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ABSTRACT 

In this paper we built three types of artificial neural networks, namely: Feed forward 

networks, Elman networks and Cascade forward networks, for forecasting wind speeds 

and directions. A similar network topology was used for all the forecast horizons, 

regardless of the model type. All the models were then trained with real data of collected 

wind speeds and directions over a period of two years in the municipal of Puumala, 

Finland. Up to 70th percentile of the data was used for training, validation and testing, 

while 71–85th percentile was presented to the trained models for validation. The model 

outputs were then compared to the last 15% of the original data, by measuring the 

statistical errors between them. The feed forward networks returned the lowest errors for 

wind speeds. Cascade forward networks gave the lowest errors for wind directions; 

Elman networks returned the lowest errors when used for short term forecasting.  
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INTRODUCTION 

Several wind power prediction models have been developed in the recent past. 

However, different models are suitable for various types of situations, depending on the 

nature of the required forecast. Some models are better suited for long-term forecasting 

while others are better for short term forecasting. The suitability of a model can be 

assessed by the number of time steps into the future, a model can forecast while still 

retaining its robustness on the predicted outputs, without losing its generalization ability. 

Generalization is the ability to produce accurate results even for input data set that the 

model has not ‘seen’ i.e. not used in the training of the model [1]. In general, three 

approaches of wind forecasting methods have been well documented so far (2012); the 

numerical weather prediction models (NWP), physical systems approach, and the 

statistical approaches.  

The numerical weather prediction (NWP) system simulates the atmosphere by 

numerically integrating the equations of motion starting from the current atmospheric 

states. This is done by mapping the real world on to a discrete 3-D computational grid that 

divides the globe into numerous polygonal patterns of certain dimensions e.g. 60 km
2
 [2]. 
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Physical systems, model the dynamics of the atmosphere by parameterization of the 

planetary boundary layer (PBL) concept, also known as the atmospheric boundary layer 

(ABL). ABL is the lowest part of the atmosphere that is in continuous contact with the 

surface of the earth. Here, the physical quantities e.g. velocity, temperature and moisture 

(of the wind/air) are turbulent and vertical mixing is stronger. The physical systems are 

further broken down into two, the numerical simulations and diagnostic models, which 

are both based on parameterization of the planetary boundary layer flow. Some of the 

numerical models that have been developed based on parameterization of the planetary 

boundary layer are; Fifth-generation Mesoscale Model (MM5), Weather Research and 

Forecasting (WRF) model and Regional Spectra Model (RSM), discussed by [3]. 

Examples of diagnostic models are the Prediktor and Previento, developed by Landberg 

at the National Laboratory in Risǿ, Denmark in 1993 [2], and University of Oldenburg, 

Germany [4].  

Generally, statistical systems are implemented based on built and trained models 

using real data (specific to the location in which data is collected) over a number of 

discrete periodic cycles. The difference between the predicted output and the required 

output (error) is minimized by fine-tuning it to a level which can be used for nowcasting 

and/or forecasting. The statistical systems are divided into three, Wind Power Prediction 

Tool (WPPT), Fuzzy Logic (FL) and Artificial Neural Networks (ANN).  WPPT is a 

statistical tool developed and operated by the Danish national laboratories for weather 

forecasting. The WPPT is based on an autoregressive eXogeneous (ARX) input type 

model, where wind speed and therefore power is described as a non-linear, non-stationary 

and time-varying stochastic process representing the dynamics of the atmosphere. The 

second statistical approach is that which treat future wind speeds as vague or indistinct 

and thus tries to solve by reasonable approximation with fuzzy logic concept. Such 

system has been developed and is currently operated for short term predictions by Ecole 

des Mines de Paris, France.  

Artificial Neural Networks (ANN), also referred to as neurocomputing, is the third 

statistical approach which is one of the most recently developed methods for accurate 

forecasting. The objective of this study was to analyse the quality and quantity of the 

collected data, develop forecasting models using artificial neural networks which would 

enable general future planning, given previous data of wind speeds and directions. The 

models in the study could then be used to make important decisions pertaining sitting and 

developing wind power farms at the study location.    

METHODOLOGY 

The Artificial Neural Network Project Cycle 

A successful artificial neural network project (ANN), like project cycles in other 

disciplines, constitute a number of phases, namely; problem definition and formulation, 

system design, realization, verification, implementation, and system maintenance phase. 

