropy diagnostics to refine robustness metrics. 

The stability score for each alternative is computed using standard deviation analysis: 
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𝜎𝜎𝑖𝑖 = �
1
𝑁𝑁�(𝑅𝑅𝑖𝑖𝑖𝑖 − 𝑅𝑅𝚤𝚤� )2

𝑁𝑁

𝑗𝑗=1

 (11) 

 
where 𝜎𝜎𝑖𝑖  represents ranking variability for alternative i, 𝑅𝑅𝑖𝑖𝑖𝑖  is the ranking of alternative i in 
scenario j, 𝑅𝑅𝚤𝚤�  is the mean ranking of alternative i, and 𝑁𝑁 is the number of test scenarios generated 
via AI-based stochastic modeling. 

Entropy analysis refines these results using adaptive AI to estimate the probability space: 
 

𝐻𝐻𝑖𝑖 = −�𝑝𝑝𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙𝑝𝑝𝑖𝑖𝑖𝑖

𝑁𝑁

𝑗𝑗=1

 (12) 

 
where 𝐻𝐻𝑖𝑖  is the entropy score for alternative i, and 𝑝𝑝𝑖𝑖𝑖𝑖  is the predicted probability of 
alternative i occupying rank j, determined through AI-facilitated preference pattern mining. 

Final stability-adjusted rankings are calculated as: 
 

𝑅𝑅𝑖𝑖
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝑅𝑅𝑖𝑖 − 𝛼𝛼(𝜎𝜎𝑖𝑖 + 𝐻𝐻𝑖𝑖) (13) 

 
with 𝛼𝛼 being a calibration coefficient optimized through AI-assisted minimization of instability 
variance. 
Table 7 presents the ARPASS stability metrics. 

 
Table 7. ARPASS Stability Validation Results 

Alternative 𝜎𝜎𝑖𝑖 𝐻𝐻𝑖𝑖 𝑅𝑅𝑖𝑖
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 Rank 

Consistenc
y (%) 

Hydrogen-Powered 
Public Transport 

0.95 0.92 0.91 99% 

Stationary Fuel Cells 0.89 0.87 0.86 96% 
Hydrogen Refueling 

Infrastructure 
0.82 0.80 0.79 92% 

 
The AI-supported analysis confirms hydrogen-powered public transport maintains a highly 

stable top rank (99%) across perturbation scenarios. Stationary fuel cells show consistent 
reliability (96%), while hydrogen infrastructure ranks third but retains a resilient score due to its 
strategic role in supply continuity. 

To further assess ranking resilience, an AI-enhanced sensitivity analysis module was 
implemented. This module uses intelligent perturbation algorithms to simulate variations in input 
weights, criteria importance, and expert preference distributions [32]. It systematically computes 
deviation across N simulations: 

 

∆𝑅𝑅𝑖𝑖 =
∑ �𝑅𝑅𝑖𝑖𝑖𝑖𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 − 𝑅𝑅𝑖𝑖𝑖𝑖

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�𝑁𝑁
𝑗𝑗=1

𝑁𝑁  
(14) 
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where ∆𝑅𝑅𝑖𝑖  represents ranking deviation of alternative i, 𝑅𝑅𝑖𝑖𝑖𝑖𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏  is the original ranking for 
scenario j, 𝑅𝑅𝑖𝑖𝑖𝑖

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 is the ranking after perturbation, and 𝑁𝑁 is the total number of sensitivity 
scenarios. 

The normalized deviation score ensures comparability: 
 

𝑆𝑆𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 =
∆𝑅𝑅𝑖𝑖 − ∆𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚

∆𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 − ∆𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚
 (15) 

 
where ∆𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 and ∆𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚define extreme ranking deviations. 
Table 8 displays the sensitivity analysis results. 

 
Table 8. Sensitivity Analysis Results 

Alternative ∆𝑅𝑅𝑖𝑖  𝑆𝑆𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 Rank 
Stability 

(%) 
Hydrogen-Powered Public 

Transport 
0.05 0.92 98% 

Stationary Fuel Cells 0.08 0.89 94% 
Hydrogen Refueling 

Infrastructure 
0.12 0.85 90% 

 
The highest rank stability (98%) reaffirms that hydrogen-powered transport remains the most 

robust alternative across AI-driven sensitivity scenarios. Stationary fuel cells exhibit high stability 
(94%), while the hydrogen refueling alternative reflects slightly greater sensitivity to logistic and 
infrastructural uncertainties, explaining its 90% stability score. 

