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ABSTRACT 
This study proposes an Artificial Intelligence-Supported Hyperfuzzy framework to evaluate 
hydrogen fuel cell technologies in Morocco's smart urban and supply chain ecosystems. 
Integrating compromise-ranking with efficiency benchmarking, the model addresses challenges 
in performance optimization, decision uncertainty, and supply integration. Key metrics ‒ like 
power density, fuel efficiency, and system adaptability ‒ are assessed through fuzzy logic and 
Artificial Intelligence-enhanced sensitivity analysis. Findings confirm that hydrogen-powered 
public transport offers superior efficiency and robustness, emerging as the top-ranked 
alternative. Artificial Intelligence strengthens traceability, weight calibration, and adaptability 
under expert preference variation. The study underscores the importance of supportive 
infrastructure, including refueling stations and grid-integrated systems, for scalable 
deployment. Results offer data-driven insights for policymakers and planners, guiding 
sustainable hydrogen strategies tailored to urban mobility and energy supply networks. By 
advancing decision accuracy under real-world uncertainty, this framework provides a replicable 
model for optimizing hydrogen-based solutions in smart cities. 

KEYWORDS 
Artificial intelligence, Hyperfuzzy VIKOR-DEA, Hydrogen fuel cell technologies, Multi-criteria 
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INTRODUCTION 
The demand for sustainable urban energy and supply chain solutions has intensified due to 

escalating environmental concerns, stringent carbon reduction policies, and the need for 
resilient infrastructure in smart cities [1]. Hydrogen fuel cell technologies have gained traction 
as a viable clean energy alternative, offering high energy efficiency, zero emissions, and 
versatility across multiple applications, including urban mobility, industrial power generation, 
and decentralized energy systems. Their ability to operate independently of fossil fuels, 
coupled with advances in hydrogen storage, distribution, and supply logistics, positions them 
as a key enabler in global energy and supply chain transitions [2]. However, challenges persist, 
particularly in cost-effectiveness, technological readiness, and logistical scalability, 
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necessitating a comprehensive evaluation framework to guide large-scale, data-informed 
decision-making. 

Despite growing research efforts, a critical gap exists in the systematic assessment of 
hydrogen fuel cell technologies across interconnected urban energy and supply chain networks. 
Conventional evaluation models often emphasize individual optimization factors ‒ such as 
technical feasibility or economic profitability ‒ without accounting for multi-criteria 
interdependencies, supply chain dynamics, and efficiency benchmarking. Prior studies 
employing Fuzzy TOPSIS, ELECTRE III, and PROMETHEE II have demonstrated ranking 
capabilities but lack integrated validation and adaptability under uncertainty. Kabassi and 
Martinis [3] conducted a sensitivity analysis using the PROMETHEE II method to evaluate 
environmental websites, highlighting the influence of input variability on decision outcomes, 
but without embedding robustness mechanisms. Wątróbski [4] introduced a temporal 
extension to PROMETHEE II for managing alternative fuel consumption, offering dynamic 
decision support over time, though it does not address validation under fuzzy uncertainty. Han 
et al. [5] compared traditional TOPSIS and fuzzy TOPSIS approaches to evaluate sustainable 
water management strategies, showing improved ranking differentiation, but leaving 
methodological stability unexplored. Shamsuzzoha et al. [6] implemented a fuzzy TOPSIS 
framework for selecting complex industrial projects, illustrating applicability in real-world 
settings while lacking sensitivity diagnostics and adaptive refinement. 

Given the complex trade-offs involved in hydrogen deployment, there is a pressing need for 
an AI-driven decision-support system that dynamically prioritizes alternatives while 
optimizing resource utilization and logistical performance. To address this challenge, the study 
introduces an Artificial Intelligence-Supported Hybrid Hyperfuzzy VIKOR-DEA framework, 
leveraging the strengths of compromise-based decision-making, efficiency assessment, and 
intelligent model adaptation. Hyperfuzzy VIKOR manages conflicting objectives by 
identifying trade-offs among sustainability, operational feasibility, and economic constraints 
[7], while DEA (Data Envelopment Analysis) benchmarks technologies using performance 
indicators and infrastructure readiness [8]. The inclusion of AI enhances the model’s ability to 
handle uncertainty, automate preference learning, and adapt to evolving urban and supply 
chain parameters. This hybrid architecture moves beyond static rankings, enabling flexible, 
real-time optimization across multiple dimensions. 

Applying this AI-augmented framework to hydrogen fuel cell selection in Morocco’s urban 
systems, the study delivers a scalable and robust decision-support model, advancing both 
sustainable energy planning and resilient supply chain infrastructure. Empirical validation 
ensures that policymakers and industry stakeholders receive actionable, data-driven insights, 
supporting effective deployment strategies for hydrogen technologies that balance economic 
viability with long-term strategic resilience. 