The last two phases (system implementation and maintenance) involves embedding the 

obtained networks in an appropriate working system e.g. hardware or a packaged 

program that can be installed to run in a computer.  This paper is only confined to the first 

four steps of the project cycle. Figure 1 below shows various stages of an ANN project 

cycle and the study scope.  
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Figure 1. The project cycle of an ANN project, based on [5] 

 

Problem definition and formulation 

The overall view of this phase, together with the rationale has been partially covered 

in the first two chapters. The outstanding part is specific problem definition and 

formulation which entails explaining the kind of data available and what was required out 

of it. The problem involved two non-linear, non-stationery, univariate vectors of wind 

speeds and directions collected over a period of 2 years (from 1.11.2009 up until 

30.10.2011). The data sampling intervals was 10 minutes. It was taken at a height of 60 m 

from the ground in the municipal region of Puumala. Puumala municipality is 

strategically situated along a 3,000 km shoreline at the southern Saviona region of 

Eastern Finland. Its location makes it prone to offshore winds that can be harnessed for 

wind power. The fundamental end results of the project were to construct the three 

common types of ANNs namely; feed forward, cascade feed forward and Jordan Elman 

neural networks for wind speeds and directions forecasting, and to test the networks by 

comparing and assessing their mean square error (MSE) and sum squared error (SSE) as 

the convergence criteria, during training and upon forecasting. Procedurally, the models 

were used in making a one step ahead hourly forecasts with 10 minute intervals, daily 

forecasts with hourly averages, weekly forecasts with half-daily averages and monthly 

forecasts with daily averages and the convergence criteria also measured for this 

forecasting step and the results presented and discussed.     

System design 

System design phase usually starts with data collection, and pre-processing, which 

can be done within or outside the computation environment. Selection of simulation 

parameters is the second process before model construction begins. The data used herein 

was provided by Lappeenranta University of Technology (LUT), and granted the author 
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with permission to use as part of this paper. System design therefore began from data 

pre-processing i.e. data averaging, subdivision of data into training, validation and testing 

sets, normalization (scaling) and backward/forward shifting in time into various lagged 

variables, in a process referred to as ‘sliding window technique’ used as inputs/outputs of 

the networks.   

Data Pre-processing 

Wind speed and direction vectors of length (104,043) were periodically averaged into 

the required time periods. To get hourly data, 6-ten minute measurements were averaged. 

Similarly to obtain daily means of wind speeds and directions, 24-hourly averages were 

taken. Averaging is followed by normalization of the vector. There are a number of ways 

to normalize data; here we used the reciprocal which scales the data to a range of 0 to 1, 

before subdividing into three parts; 70% for training, 15% for validation and 15% for 

system testing. Lagged variables (sliding windows) were then created conforming to the 

desired inputs and outputs; for hourly forecasts, six 10-minute interval outputs were 

required, for daily forecasts 24 outputs of hourly intervals, weekly interval required 7 

outputs of daily averaged values, and monthly interval 30 outputs of daily averages. 

Models construction  

In general three classes of models were constructed; the feed forward neural networks 

(FFNN), Jordan Elman neural networks (JENN), and Cascaded feed forward neural 

networks (CFNN), (Figures 2-5).  For each class of models above, lagged variables of 

wind speeds and directions were separately used as inputs to the networks. Four sub 

models were then constructed corresponding to the forecast horizons (hourly, daily, 

weekly and monthly), making a total of 24 models built. 

 

 
 

Figure 2. FFNN used for hourly forecasts 

 

 
 

Figure 3. JENN used for half-day forecasting 
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Figure 4. Cascade feed forward neural network used for weekly forecasting 

 

 
 

Figure 5. Cascade feed forward neural network used for monthly forecasting 

 

To make them comparable, authenticable and more realistic, models of the same 

network topologies were constructed and used for the same forecast horizon, e.g. for 

hourly forecasting, a model with 12 inputs, 2 hidden neurons and 6 outputs, (denoted as 

12:2:6), was used throughout for all model types (JENN, FFNN and CFNN). For daily 

forecasting: 24:2:12, weekly forecasting: 28:21:14 and monthly forecasts were 

performed with the largest model with a topology of 60:20:30.      