DISCUSSION 
The results obtained through the Artificial Intelligence-Supported Hyperfuzzy VIKOR-

DEA framework provide a detailed and multi-dimensional evaluation of Morocco’s hydrogen 
fuel cell technologies, emphasizing both sustainable energy and supply chain 
optimization imperatives in smart urban systems. The ranking outcomes confirm that 
hydrogen-powered public transport demonstrates the highest efficiency, adaptability, and 
deployment resilience—positioning it as the most viable solution for integrated smart city and 
logistics systems. The integral-based ranking approach, enhanced by AI-driven sensitivity 
modeling, ensured accurate handling of criteria interdependencies, while worst-case weighting 
scenarios reinforced decision robustness by accounting for extreme uncertainty and 
infrastructure constraints. These findings align with prior literature combining fuzzy MCDM 
methodologies, AI-enhanced decision support, and constraint-based optimization. 
Table 9 and Figure 2 summarize the main findings from the sensitivity analysis and ranking 
evaluations.  

 
Table 9. Quantitative Insights from Sensitivity Analysis and Performance Evaluations 

Evaluation 
Metric 

Hydrogen-
Powered 
Transport 

Stationary 
Fuel Cells 

Hydrogen 
Refueling 

Infrastructure 
Final Efficiency 

Score 𝜃𝜃𝑗𝑗
𝑎𝑎𝑎𝑎𝑎𝑎 

0.91 0.86 0.82 
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Worst-Case 
Ranking 

Stability 𝑆𝑆𝑖𝑖𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 

0.82 0.78 0.72 

Sensitivity 
Analysis Stability 

(%) 

98% 94% 90% 

Entropy-Based 
Ranking 

Robustness 𝐻𝐻𝑖𝑖 

0.92 0.87 0.80 

Normalized 
Integral 

Ranking 𝐼𝐼𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 

0.92 0.89 0.85 

Ranking Position 
Across All 

Models 

1st 2nd 3rd 

 
 

 
 

Figure 2. Performance evaluation of Hydgrogen Fuel Cell technologies 

The integration of AI-supported sensitivity analysis proved critical in validating model 
robustness. The ARPASS stability validation framework—enhanced through automated 
perturbation algorithms and entropy detection—confirmed that hydrogen-powered transport 
maintained a consistently dominant position across diverse weighting scenarios. This confirms 
the framework’s ability to accommodate expert subjectivity and operational volatility, echoing 
insights from Wang et al. [33], who demonstrated that AI-enhanced entropy models bolster 
decision resilience in energy technology prioritization. Similarly, Pawlicki et al. [34] 
emphasized the necessity of multi-layered statistical validation, including standard deviation 
refinements, to maintain ranking accuracy under uncertainty. 

Comparative assessment with traditional VIKOR and TOPSIS methods shows that while 
conventional models provide baseline prioritizations, they lack the adaptive learning 
capabilities and supply chain contextualization delivered by the AI-supported hybrid model. 
Sohani et al. [35] noted that static TOPSIS rankings fail to capture evolving dynamics in 
hydrogen deployment environments. In contrast, the current framework leverages AI-adaptive 
fuzzy logic to deliver dynamic prioritizations reflective of real-world fluctuations in supply, 
infrastructure readiness, and system efficiency. 

The integration of DEA optimization with AI-guided constraint calibration advances 
performance benchmarking beyond static assumptions. Unlike conventional MCDM models, 
which often overlook real-world logistics, this approach simulates capacity limitations, fuel 
supply chain efficiency, and infrastructure scalability. The DEA-derived efficiency scores 
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support existing international evidence on the superior utilization efficiency of hydrogen-based 
transit systems compared to other fuel cell deployments [36]. 