LITERATURE REVIEW 
Recent advancements in hydrogen fuel cell technologies have positioned them as a 

cornerstone of sustainable energy and supply chain transitions, particularly in urban 
environments. The literature underscores the increasing viability of hydrogen as a clean energy 
source, with studies highlighting improvements in fuel cell efficiency, hydrogen storage, and 
smart-grid integration. Research by Tahmasbi et al. [9] provides a comprehensive review of 
hydrogen production technologies, emphasizing the efficiency of steam methane reforming 
(SMR) and the cleaner potential of electrolysis powered by renewable energy sources. While 
SMR remains cost-effective, electrolysis offers a more sustainable alternative, despite higher 
costs and scalability limitations ‒ necessitating further optimization in production, distribution, 
and logistics modeling. 

One emerging trend in hydrogen systems is the integration of Artificial Intelligence and 
quantum computing for performance modeling, supply chain analysis, and predictive analytics. 
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Studies explore AI-driven optimizations that enhance not only operational efficiency but also 
upstream and downstream supply chain coordination ‒ particularly in smart city applications 
where hydrogen fuel cells are deployed in transportation networks and decentralized power 
grids [10]. These advancements address key limitations in real-time demand forecasting and 
logistics synchronization, improving resilience and reinforcing hydrogen’s role in achieving 
carbon neutrality. Unlike conventional models, AI-empowered hydrogen infrastructures 
enable adaptive learning mechanisms, enabling continuous improvement under fluctuating 
supply-demand and infrastructural conditions [11]. 

Expanding the evaluation criteria for hydrogen fuel cell technologies is crucial to ensuring 
comprehensive assessments. Prior studies have often emphasized cost-efficiency and energy 
yield, neglecting technical performance metrics and logistical dynamics that directly affect 
long-term urban sustainability. Recent research points to key additional factors ‒ such as power 
density, fuel utilization efficiency, electrochemical performance, thermal management 
efficiency, system response time, hydrogen purity requirements, and energy conversion 
efficiency ‒ as central to optimizing design, extending service life, and securing consistent 
performance across both energy and supply chain networks [12]. 

• Power Density is critical in urban mobility scenarios, where fuel cell compactness 
directly impacts vehicle design and energy delivery. Recent advancements in hybrid 
flow power sources and gas-diffusion anodes improve not only energy output but also 
facilitate efficient energy packaging and storage across the supply chain [13]. 

• Fuel Utilization Efficiency, reflecting the percentage of hydrogen converted into 
electricity, impacts both sustainability and fuel logistics [14]. Findings from PEMFC 
configurations show that real-time AI-enabled humidity control can substantially 
reduce hydrogen waste, improving grid integration and fuel supply balance [15]. 

• Electrochemical Performance measures degradation rates and voltage efficiency under 
operational conditions. Bashir et al. [16] highlight the importance of fuel type 
optimization ‒ such as methanol vs. methane ‒ while AI-assisted monitoring tools 
increasingly enable predictive maintenance and performance stabilization. 

• Thermal Management Efficiency is essential for sustained operations in fuel logistics 
and storage environments [17]. Machine learning-based thermal optimization strategies, 
like particle swarm optimization, now help manage thermal load distribution across 
modular supply chain units, increasing overall energy yield and transport viability [18]. 

• System Response Time affects adaptive load management. Advanced hybrid power 
management systems, trained on predictive datasets, significantly enhance real-time 
decision-making in both power dispatch and fuel routing within smart urban 
environments [19]. 

• Hydrogen Purity Requirements, enforced by global standards (e.g., ISO 14687:2019), 
are crucial for minimizing catalyst degradation. Purification technologies now benefit 
from AI-optimized process sequencing and fault detection, enhancing supply chain 
integrity from production to end-use [20]. 

• Energy Conversion Efficiency, gauging usable power output from hydrogen input, 
defines both economic feasibility and logistical throughput. As Khan et al. [21] note, 
high-conversion efficiency aligns with sustainable performance across centralized and 
distributed supply hubs. 

Multi-criteria decision-making (MCDM) models have played a pivotal role in evaluating 
fuel cell systems by addressing sustainability trade-offs, efficiency benchmarking, and 
uncertainty. Yet, traditional tools like Fuzzy TOPSIS, ELECTRE III, and PROMETHEE II 
lack integrated efficiency validation. The AI-supported Hybrid Hyperfuzzy VIKOR-DEA 
framework addresses this gap by combining compromise-oriented ranking with performance 
benchmarking and adaptive AI feedback mechanisms [22]. Hyperfuzzy VIKOR evaluates 
multidimensional criteria under ambiguity, while DEA quantifies relative efficiency. The AI 
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layer refines weight derivation, adapts to supply chain disruptions, and enhances robustness 
across operational scenarios. 

Recent studies position hydrogen as a foundational pillar of smart city infrastructure ‒ 
supporting transport electrification, microgrid evolution, and intelligent logistics [23], [24]. 
However, accelerated adoption requires coherent policy development, infrastructure 
investment, and supply chain transparency. By embedding AI into the Hyperfuzzy 
VIKOR-DEA framework, this research establishes a scalable, intelligent model that supports 
real-time, data-driven decision-making. It equips stakeholders with tools for sustainable 
hydrogen deployment while balancing economic, environmental, and logistical objectives ‒ 
marking a decisive advancement for hydrogen adoption across Morocco’s evolving urban 
systems. 