System realization 

The most interesting, challenging and critical phase of the study is to build the 

models. Tens of parameters are usually controlled during modelling with neural 

networks. However, not all of them have significant effects on the network’s 

generalization ability. As a result, a number of modelling parameters are selected 

depending on the forecast horizon, degree of accuracy required, the speed at which the 

results are needed, among other factors. In most cases, applications used for modelling 

have inbuilt default settings e.g. MATLAB has readily available codes for quick 

modelling. In order to achieve a more meaningful model however, the modeller has to 

diligently select the parameters and optimize them according to some set rules and/or past 

experience. Noted parameters that influence network results are; the data size partitioning 

i.e. into training, validation and testing, type of data normalization used, input/output 

representation, network weight initialization, the learning rate, momentum coefficient, 

transfer function, convergence criteria, number of training cycles (epochs), hidden layer 

sizes, the training algorithm etc. For the current study, the following modelling 

parameters were considered      
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Input/output representation 

In this study, the default normalization function was disabled to give room for custom 

defined normalization and denormalization; continuous, normalized variables between 0 

and 1 were used as inputs and outputs representing wind speeds and directions, before 

denormalization to their original formats.     

Transfer function (ζ) 

The transfer functions used for this study were arrived at by trial and error methods 

starting from the presumption that data was scaled to the range of 0 to 1 and thus a 

sigmoidal transfer functions which possesses the distinctive properties of continuity and 

differentiability on the range (-∞, +∞) was necessary, an essential requirement of Back 

propagation learning [5]. A prior consideration was also given for the fact that a 

combination of hyperbolic transfer functions for both the hidden and the output layers 

yielded better recognition results [6].         

Size of the hidden layer (H) 

Nagendra and Khare in their study suggest that the rules failed to yield the ‘optimal’ 

size of hidden layer, inferring that the best way to obtaining the required hidden layer size 

is by iteratively adjusting the size while measuring the error during neural network 

testing [7]. In this study the neural networks should ideally be able to learn and 

‘understand’ the fluid statics/dynamics of the atmosphere e.g. the effects of longitudinal 

and transverse wind velocity gradients, atmospheric temperature and pressure among 

other factors and assign appropriate weights to accurately forecast the future values. The 

final sizes of the hidden layer was arrived at by continuously iterating, while measuring 

the convergence criteria i.e. sum squared error (SSE) and mean squared error (MSE) 

during evaluation of the network. SSE and MSE were evaluated for one point per ‘sliding 

window’ and for ‘one step ahead’ forecasts and compared. 

The training algorithm 

Different training algorithms are good for different purposes, the predictive ability 

(which is the current subject), has been tested by Ghaffari and team, who concluded that 

the order of predictive ability of a network trained using above group of training 

algorithms is IBP, BBP followed by LM, QP and lastly GA. [8]. In this study, Bayesian 

regulation (BR) Back propagation algorithm was used for all the models. 

Lavenberg-Marquardt (LM) was also tried but it proved to take too long training time 

than expected. Both LM and BP training algorithms are implemented in MATLAB and 

can be invoked by a single command. Many training algorithms suffer from the problem 

of over fitting, a phenomenon in ANN, caused by overtraining, resulting in memorization 

of input/output, rather than basing them on the internal factors determined by the weights 

generated. This causes the network to respond poorly when presented with new data that 

was not used during training, thus losing the object orientedness, an important aspect of 

the network, also referred to as generalization. Bayesian regulation seems to train 

successfully has an inbuilt ability to get rid of this problem through automatic early 

stopping once the error starts to propagate. [9].        

Network weight initialization 

Several main techniques are currently used to get rid of premature saturation, a 

phenomenon that has been known to cause over fitting and affect network convergence 

[10, 11]. Nguyen and Widrow had suggested that initializing adaptive weights over a 

large number of training problems achieved major improvements in learning efficiency 
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[12]. Moallem and Ayoughi proposed three methods; increasing the number of hidden 

neurons, Weigend weight regularization and renewing saturated terms by adding 

anti-saturating terms [13]. Network weight initialization involves assigning 

predetermined optimum initial values for the weights to all existing connection links that 

help the network to converge faster. For the current study, Nguyen and Widrow weight 

initialization algorithm was used. In this algorithm, weight bias initialization values are 

picked between the intervals located randomly in the predetermined region i.e. -1 and 1. 

Nguyen and Widrow suggested that, if H is the number of units in the first layer, Wbi = 

0.7H. Wi are chosen between -1 and 1 and the weights, w are assigned so that w = 

-Wi/Wbi, simply put as the uniform random values between -1 and 1 and is implemented 

in MATLAB [14] as a script file [15].  