Although hydrogen-powered public transport emerged as the most strategic option, the 
findings also underscore the systemic importance of refueling infrastructure as a supply chain 
backbone. Current logistics limitations highlight the need for AI-informed investment 
planning in storage, purity assurance, and decentralized distribution networks. Comparative 
insights confirm that grid-aligned infrastructure and purity regulation remain persistent global 
challenges [37]. Entropy-based sensitivity metrics further reinforce that stationary fuel cells—
though slightly lower ranked—offer high long-term supply chain adaptability and should be 
prioritized as part of Morocco’s diversified hydrogen roadmap. 

CONCLUSION 
The findings of this study offer a comprehensive evaluation of hydrogen fuel cell 

technologies within Morocco’s evolving urban energy and supply chain framework. By 
leveraging an Artificial Intelligence-Supported Hybrid Hyperfuzzy VIKOR-DEA approach, 
the ranking results provide valuable insights into optimal deployment strategies for hydrogen-
based alternatives in smart cities. The integration of fuzzy uncertainty modeling—enhanced by 
AI-driven data preprocessing and stability learning—ensures that expert evaluations capture 
the complexities of real-world decision-making, enhancing ranking accuracy despite varying 
criteria dependencies. The sensitivity analysis reinforces these conclusions by demonstrating 
robust stability, ensuring that the recommended alternative remains optimal under fluctuating 
expert preferences, logistical disruptions, and data variations. 

Hydrogen-powered public transport emerges as the most viable alternative, exhibiting high 
efficiency, adaptability, and resource utilization. However, the study also underscores the 
importance of complementary infrastructure and coordinated supply chain elements, such as 
hydrogen refueling stations and grid-integrated stationary fuel cells, in fostering a holistic 
hydrogen ecosystem. Comparative assessments with studies from Germany, Japan, and 
California indicate that similar trends exist globally—where mobility applications outperform 
other hydrogen implementations in early-stage adoption phases. Despite these parallels, 
Morocco’s unique geographic and energy profile presents distinctive challenges and 
opportunities that should be further examined, particularly in the context of logistical 
scalability and policy-aligned supply chain integration. 

One of the key limitations of this study is the subjective nature of expert-based evaluations. 
While fuzzy logic provides a structured way to model uncertainty, expert assessments 
inevitably introduce biases related to individual experience, industry trends, and policy 
expectations. Future research should explore AI-based predictive modeling and machine 
learning-assisted preference calibration to supplement expert judgment, thereby minimizing 
subjective influences on decision-making. 

Another limitation lies in the restricted scope of criteria and alternatives considered in this 
evaluation. While the selected parameters address major technical and economic concerns, 
additional dimensions—such as AI-evaluated environmental impacts, hydrogen storage 
mechanisms, and policy-driven adoption incentives—could further refine the decision 
framework. Incorporating broader datasets, including real-world performance metrics from 
pilot projects and supply chain analytics, would enhance the generalizability of results. 

Future studies should also emphasize quantitative data integration to strengthen case-
specific applications. Advanced simulation models integrating hydrogen production 
scalability, logistics network design, and lifecycle emissions could provide a more dynamic 
evaluation framework. The inclusion of multi-objective optimization techniques, such as AI-
powered metaheuristic algorithms, would allow for more complex trade-off analysis—offering 
policymakers and industry leaders deeper insights into cost-effective and sustainable hydrogen 
deployment strategies. 
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Overall, this study provides a strong methodological foundation for hydrogen fuel cell 
selection in Morocco’s smart urban infrastructure and supply systems, yet opportunities for 
further refinement remain. Expanding the criteria set, minimizing subjective biases, and 
advancing AI-supported quantitative methodologies will be critical to ensuring that hydrogen-
based solutions are deployed with maximum efficiency, sustainability, and resilience. These 
future directions will contribute to Morocco’s hydrogen roadmap and help accelerate its 
transition toward a smarter, cleaner, and more interconnected energy-supply system. 

STATEMENTS AND DECLARATIONS 
The authors utilized AI-powered language model to support writing refinement, clarity 

enhancement, and consistency in technical terminology. All content was subsequently 
reviewed, validated, and finalized by the authors to ensure intellectual integrity and scholarly 
accuracy. 