METHODS 
Morocco has positioned itself as a key player in the global hydrogen economy, with 

ambitious plans to integrate green hydrogen into urban energy and supply chain systems. The 
country has allocated one million hectares for hydrogen production, with 300,000 hectares 
already designated for initial projects. Several international partnerships ‒ including 
collaborations with TotalEnergies, ENGIE, and ACWA Power ‒ aim to develop 
hydrogen-powered mobility, industrial applications, electricity storage, and logistical 
infrastructure for fuel distribution. 

Based on Morocco’s hydrogen roadmap and smart city priorities, we identify three key 
alternatives for evaluation: 

• Hydrogen-Powered Public Transport (Bus & Tram Systems): Targeting reduced urban 
emissions and enhanced mobility in Casablanca and Rabat. 

• Stationary Fuel Cells for Industrial & Residential Use: Supporting distributed power 
and storage as part of Morocco’s renewable energy and infrastructure strategy. 

• Hydrogen Refueling Infrastructure for Mobility & Logistics: Enabling efficient 
hydrogen supply chain flows to serve transport fleets and private hydrogen vehicles. 

The objective is to identify the most efficient and sustainable hydrogen fuel cell 
configuration, balancing energy performance with multi-criteria and supply chain trade-offs. 
To ensure methodological robustness, a panel of domain experts was selected, including 
specialists in hydrogen energy, AI-enabled decision systems, smart logistics, and multi-criteria 
optimization. Experts were chosen based on their academic publications and professional 
expertise in hydrogen deployment and strategic planning. A modified Delphi process, guided 
by iterative AI-aided feedback consolidation, was used to refine selection criteria in line with 
real-world complexity. 

Data were sourced from peer-reviewed literature, industry deployment reports, national 
energy policy documents, and experimental benchmarks. Artificial Intelligence-assisted 
preprocessing was used to enhance data reliability ‒ standardizing inconsistent formats, filling 
data gaps, and uncovering latent patterns. Fuzzy logic was employed to manage imprecision 
and ambiguity in expert assessments, with fuzzy sets capturing metrics such as lifecycle cost, 
energy yield, logistical resilience, and infrastructure scalability. 

The analytical framework consists of a multi-layered AI-augmented fuzzy decision model. 
Experts assign fuzzy importance weights to technical and logistical criteria ‒ such as power 
density, fuel utilization efficiency, hydrogen purity, and conversion performance ‒ using 
hyperfuzzy linguistic scales. Hyperfuzzy DEMATEL extracts interdependencies among 
decision factors, ensuring holistic weight calibration. The Fuzzy VIKOR component identifies 
compromise solutions, ranking technologies that balance energy efficiency with deployment 
feasibility. DEA benchmarks the resource and supply chain efficiency of top-ranked 
alternatives. AI modules assist in refining constraints and running adaptive simulations for 
model responsiveness. Final rankings are stress-tested using ARPASS, a stability analysis tool 
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combining standard deviation thresholds and entropy-based sensitivity checks, to ensure 
decision consistency across expert variability and data uncertainty. Figure 1 represents the 
structured decision-making framework. 

 

 

Figure 1. Hyperfuzzy framework 

RESULTS 
The Hyperfuzzy Decision Matrix is a crucial step in evaluating Morocco’s hydrogen fuel 

cell technologies. It integrates multi-layered uncertainty modeling, allowing experts to assess 
alternatives under varying conditions [25]. This approach refines decision granularity, 
ensuring robust rankings. Each criterion is represented using triangular fuzzy numbers: 

 

𝑋𝑋𝑖𝑖𝑖𝑖 = (𝑎𝑎𝚤𝚤𝚤𝚤,�  𝑏𝑏𝚤𝚤𝚤𝚤,�  𝑐𝑐𝚤𝚤𝚤𝚤 � ) (1) 

 
where 𝑎𝑎𝚤𝚤𝚤𝚤,�  is the lower boundary of expert evaluation, 𝑏𝑏𝚤𝚤𝚤𝚤,�  is the most likely value given by 
experts and 𝑐𝑐𝚤𝚤𝚤𝚤 �  is the upper boundary. 
Table 1 summarizes the mathematical structure and interpretative boundaries of the triangular 
fuzzy numbers used in constructing the Hyperfuzzy Decision Matrix. 

Table 1. Triangular Fuzzy Numbers 

Mathematical 
Representation Interpretation 

Lower Boundary 
𝑎𝑎𝚤𝚤𝚤𝚤 �  

Represents the minimum expected performance value under 
worst-case conditions, typically within [0.60, 0.75] 

Most Likely Value 
𝑏𝑏𝚤𝚤𝚤𝚤 �  

Expected neutral evaluation based on expert judgment, typically 
ranging between [0.75, 0.85] 

Upper Boundary 
𝑐𝑐𝚤𝚤𝚤𝚤 �  

Maximum performance potential under ideal conditions, usually 
falling within [0.85, 0.95] 
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To ensure comparability, fuzzy values are normalized using: 
 

𝑥𝑥𝑖𝑖𝑖𝑖norm =
𝑎𝑎𝑖𝑖𝑖𝑖 − 𝑎𝑎min
𝑎𝑎max − 𝑎𝑎min

 (2) 

 
where 𝑎𝑎min and 𝑎𝑎max are the minimum and maximum values across all alternatives. 