Learning rate () 

A high learning rate is detrimental to the network as it poses a risk of overshooting 

while a slow learning rate takes too much time for the network to converge. The learning 

rate can be constant throughout, as was done in this study or can be made adaptive i.e. to 

vary with time, (t). In the case of adaptive parameter, it can be made high in the 

beginning of the training or rather when the search is far away from the minimum; and 

smaller as the search reaches minimum. This parameter rate can be anything between 0 

and 10. In all the networks created for this paper, the learning rates ranging from 0.01 to 3 

gave satisfactory results.  

Momentum coefficient (μ) 

A high μ is likely to reduce the risk of getting trapped in the local minima. However, it 

runs the risk of overshooting just as a high learning rate does. This value, just like the 

learning rate, can be made adaptive, i.e. μ(t). It is set relatively high when the search is far 

away from the solution and lower as the search approaches the true minimum, depending 

on the error gradient [16]. For this project, the momentum coefficient between 0.0 and 

1.0, as suggested by [17], produced satisfactory results.    

Number of training cycles (Epochs) 

An epoch is defined as a single presentation of each input/output data on the training 

set [16]. Epochs are set as one of the training parameters and are important in gauging the 

training time taken by a neural network to reach convergence and also to set the goal that 

determines the extent to which the network should be trained. For this study, the training 

epochs were set by trial and error, with a range of 100 to 1000. At most 1000 epochs for 

all the models built produced satisfactory results. The use of Bayesian regulation training 

algorithm also was used as a tool for setting the stopping time, making epoch setting just 

a supporting criterion.       

System verification 

This is the stage that this study is focused on, as it clearly distinguishes the variation 

in the original data to the predicted. It was made part of the modelling stage by supplying 

the model with the range of original data set, from the 70-85th percentile and comparing 

the model output to the last 85th to 100 percentile of the same data. The convergence 

criteria were then measured by determining the two statistical properties, i.e. the MSE 

and the SSE between the forecast and the target results, which were compared and 

reported for each model built. In the next section the quantitative results of the study were 

presented graphically and by tabulation.   
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Models performance measurement 

In this study the mean square errors (MSE) and the sum square errors (SSE) were 

used to gauge the performance of the networks. The mean square error is the average of 

all the squares of individual errors between the model and the real measurements, and is 

given by:  

         
 

 
∑        

  
       (1) 

 

where N is the number of samples, xi and yi are measured and predicted values.  

The sum square error (SSE) is the total summation of the individual squares of errors 

without averaging, and it gives an indication of the total magnitude of the error between 

the models and the measured results. SSE is given by: 

 

         ∑        
  

                           (2)  

 

In addition, MSE and SSE are useful in making comparisons between several models 

with same sets of data and same observations, N. In the event that more than one model is 

compared, one important indicator obtained is how better a model is, compared to the 

others. As seen, both MSE and SSE are dependent on the number of observations and so 

the quantities (orders) of errors are only significant, relative to those of other models and 

have units same as the square of the variable under question (m
2
/s

2
 for wind speed and sq. 

degree (o
2
) for directions).  

RESULTS 

Models assessment for long-term forecasting 

Tables below show the results of the models based on both MSE and SSE on training 

and upon simulation with totally new inputs, not used during training. Here we compare a 

column on the model outputs, to the corresponding column on the measured data. This is 

referred to as 1-point per sliding window. A 1- point per sliding window extends for the 

entire column length. Plotting a column on the target matrix versus a corresponding 

column on the model output matrix measures the generalization ability of the model with 

increasing forecast horizon on the long-term. The results for this exercise are shown in 

Tables 1-4. Tables 1 and 2 were used to assess long-term generalization ability for wind 

speed forecasting; similarly Tables 3 and 4 were used to test the generalization ability for 

wind directions on a long-term basis.   