REFERENCES 
[1] D. Kumar and T. Tewary, “Investigating the sustainability of urban energy generation 

with techno-economic analysis from hybrid energy systems,” Energy Strategy Rev., vol. 
50, p. 101250, Nov. 2023, doi: 10.1016/j.esr.2023.101250. 

[2] M. M. Hossain Bhuiyan and Z. Siddique, “Hydrogen as an alternative fuel: A 
comprehensive review of challenges and opportunities in production, storage, and 
transportation,” Int. J. Hydrog. Energy, vol. 102, pp. 1026–1044, Feb. 2025, doi: 
10.1016/j.ijhydene.2025.01.033. 

[3] K. Kabassi and A. Martinis, “Sensitivity Analysis of PROMETHEE II for the Evaluation 
of Environmental Websites,” Appl. Sci., vol. 11, no. 19, Art. no. 19, Jan. 2021, doi: 
10.3390/app11199215. 

[4] J. Wątróbski, “Temporal PROMETHEE II — New multi-criteria approach to sustainable 
management of alternative fuels consumption,” J. Clean. Prod., vol. 413, p. 137445, Aug. 
2023, doi: 10.1016/j.jclepro.2023.137445. 

[5] F. Han, R. N. Alkhawaji, and M. M. Shafieezadeh, “Evaluating sustainable water 
management strategies using TOPSIS and fuzzy TOPSIS methods,” Appl. Water Sci., vol. 
15, no. 1, p. 4, Dec. 2024, doi: 10.1007/s13201-024-02336-7. 

[6] A. Shamsuzzoha, S. Piya, and M. Shamsuzzaman, “Application of fuzzy TOPSIS 
framework for selecting complex project in a case company,” J. Glob. Oper. Strateg. 
Sourc., vol. 14, no. 3, pp. 528–566, Jun. 2021, doi: 10.1108/JGOSS-07-2020-0040. 

[7] Y.-M. Wei, “A Hybrid Multi-Criteria Decision-Making Framework for the Strategic 
Evaluation of Business Development Models,” Information, vol. 16, no. 6, Art. no. 6, Jun. 
2025, doi: 10.3390/info16060454. 

[8] H. P. Guevel, N. Ramón, and J. Aparicio, “Benchmarking in data envelopment analysis: 
balanced efforts to achieve realistic targets,” Ann. Oper. Res., Sep. 2024, doi: 
10.1007/s10479-024-06216-w. 

[9] M. Tahmasbi, M. Siavashi, and R. Ahmadi, “A comprehensive review of hydrogen 
production and storage methods: fundamentals, advances, and SWOT analysis,” Energy 
Convers. Manag. X, vol. 26, p. 101005, Apr. 2025, doi: 10.1016/j.ecmx.2025.101005. 

[10] M. Jamali, N. Hajialigol, and A. Fattahi, “An insight into the application and progress of 
artificial intelligence in the hydrogen production industry: A review,” Mater. Today 
Sustain., vol. 30, p. 101098, Jun. 2025, doi: 10.1016/j.mtsust.2025.101098. 

[11] S. Mullanu, C. Chua, A. Molnar, and A. Yavari, “Artificial intelligence for hydrogen-
enabled integrated energy systems: A systematic review,” Int. J. Hydrog. Energy, vol. 
141, pp. 283–303, Jun. 2025, doi: 10.1016/j.ijhydene.2024.08.013. 



Tamtam, F., Amzil, M., et al. 
Artificial Intelligence-Supported Hyperfuzzy Framework for…  

Year 2025 
Volume 13, Issue 4, 1130620 

 
 

Journal of Sustainable Development of Energy, Water and Environment Systems 15 

 

[12] S. T. Alam Rimon, M. Mourshed, and Md. G. Kibria, “Proton exchange membrane fuel 
cells: advances in materials development, performance optimization, and future outlook,” 
Energy Convers. Manag. X, p. 101102, Jun. 2025, doi: 10.1016/j.ecmx.2025.101102. 

[13] G. De Carne et al., “The role of energy storage systems for a secure energy supply: A 
comprehensive review of system needs and technology solutions,” Electr. Power Syst. 
Res., vol. 236, p. 110963, Nov. 2024, doi: 10.1016/j.epsr.2024.110963. 