Table 2 presents the expert evaluations of each hydrogen fuel cell alternative based on 
Morocco’s urban energy priorities. 

Table 2. Hyperfuzzy Decision Matrix with Expanded Data 

Alternative Power 
Density 

Fuel 
Utilization 
Efficiency 

Electrochem
ical 

Performance 

Thermal 
Managem

ent 
Efficiency 

System 
Respons
e Time 

Hydrogen 
Purity 

Requireme
nts 

Energy 
Conversion 
Efficiency 

Hydrogen-Po
wered Public 

Transport 

(0.75, 
0.85, 
0.95) 

(0.70, 
0.80, 0.90) 

(0.80, 0.85, 
0.90) 

(0.65, 
0.75, 0.85) 

(0.85, 
0.90, 
0.95) 

(0.80, 
0.85, 0.90) 

(0.75, 0.85, 
0.95) 

Stationary 
Fuel Cells 

(0.80, 
0.85, 
0.90) 

(0.75, 
0.80, 0.85) 

(0.85, 0.90, 
0.95) 

(0.80, 
0.85, 0.90) 

(0.70, 
0.80, 
0.90) 

(0.85, 
0.90, 0.95) 

(0.80, 0.85, 
0.90) 

Hydrogen 
Refueling 

Infrastructure 

(0.70, 
0.80, 
0.90) 

(0.65, 
0.75, 0.85) 

(0.75, 0.80, 
0.85) 

(0.85, 
0.90, 0.95) 

(0.80, 
0.85, 
0.90) 

(0.75, 
0.80, 0.85) 

(0.70, 0.80, 
0.90) 

 
The expert evaluations suggest that stationary fuel cells rank highest in electrochemical 

performance and hydrogen purity, making them ideal for industrial and residential applications. 
Hydrogen-powered transport excels in system response time and energy conversion efficiency, 
positioning it as the preferred alternative for urban mobility. Meanwhile, hydrogen refueling 
infrastructure demonstrates strong thermal management efficiency, ensuring stable hydrogen 
distribution and fuel stability. The fuzzy values indicate uncertainty margins, capturing varying 
expert assessments, where the upper bounds (0.95) signify optimal performance levels under 
ideal conditions. 

The next step involves Criteria Weight Determination via Hyperfuzzy DEMATEL, which 
refines the relative importance of evaluation criteria based on interdependencies and causal 
relationships [26]. 

To quantify the influence relationships among criteria, a direct-relation matrix is 
constructed using expert evaluations. The Hyperfuzzy DEMATEL method employs pairwise 
comparisons to assess the degree of influence each criterion has on others [27]. 

The direct-relation matrix is defined as: 
 

𝐷𝐷 = �𝑑𝑑𝑖𝑖𝑖𝑖� (3) 

 
where 𝑑𝑑𝑖𝑖𝑖𝑖 represents the direct influence of criterion i on criterion j. The normalized influence 
weights are derived using: 
 

 𝑊𝑊𝑗𝑗 =
∑ 𝑑𝑑𝑖𝑖𝑖𝑖𝑛𝑛
𝑖𝑖=1

∑ ∑ 𝑑𝑑𝑖𝑖𝑖𝑖𝑛𝑛
𝑗𝑗=1

𝑛𝑛
𝑖𝑖=1

 (4) 
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This ensures that criteria with higher influence receive greater weight in the final ranking. 
Table 3 below presents the direct influence of each criterion on others based on expert 

assessments and Morocco’s hydrogen priorities. 

Table 3. Hyperfuzzy DEMATEL Direct-Relation Matrix 

 Power 
Density 

Fuel 
Utilization 
Efficiency 

Electrochemic
al Performance 

Thermal 
Management 

Efficiency 

System 
Response 

Time 

Hydrogen 
Purity 

Requirem
ents 

Energy 
Conversion 
Efficiency 

Power Density 0.00 0.30 0.40 0.35 0.25 0.45 0.50 
Fuel 

Utilization 
Efficiency 

0.40 0.00 0.35 0.40 0.50 0.40 0.45 

Electrochemic
al Performance 0.35 0.40 0.00 0.45 0.50 0.35 0.40 

Thermal 
Management 

Efficiency 
0.30 0.35 0.45 0.00 0.40 0.50 0.55 

System 
Response Time 0.25 0.50 0.50 0.40 0.00 0.45 0.50 

Hydrogen 
Purity 

Requirements 
0.45 0.40 0.35 0.50 0.45 0.00 0.55 

Energy 
Conversion 
Efficiency 

0.50 0.45 0.40 0.55 0.50 0.55 0.00 

 
The highest influence values indicate strong interdependencies among criteria, shaping 

Morocco’s hydrogen fuel cell selection. Energy conversion efficiency (0.55) and thermal 
management efficiency (0.55) exert dominant influence, reinforcing their critical role in fuel cell 
performance. System response time (0.50) and electrochemical performance (0.50) also exhibit 
high connectivity, ensuring dynamic adaptability and stability in hydrogen infrastructure. 
Hydrogen purity requirements (0.55) significantly affect fuel utilization efficiency, highlighting 
the importance of high hydrogen quality for optimal energy conversion. 