 
Table 1. The results of the models, assessing the generalization ability when used for long 

term forecasting of wind speeds (Hourly & Daily) 

 

 

 HOURLY FORECASTS DAILY FORECASTS 

MODEL MSEt SSEt MSEv SSEv MSEt SSEt MSEv SSEv 

JENN 0.3801 27772 4.2E6 6.6E10 0.667 8106 8.689 22695 

CFNN 0.3638 26582 1.7E7 2.7E11 0.667 8106 8.452 22076 

FFNN 0.3807 27817 3767 5.9E7 0.688 8364 7.899 20632 
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Table 2. The results of the models, assessing the generalization ability when used for long 

term forecasting of wind speeds (Weekly & Monthly forecasts) 

 

 
Table 3. The results of the models, assessing their generalization ability when used for long 

term forecasting of wind directions (Hourly & Daily forecasts) 

 
Table 4. The results of the models, assessing their generalization ability when used for long 

term forecasting of wind directions (Weekly & Monthly forecasts) 

 

 

Models assessment for short-term forecasting 

The short term usability of the models was assessed by measuring the relative error 

between the model output rows and the measured data, referred to as a sliding window. A 

sliding window is simply one set of inputs and outputs to a neural network model, e.g. for 

hourly forecasting with 10-minute interval data, a row of six model outputs are compared 

to the corresponding row in the real measured data matrix. Plotting and comparing the 

rows cutting across the model output matrix to those of the target matrix is what was 

referred to, as sample whole sliding window. This measures the generalization ability of 

the model on a short term basis, also commonly referred to as one-step-ahead forecasting. 

The results are presented in Tables 5 and 6. Table 5 assesses the generalization ability of 

the models when used for forecasting wind speeds; Table 6 presents same equivalent 

results for wind directions forecasting.  

Table 5. The results of the models, assessing their generalization ability when used for short 

term forecasting of wind speeds 

 

 WEEKLY FORECASTS MONTHLY FORECASTS 

MODEL MSEt SSEt MSEv SSEv MSEt SSEt MSEv SSEv 

JENN 2.104 2047.3 4.9982 1079.6 1.798 751.4 4.122 445.22 

CFNN 2.56 2490.9 6.8416 1477.8 2.041 853.2 9.306 1005 

FFNN 2.0931 2067 6.3329 1368 1.628 680.6 4.18 451.3 

 HOURLY FORECASTS DAILY FORECASTS 

MODEL MSEt SSEt MSEv SSEv MSEt SSEt MSEv SSEv 

JENN 6.4E3 4.7E8 8.8E6 1.3E11 4.2E3 5E7 1.3E4 3.4E7 

CFNN 1.3E4 9.6E8 1.3E9 2.1E13 4.1E3 5E7 1.3E4 3.5E7 

FFNN 1.6E4 1.1E9 1.7E4 2.7E8 3.3E3 4E7 1.3E4 3.5E7 

 WEEKLY FORECASTS MONTHLY FORECASTS 

MODEL MSEt SSEt MSEv SSEv MSEt SSEt MSEv SSEv 

JENN 5.4E3 5.3E6 1.4E4 3.0E6 9.9E3 4.1E6 1.5E4 1.7E6 

CFNN 6.6E3 6.4E6 1.3E4 2.8E6 6.2E3 2.6E6 1.2E4 1.2E6 

FFNN 6.3E3 6.1E6 1.6E4 3.4E6 1.1E4 4.6E6 1.3E4 1.4E6 

 HOURLY 

FORECASTS 

DAILY 

FORECASTS 

WEEKLY 

FORECASTS 

MONTHLY 

FORECASTS 

MODEL MSEv SSEv MSEv SSEv MSEv SSEv MSEv SSEv 

JENN 16.4211 98.266 0.3430 4.1156 2.8959 40.5432 3.1452 94.3548 

CFNN 17.3025 103.8152 0.3492 4.1899 1.8416 25.7827 9.1991 275.9728 

FFNN 16.4183 98.51 0.5430 6.5154 1.6656 23.3138 2.1257 63.7702 
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Table 6. The results of the models, assessing their generalization ability when used for short 

term forecasting of wind directions 

 

Developing the criteria for choosing between different forecasting models 

The core needs determines the criteria applied by the modeller in choosing between 

various types of models. A number of criteria used in this study to assist in making that 

choice are identified as the degree of accuracy needed, the forecast horizon for which the 

model is designed, and whether the model is usable for long-term or short-term 

forecasting. In this case, long-term forecasting can be hourly forecasts for a relatively 

long period of time e.g. several months ahead. With the kind of results presented in 

section 3.1 and 3.2 therefore, one can tell which model type has the lowest statistical error 

compared to other models, during training and upon verification i.e. with new inputs. It is 

also possible to tell which model is best suited for which forecast horizon, and which one 

is good enough for long/short term forecasting for both wind speeds and directions. 

Tables 7 and 8 summarize the obtained results, specifically answering the above 

important questions regarding the models.   