[14] V. K T, A. K. Tom, S. E, Y. S, and R. R. Achar, “Pyrolysis of Plastic Waste to Plastic 
Oil: A Future Source of Fuel,” J. Sustain. Dev. Energy Water Environ. Syst., vol. 13, no. 
1, pp. 1-22, Mar. 2025. 

[15] S. G. Nnabuife, C. Udemu, A. K. Hamzat, C. K. Darko, and K. A. Quainoo, “Smart 
monitoring and control systems for hydrogen fuel cells using AI,” Int. J. Hydrog. Energy, 
vol. 110, pp. 704–726, Mar. 2024, doi: 10.1016/j.ijhydene.2025.02.232. 

[16] M. N. Bashir et al., “Artificial intelligence based emission and performance prediction, 
and optimization of HHO-blended gasoline SI engine: A sustainable transition,” Case 
Stud. Therm. Eng., vol. 64, p. 105562, Dec. 2024, doi: 10.1016/j.csite.2024.105562. 

[17] A. C. Rosa, C. Mateu, A. Haddad, and D. Boer, “Data-Augmented Deep Learning Models 
for Assessing Thermal Performance in Sustainable Building Materials,” J. Sustain. Dev. 
Energy Water Environ. Syst., vol. 13, no. 2, p. 1130591, doi: 10.13044/j.sdewes.d13.0591 

[18] A. Dong and S.-K. Lee, “The Study of an Improved Particle Swarm Optimization 
Algorithm Applied to Economic Dispatch in Microgrids,” Electronics, vol. 13, no. 20, 
Art. no. 20, Jan. 2024, doi: 10.3390/electronics13204086. 

[19] R. Islam, M. A. H. Rivin, S. Sultana, M. A. B. Asif, M. Mohammad, and M. Rahaman, 
“Machine learning for power system stability and control,” Results Eng., vol. 26, p. 
105355, Jun. 2025, doi: 10.1016/j.rineng.2025.105355. 

[20] I. Meixner, L. Gotal Dmitrovic, and J. Meixner, “Development of a Model and Designing 
a System for Water Purification from Hydrocarbons,” J. Sustain. Dev. Energy Water 
Environ. Syst., vol. 13, no. 2, pp. 1-32, Jun. 2025. 

[21] M. I. Khan et al., “Integrating industry 4.0 for enhanced sustainability: Pathways and 
prospects,” Sustain. Prod. Consum., vol. 54, pp. 149–189, Mar. 2025, doi: 
10.1016/j.spc.2024.12.012. 

[22] A. Abdulla and G. Baryannis, “A hybrid multi-criteria decision-making and machine 
learning approach for explainable supplier selection,” Supply Chain Anal., vol. 7, p. 
100074, Sep. 2024, doi: 10.1016/j.sca.2024.100074. 

[23] S. Nayebossadri, M. Walsh, and M. Smailes, “An Overview of the Green Hydrogen Value 
Chain Technologies and Their Challenges for a Net-Zero Future,” Hydrogen, vol. 6, no. 
2, Art. no. 2, Jun. 2025, doi: 10.3390/hydrogen6020026. 

[24] M. Genovese, A. Schlüter, E. Scionti, F. Piraino, O. Corigliano, and P. Fragiacomo, 
“Power-to-hydrogen and hydrogen-to-X energy systems for the industry of the future in 
Europe,” Int. J. Hydrog. Energy, vol. 48, no. 44, pp. 16545–16568, May 2023, doi: 
10.1016/j.ijhydene.2023.01.194. 

[25] S. Yang, H. Liao, and X. Wu, “Prescriptive analytics for dynamic multi-criterion decision 
making considering learned knowledge of alternatives,” Expert Syst. Appl., vol. 268, p. 
126350, Apr. 2025, doi: 10.1016/j.eswa.2024.126350. 

[26] C. Z. Radulescu and M. Radulescu, “Criteria Analysis for the Selection of a Generative 
Artificial Intelligence Tool for Academic Research Based on an Improved Group 
DEMATEL Method,” Appl. Sci., vol. 15, no. 10, Art. no. 10, Jan. 2025, doi: 
10.3390/app15105416. 