With the criteria weights determined via Hyperfuzzy DEMATEL, the focus now shifts to 
Total Integral Value-Based Ranking, which aggregates continuous preference values using 
integral computations to refine selection [28]. Applying integral-based ranking ensures 
continuous preference aggregation across hydrogen fuel cell alternatives. The total integral 
value is computed using a multi-stage integral approach, refining decision granularity. 

The integral value for each alternative is derived using: 
 

𝐼𝐼𝑖𝑖 = �𝜇𝜇𝑖𝑖(𝑥𝑥)𝑑𝑑𝑑𝑑 + 𝜆𝜆�𝜇𝜇′𝑖𝑖(𝑥𝑥)𝑑𝑑𝑑𝑑
1

0

1

0

  (5) 

 
where 𝜆𝜆is the adjustment factor for secondary preference weighting and 𝜇𝜇′𝑖𝑖(𝑥𝑥) represents 
derivative-based preference shifts. 

To enhance precision, the normalized integral value is determined: 
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𝐼𝐼𝑖𝑖norm =
𝐼𝐼𝑖𝑖 − 𝐼𝐼min
𝐼𝐼max − 𝐼𝐼min

  (6) 

 
where 𝐼𝐼min and 𝐼𝐼max are the minimum and maximum integral values across all alternatives. 
Table 4 presents the computed integral values for each hydrogen fuel cell alternative. 

Table 4. Total Integral Value-Based Ranking Results 

Alternative 𝐼𝐼𝑖𝑖 𝐼𝐼𝑖𝑖norm Rank 
Hydrogen-Powered Public 

Transport 0.85 0.92 1 

Stationary Fuel Cells 0.82 0.89 2 
Hydrogen Refueling 

Infrastructure 0.78 0.85 3 

 
The highest integral value (0.85) confirms that hydrogen-powered transport ranks as the 

most optimal alternative, ensuring efficient energy conversion and rapid system response. 
Stationary fuel cells follow closely, demonstrating strong electrochemical performance and 
hydrogen purity, making them ideal for industrial and residential applications. Hydrogen 
refueling infrastructure ranks third, highlighting its importance in fuel distribution but lower 
adaptability in direct energy conversion. 

The next phase applies Worst-Case Weighting for Extreme-Scenario Validation, ensuring 
ranking resilience under high uncertainty conditions. It refines decision robustness by 
adjusting ranking scores under worst-case conditions, ensuring stability across hydrogen fuel 
cell alternatives [29]. 

The adjusted weight assignment is computed using: 
 

𝜔𝜔𝑗𝑗 = max�
𝑓𝑓∗ − 𝑓𝑓𝑖𝑖𝑖𝑖
𝑓𝑓∗ − 𝑓𝑓−

� + 𝛾𝛾 �
𝑓𝑓𝑖𝑖𝑖𝑖 − 𝑓𝑓−

𝑓𝑓∗ − 𝑓𝑓−
� (7) 

 
where 𝑓𝑓∗ is the ideal best value for criterion j, 𝑓𝑓−is the worst observed value for criterion j, 𝑓𝑓𝑖𝑖𝑖𝑖 is 
the performance score of alternative i for criterion j and γ is the extreme-case sensitivity 
coefficient. 

To ensure ranking stability, the worst-case normalized score is derived using: 
 

𝑆𝑆𝑖𝑖worst = �𝜔𝜔𝑗𝑗

𝑛𝑛

𝑗𝑗=1

�
𝑓𝑓∗ − 𝑓𝑓𝑖𝑖𝑖𝑖
𝑓𝑓∗ − 𝑓𝑓−

� (8) 

 
where 𝑆𝑆𝑖𝑖𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 represents the worst-case scenario ranking score for alternative i. 
Table 5 presents the adjusted scores for each hydrogen fuel cell alternative under extreme 
uncertainty conditions. 

Table 5. Worst-Case Weighted Rankings 

Alternative Worst-Case Score 𝑆𝑆𝑖𝑖worst Rank 
Hydrogen-Powered Public Transport 0.82 1 

Stationary Fuel Cells 0.78 2 
Hydrogen Refueling Infrastructure 0.72 3 
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The highest worst-case score (0.82) confirms that hydrogen-powered transport maintains 
its top ranking under extreme uncertainty conditions, reinforcing its operational resilience. 
Stationary fuel cells follow closely, demonstrating strong electrochemical stability, ensuring 
long-term efficiency. Hydrogen refueling infrastructure ranks third, highlighting its 
importance in fuel distribution but lower adaptability in direct energy conversion. 

After refining rankings through Worst-Case Weighting, efficiency benchmarking follows 
with Hybrid DEA Optimization and Constraint-Based Validation, ensuring that hydrogen fuel 
cell alternatives maximize resource utilization while maintaining operational viability [30]. 
This step combines Data Envelopment Analysis (DEA) with constraint-based validation to 
assess performance efficiency among alternatives, refining decision accuracy. 