Choice of wind speeds forecasting models based on generalization ability 

Table 7. Making a choice between the models for use in forecasting wind speeds 

 

Generalization Error (MSE and SSE)  

MODEL Hourly Daily Weekly Monthly Score 

 L S L S L S L S  

JENN            3 

CFNN         0 

FFNN              5 

 

Choice of wind directions forecasting models based on generalization ability 

Table 8. Making a choice between the models for use in forecasting wind directions 

 

Generalization Error (MSE and SSE) Score 

MODEL Hourly Daily Weekly Monthly  

 L S L S L S L S  

          

JENN           2 

CFNN              5 

FFNN          1 

Sample forecast results from selected networks 

Sample plots for predicted and forecasted values versus measured data for two groups 

of networks models (FFNN and CFNN) are presented below for hourly, weekly and 

 HOURLY 

FORECASTS 

DAILY 

FORECASTS 

WEEKLY 

FORECASTS 

MONTHLY 

FORECASTS 

MODEL MSEv SSEv MSEv SSEv MSEv SSEv MSEv SSEv 

JENN 9.6E3 5.8E4 4E3 4.7E4 2.8E4 4.0E5 1.5E4 4.4E5 

CFNN 1.0E4 6.0E4 3.6E3 4.3E4 6.1E3 8.6E4 1.2E4 3.6E5 

FFNN 3.0E4 1.8E5 3.7E3 4.4E4 2.5E4 3.4E5 1.8E4 5.3E5 
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monthly forecast horizons. Two important terminologies are emphasized predicted and 

forecasted results; the difference between predicted and forecasted variables should be 

noted. In statistical modelling, predicted variable usually refers to the output of data used 

for training, i.e. assessing how well the training data fits to the model output. Forecasting 

is the expected results into the future from a predictive model, for inputs that were not 

used during training of the model. Samples of predicted, measured, and forecasted results 

for hourly, weekly and monthly horizons are shown in Figures 6-11.       

Hourly forecasting of wind speeds with FFNN 

 
 

Figure 6. Comparing model outputs and the measured hourly wind speeds upon training 

 

 
 

Figure 7. Comparing model outputs and the measured hourly wind speeds upon verification 

Weekly forecasting of wind directions with CFNN 

 
 

Figure 8. Comparing model outputs and the measured weekly wind directions upon training 
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Figure 9. Comparing model outputs and the measured weekly wind directions upon 

verification 

Monthly forecasting of wind directions with CFNN 

 
 

Figure 10. Comparing model outputs and the measured monthly wind directions upon 

training 

 

 
 

Figure 11. Comparing model outputs and the measured monthly wind directions upon 

forecasting 

 

NB: The measured data on training is a part of the first 70% and on verification is part of the 

last 15% of the original data; therefore they are not the same set of data. 



Journal of Sustainable Development of Energy, Water  
and Environment Systems 

Year 2014 
Volume 2, Issue 2,  pp 174-190  

 

Page 186 

DISCUSSION 

The results were obtained by taking 70% of the data, further divided into a second set 

of 70, 15 and 15%, and used for training, validation and testing. The last 30% of the 

original data was used for verification, i.e. by presenting the model with the second last 

15% which was not used for training and assessing how the output from the models 

compares with the last 15% of the original data, as explained in section 2.5. The results 

from each of the models were organized and assessed in terms of the magnitude of the 

statistical error between the forecasted result and the real measured data. This was 

achieved by measuring the average of the squares of errors (MSE) and the total sum of 

the squared errors (SSE), for each model. The procedure was repeated for the two stages 

of data analysis, during training and upon verification, for one-point per sliding window 

and for a sample of whole sliding window and the overall error magnitude, as shown in 

Tables 1-6. The sliding window concept is explained; when data is converted into lagged 

variables, they form sliding windows of different sizes depending on the required inputs 

and outputs of the model.  

To conduct ‘mass’ forecasting, the new inputs to the network must be in the form of 

the training inputs (same column size). In the same way, the outputs from the model have 

the same column size as the target matrix/vector. The success of the models was realized 

by measuring the relationship between the measured versus the model outputs (MSE & 

SSE).  

In general, for each of the three types of models (Feed Forward, Jordan Elman and 

Cascade forward): 4 similar models (topologically) were built, corresponding to four 

forecast horizons: hourly, daily, weekly and monthly forecasting, of both wind speeds 

and directions. As an overall observation, the mean square error and the sum square 

errors, which were used as the convergence criteria were relatively lower during training, 

but shot up steadily upon simulation with new inputs. 