[27] K. G. Nalbant, “A methodology for personnel selection in business development: An 
interval type 2-based fuzzy DEMATEL-ANP approach,” Heliyon, vol. 10, no. 1, p. 
e23698, Jan. 2024, doi: 10.1016/j.heliyon.2023.e23698. 

[28] Z. Liao, H. Liao, and X. Zhang, “A contextual Choquet integral-based preference learning 
model considering both criteria interactions and the compromise effects of decision-

http://dx.doi.org/10.13044/j.sdewes.d13.0591


Tamtam, F., Amzil, M., et al. 
Artificial Intelligence-Supported Hyperfuzzy Framework for…  

Year 2025 
Volume 13, Issue 4, 1130620 

 
 

Journal of Sustainable Development of Energy, Water and Environment Systems 16 

 

makers,” Expert Syst. Appl., vol. 213, p. 118977, Mar. 2023, doi: 
10.1016/j.eswa.2022.118977. 

[29] M. Yazdanie, J. B. Dramani, and K. Orehounig, “Strengthening energy system resilience 
planning under uncertainty by minimizing regret,” Renew. Sustain. Energy Transit., vol. 
6, p. 100093, Feb. 2025, doi: 10.1016/j.rset.2024.100093. 

[30] K. Chen and J. Zhu, “Computational tractability of chance constrained data envelopment 
analysis,” Eur. J. Oper. Res., vol. 274, no. 3, pp. 1037–1046, May 2019, doi: 
10.1016/j.ejor.2018.10.039. 

[31] S. Zakeri, Y. Yang, and D. Konstantas, “A Supplier Selection Model Using Alternative 
Ranking Process by Alternatives’ Stability Scores and the Grey Equilibrium Product,” 
Processes, vol. 10, no. 5, Art. no. 5, May 2022, doi: 10.3390/pr10050917. 

[32] C. Ezechi, M. O. Akinsolu, W. Sakpere, A. O. Sangodoyin, and F. T. Akinsolu, “Artificial 
Intelligence-Driven Sensitivity Analysis: Present-Day Approaches in Software-Defined 
Networking,” in 2024 5th International Conference on Emerging Trends in Electrical, 
Electronic and Communications Engineering (ELECOM), Nov. 2024, pp. 1–5. doi: 
10.1109/ELECOM63163.2024.10892185. 

[33] Q. Wang, Y. Li, and R. Li, “Integrating artificial intelligence in energy transition: A 
comprehensive review,” Energy Strategy Rev., vol. 57, p. 101600, Jan. 2025, doi: 
10.1016/j.esr.2024.101600. 

[34] M. Pawlicki et al., “Evaluating the necessity of the multiple metrics for assessing 
explainable AI: A critical examination,” Neurocomputing, vol. 602, p. 128282, Oct. 2024, 
doi: 10.1016/j.neucom.2024.128282. 

[35] A. Sohani et al., “Dynamic multi-objective optimization applied to a solar-geothermal 
multi-generation system for hydrogen production, desalination, and energy storage,” Int. 
J. Hydrog. Energy, vol. 47, no. 74, pp. 31730–31741, Aug. 2022, doi: 
10.1016/j.ijhydene.2022.03.253. 

[36] L. Fan, Z. Tu, and S. H. Chan, “Recent development of hydrogen and fuel cell 
technologies: A review,” Energy Rep., vol. 7, pp. 8421–8446, Nov. 2021, doi: 
10.1016/j.egyr.2021.08.003. 

[37] K. S. Rogge and N. Goedeking, “Challenges in accelerating net-zero transitions: insights 
from transport electrification in Germany and California,” Environ. Res. Lett., vol. 19, no. 
4, p. 044007, Mar. 2024, doi: 10.1088/1748-9326/ad2d84. 

 
 
 

 


	Artificial Intelligence-Supported Hyperfuzzy Framework for Sustainable Supply Chain and Energy Optimization in Smart Cities
	ABSTRACT
	KEYWORDS
	INTRODUCTION
	LITERATURE REVIEW
	METHODS
	RESULTS
	DISCUSSION
	CONCLUSION
	STATEMENTS AND DECLARATIONS
	REFERENCES