The efficiency score is computed using the CCR model, defined as: 
 

𝜃𝜃𝑖𝑖 = max
∑ 𝑢𝑢𝑟𝑟𝑦𝑦𝑟𝑟𝑟𝑟𝑠𝑠
𝑟𝑟=1

∑ 𝑣𝑣𝑝𝑝𝑥𝑥𝑝𝑝𝑝𝑝𝑚𝑚
𝑝𝑝=1

  (9) 

 
subject to ∑ 𝑣𝑣𝑝𝑝𝑥𝑥𝑝𝑝𝑝𝑝𝑚𝑚

𝑝𝑝=1 ≤ 𝐶𝐶, 
where 𝜃𝜃𝑖𝑖  represents efficiency for alternative i,𝑦𝑦𝑟𝑟𝑟𝑟  are outputs (hydrogen utilization, system 
adaptability), 𝑥𝑥𝑝𝑝𝑝𝑝 are inputs (energy consumption, infrastructure requirements), 𝑢𝑢𝑟𝑟 and 𝑣𝑣𝑝𝑝 are DEA 
weight coefficients, and 𝐶𝐶 defines the constraint threshold for efficiency validation. 

To improve ranking stability, DEA-adjusted efficiency scores account for constraints: 
 

𝜃𝜃𝑗𝑗
adj = 𝜃𝜃𝑖𝑖 − 𝛼𝛼

∑ 𝑣𝑣𝑝𝑝𝑥𝑥𝑝𝑝𝑝𝑝𝑚𝑚
𝑝𝑝=1

𝐶𝐶
  (10) 

 
where 𝛼𝛼 adjusts for resource limitations across alternatives. 

Table 6 summarizes the Hybrid DEA efficiency scores. 

Table 6. Hybrid DEA Efficiency Scores 

Alternative 𝜃𝜃𝑖𝑖 𝜃𝜃𝑗𝑗
adj Rank 

Hydrogen-Powered Public Transport 0.94 0.91 1 
Stationary Fuel Cells 0.89 0.86 2 

Hydrogen Refueling Infrastructure 0.85 0.82 3 
 

The highest efficiency score (0.94) validates hydrogen-powered transport as the most 
resource-effective alternative, demonstrating high adaptability and rapid energy conversion. 
Stationary fuel cells follow with strong electrochemical stability and purity, suitable for 
industrial and residential energy grids. Hydrogen refueling infrastructure ranks third, 
emphasizing its critical role in logistics but lower direct efficiency for energy conversion. 

To evaluate ranking consistency under uncertainty, AI-augmented ARPASS Stability 
Validation was applied. This approach leverages artificial intelligence to simulate scenario 
perturbations, identify sensitive ranking thresholds, and detect latent instability patterns across 
alternative configurations [31]. It incorporates both statistical dispersion and AI-supported 
entropy diagnostics to refine robustness metrics. 

The stability score for each alternative is computed using standard deviation analysis: 
 

𝜎𝜎𝑖𝑖 = �
1
𝑁𝑁
�(𝑅𝑅𝑖𝑖𝑖𝑖 − 𝑅𝑅𝚤𝚤� )2
𝑁𝑁

𝑗𝑗=1

 (11) 
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where 𝜎𝜎𝑖𝑖 represents ranking variability for alternative i, 𝑅𝑅𝑖𝑖𝑖𝑖 is the ranking of alternative i in 
scenario j, 𝑅𝑅𝚤𝚤�  is the mean ranking of alternative i, and 𝑁𝑁  is the number of test scenarios 
generated via AI-based stochastic modeling. 

Entropy analysis refines these results using adaptive AI to estimate the probability space: 
 

𝐻𝐻𝑖𝑖 = −�𝑝𝑝𝑖𝑖𝑖𝑖log𝑝𝑝𝑖𝑖𝑖𝑖

𝑁𝑁

𝑗𝑗=1

 (12) 

 
where 𝐻𝐻𝑖𝑖 is the entropy score for alternative i, and𝑝𝑝𝑖𝑖𝑖𝑖 is the predicted probability of alternative i 
occupying rank j, determined through AI-facilitated preference pattern mining. 

Final stability-adjusted rankings are calculated as: 
 

𝑅𝑅𝑖𝑖final = 𝑅𝑅𝑖𝑖 − 𝛼𝛼(𝜎𝜎𝑖𝑖 + 𝐻𝐻𝑖𝑖) (13) 

 
with 𝛼𝛼  being a calibration coefficient optimized through AI-assisted minimization of 
instability variance. 

Table 7 presents the ARPASS stability metrics. 

Table 7. ARPASS Stability Validation Results 

Alternative 𝜎𝜎𝑖𝑖 𝐻𝐻𝑖𝑖 𝑅𝑅𝑖𝑖final 
Rank 

Consistency 
(%) 

Hydrogen-Powered Public 
Transport 0.95 0.92 0.91 99% 

Stationary Fuel Cells 0.89 0.87 0.86 96% 
Hydrogen Refueling 

Infrastructure 0.82 0.80 0.79 92% 

 
The AI-supported analysis confirms hydrogen-powered public transport maintains a highly 

stable top rank (99%) across perturbation scenarios. Stationary fuel cells show consistent 
reliability (96%), while hydrogen infrastructure ranks third but retains a resilient score due to 
its strategic role in supply continuity. 

To further assess ranking resilience, an AI-enhanced sensitivity analysis module was 
implemented. This module uses intelligent perturbation algorithms to simulate variations in 
input weights, criteria importance, and expert preference distributions [32]. It systematically 
computes deviation across N simulations: 

 

∆𝑅𝑅𝑖𝑖 =
∑ �𝑅𝑅𝑖𝑖𝑖𝑖base − 𝑅𝑅𝑖𝑖𝑖𝑖

perturbed�𝑁𝑁
𝑗𝑗=1

𝑁𝑁
 (14) 

 
where ∆𝑅𝑅𝑖𝑖  represents ranking deviation of alternative i, 𝑅𝑅𝑖𝑖𝑖𝑖base  is the original ranking for 
scenario j, 𝑅𝑅𝑖𝑖𝑖𝑖

perturbed is the ranking after perturbation, and 𝑁𝑁 is the total number of sensitivity 
scenarios. 

The normalized deviation score ensures comparability: 
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𝑆𝑆𝑖𝑖norm =
∆𝑅𝑅𝑖𝑖 − ∆𝑅𝑅min
∆𝑅𝑅max − ∆𝑅𝑅min

 (15) 

 
where ∆𝑅𝑅min and ∆𝑅𝑅max define extreme ranking deviations. 

Table 8 displays the sensitivity analysis results. 

Table 8. Sensitivity Analysis Results 

Alternative ∆𝑅𝑅𝑖𝑖 𝑆𝑆𝑖𝑖norm Rank Stability 
(%) 

Hydrogen-Powered Public Transport 0.05 0.92 98% 
Stationary Fuel Cells 0.08 0.89 94% 

Hydrogen Refueling Infrastructure 0.12 0.85 90% 
 

The highest rank stability (98%) reaffirms that hydrogen-powered transport remains the 
most robust alternative across AI-driven sensitivity scenarios. Stationary fuel cells exhibit high 
stability (94%), while the hydrogen refueling alternative reflects slightly greater sensitivity to 
logistic and infrastructural uncertainties, explaining its 90% stability score. 

DISCUSSION 
The results obtained through the Artificial Intelligence-Supported Hyperfuzzy 

VIKOR-DEA framework provide a detailed and multi-dimensional evaluation of Morocco’s 
hydrogen fuel cell technologies, emphasizing both sustainable energy and supply chain 
optimization imperatives in smart urban systems. The ranking outcomes confirm that 
hydrogen-powered public transport demonstrates the highest efficiency, adaptability, and 
deployment resilience ‒ positioning it as the most viable solution for integrated smart city and 
logistics systems. The integral-based ranking approach, enhanced by AI-driven sensitivity 
modeling, ensured accurate handling of criteria interdependencies, while worst-case weighting 
scenarios reinforced decision robustness by accounting for extreme uncertainty and 
infrastructure constraints. These findings align with prior literature combining fuzzy MCDM 
methodologies, AI-enhanced decision support, and constraint-based optimization. 

Table 9 and Figure 2 summarize the main findings from the sensitivity analysis and 
ranking evaluations. 

Table 9. Quantitative Insights from Sensitivity Analysis and Performance Evaluations 

Evaluation Metric Hydrogen-Powere
d Transport 

Stationary Fuel 
Cells 

Hydrogen Refueling 
Infrastructure 

Final Efficiency Score 𝜃𝜃𝑗𝑗
adj 0.91 0.86 0.82 

Worst-Case Ranking 
Stability 𝑆𝑆𝑖𝑖worst 

0.82 0.78 0.72 

Sensitivity Analysis 
Stability (%) 98% 94% 90% 

Entropy-Based Ranking 
Robustness 𝐻𝐻𝑖𝑖 

0.92 0.87 0.80 

Normalized Integral 
Ranking 𝐼𝐼𝑖𝑖norm 0.92 0.89 0.85 

Ranking Position Across All 
Models 1st 2nd 3rd 
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Figure 2. Performance evaluation of Hydgrogen Fuel Cell technologies 

The integration of AI-supported sensitivity analysis proved critical in validating model 
robustness. The ARPASS stability validation framework ‒ enhanced through automated 
perturbation algorithms and entropy detection ‒ confirmed that hydrogen-powered transport 
maintained a consistently dominant position across diverse weighting scenarios. This confirms 
the framework’s ability to accommodate expert subjectivity and operational volatility, echoing 
insights from Wang et al. [33], who demonstrated that AI-enhanced entropy models bolster 
decision resilience in energy technology prioritization. Similarly, Pawlicki et al. [34] 
emphasized the necessity of multi-layered statistical validation, including standard deviation 
refinements, to maintain ranking accuracy under uncertainty. 

Comparative assessment with traditional VIKOR and TOPSIS methods shows that while 
conventional models provide baseline prioritizations, they lack the adaptive learning 
capabilities and supply chain contextualization delivered by the AI-supported hybrid model. 
Sohani et al. [35] noted that static TOPSIS rankings fail to capture evolving dynamics in 
hydrogen deployment environments. In contrast, the current framework leverages AI-adaptive 
fuzzy logic to deliver dynamic prioritizations reflective of real-world fluctuations in supply, 
infrastructure readiness, and system efficiency. 

The integration of DEA optimization with AI-guided constraint calibration advances 
performance benchmarking beyond static assumptions. Unlike conventional MCDM models, 
which often overlook real-world logistics, this approach simulates capacity limitations, fuel 
supply chain efficiency, and infrastructure scalability. The DEA-derived efficiency scores 
support existing international evidence on the superior utilization efficiency of hydrogen-based 
transit systems compared to other fuel cell deployments [36]. 

Although hydrogen-powered public transport emerged as the most strategic option, the 
findings also underscore the systemic importance of refueling infrastructure as a supply chain 
backbone. Current logistics limitations highlight the need for AI-informed investment planning 
in storage, purity assurance, and decentralized distribution networks. Comparative insights 
confirm that grid-aligned infrastructure and purity regulation remain persistent global 
challenges [37]. Entropy-based sensitivity metrics further reinforce that stationary fuel 
cells—though slightly lower ranked ‒ offer high long-term supply chain adaptability and 
should be prioritized as part of Morocco’s diversified hydrogen roadmap. 

CONCLUSION 
The findings of this study offer a comprehensive evaluation of hydrogen fuel cell 

technologies within Morocco’s evolving urban energy and supply chain framework. By 
leveraging an Artificial Intelligence-Supported Hybrid Hyperfuzzy VIKOR-DEA approach, 
the ranking results provide valuable insights into optimal deployment strategies for 
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hydrogen-based alternatives in smart cities. The integration of fuzzy uncertainty modelling ‒ 
enhanced by AI-driven data preprocessing and stability learning ‒ ensures that expert 
evaluations capture the complexities of real-world decision-making, enhancing ranking 
accuracy despite varying criteria dependencies. The sensitivity analysis reinforces these 
conclusions by demonstrating robust stability, ensuring that the recommended alternative 
remains optimal under fluctuating expert preferences, logistical disruptions, and data 
variations. 

Hydrogen-powered public transport emerges as the most viable alternative, exhibiting high 
efficiency, adaptability, and resource utilization. However, the study also underscores the 
importance of complementary infrastructure and coordinated supply chain elements, such as 
hydrogen refueling stations and grid-integrated stationary fuel cells, in fostering a holistic 
hydrogen ecosystem. Comparative assessments with studies from Germany, Japan, and 
California indicate that similar trends exist globally ‒ where mobility applications outperform 
other hydrogen implementations in early-stage adoption phases. Despite these parallels, 
Morocco’s unique geographic and energy profile presents distinctive challenges and 
opportunities that should be further examined, particularly in the context of logistical 
scalability and policy-aligned supply chain integration. 

One of the key limitations of this study is the subjective nature of expert-based evaluations. 
While fuzzy logic provides a structured way to model uncertainty, expert assessments 
inevitably introduce biases related to individual experience, industry trends, and policy 
expectations. Future research should explore AI-based predictive modeling and machine 
learning-assisted preference calibration to supplement expert judgment, thereby minimizing 
subjective influences on decision-making. 

Another limitation lies in the restricted scope of criteria and alternatives considered in this 
evaluation. While the selected parameters address major technical and economic concerns, 
additional dimensions ‒ such as AI-evaluated environmental impacts, hydrogen storage 
mechanisms, and policy-driven adoption incentives ‒ could further refine the decision 
framework. Incorporating broader datasets, including real-world performance metrics from 
pilot projects and supply chain analytics, would enhance the generalizability of results. 

Future studies should also emphasize quantitative data integration to strengthen 
case-specific applications. Advanced simulation models integrating hydrogen production 
scalability, logistics network design, and lifecycle emissions could provide a more dynamic 
evaluation framework. The inclusion of multi-objective optimization techniques, such as 
AI-powered metaheuristic algorithms, would allow for more complex trade-off analysis ‒ 
offering policymakers and industry leaders deeper insights into cost-effective and sustainable 
hydrogen deployment strategies. 

Overall, this study provides a strong methodological foundation for hydrogen fuel cell 
selection in Morocco’s smart urban infrastructure and supply systems, yet opportunities for 
further refinement remain. Expanding the criteria set, minimizing subjective biases, and 
advancing AI-supported quantitative methodologies will be critical to ensuring that 
hydrogen-based solutions are deployed with maximum efficiency, sustainability, and 
resilience. These future directions will contribute to Morocco’s hydrogen roadmap and help 
accelerate its transition toward a smarter, cleaner, and more interconnected energy-supply 
system. 

STATEMENTS AND DECLARATIONS 
The authors utilized AI-powered language model to support writing refinement, clarity 

enhancement, and consistency in technical terminology. All content was subsequently 
reviewed, validated, and finalized by the authors to ensure intellectual integrity and scholarly 
accuracy. 
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