To obtain good results with neural networks, data quantity is as important as data 

quality. A large amount of data is needed for training of the models. For this study two 

years data, seemed to limit the possibility of the models to adapt well and to develop 

accurate rules for generalization. It is possible that the relatively low quality results from 

both wind speed and direction models were as a result of the limited data quantity.  

 
 

Figure 12. Plotted wind rose showing the prevalent wind speeds and directions in Puumala, 

Finland 
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The data quality and quantity used in the study were represented on a wind rose. Wind 

rose is a graphical representation of wind speeds and directions distribution for a 

particular location. Colour maps are usually used together with wind roses to give a 

quantitative feeling of the overall data distribution. Cool colours represent low values of 

the variables while warm colours represent medium values; hot colours shows peaks or 

highest values. Figure 12 is a wind rose representation for wind speeds and directions in 

Puulama, Finland. Figure 13 is a histogram showing wind speeds statistical distribution.  

 
Figure 13. A histogram of wind speeds distribution 

 

CONCLUSIONS 

Quantitatively, based on the models’ generalization ability, considering long-term 

and short-term forecasting, and by using both mean square error and sum squared error as 

the convergence criteria, the feed forward neural networks (FFNN) emerged as 

preferable type of models that may be used both for short-term and long-term wind speed 

forecasting, amongst other models tested. FFNN returned the lowest generalization error 

for 5 out of the 8 models built for wind speeds forecasting. On the other hand, cascade 

forward neural networks (CFNN) proved to be a better choice among the rest when 

applied for wind direction forecasting. CFNN returned the lowest generalization error in 

5 out of the 8 models built for wind directions forecasting.  

Qualitatively, hourly forecasting of wind speeds with FFNNs consistently returned 

the lowest generalization error both in the short term and in the long run. This adds up to 

the conclusions made by various researchers in the past. However, for wind directions 

CFNNs, which has less often been used compared to FFNN, returned the lowest 

generalization error when used both for weekly and monthly forecasting of wind 

directions. On a per-forecast-horizon basis, FFNNs returned the lowest generalization 

errors for hourly, weekly and monthly forecasts; while JENNs returned the lowest errors 

when used for forecasting of daily wind speeds. CFFNs gave the lowest errors when used 

for forecasting daily, weekly and monthly wind directions; while JENNs proved to be the 

best when used for hourly forecasting of wind directions. In addition, a combination of 

hyperbolic tangent transfer functions for both hidden and output layer returned better 

results for most of the models that were used for forecasting in this study.  
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Even though normalization would have reduced the range of the two sets of data; 

there is still a larger range between direction measurements, compared to those of speeds, 

even after normalization. It can be seen therefore, it is more difficult for the neural 

networks to train the sets of data with a large range in between, compared to training one 

with relatively small range. As a result, none of the models built can vividly be said to 

possess the ability to forecast wind directions, and thus opening up an opportunity for 

further research in this context. Nevertheless, FFNNs returned the lowest generalization 

errors for hourly, weekly and monthly forecasts; while JENNs returned the lowest errors 

when used for forecasting of daily wind speeds. CFFNs gave the lowest errors when used 

for forecasting daily, weekly and monthly wind directions; while JENNs proved to be the 

best when used for hourly forecasting of wind directions (Tables 5 and 6). In addition, a 

combination of hyperbolic tangent transfer functions for both hidden and output layer 

returned better results for most of the models that were used for forecasting in this study.  

All data were normalized to a range between 0 and 1; a logistic transfer function would 

have been expected to have a better performance on the data. On the contrary however, 

from the tests, a combination of hyperbolic tangent transfer functions for both hidden and 

output layer returned a relatively low error for most of the models.  

However neural networks may be used to forecast natural phenomena e.g. wind 

speeds and directions, their ‘intelligence’ is limited to a relatively progressive change in 

the unique factors/rules developed and used by the networks during training. For instance, 

the training data of wind speeds and directions collected over a period of say 5 years can 

only be used for forecasting as long as the human, physical and environmental factors e.g. 

surrounding forests, buildings, terrain, etc., remain as is, or with minimal and gradual 

changes. This limits the use of implemented neural networks, as it would require 

re-training and review of relevant codes. This not only affects the neural networks used in 

ecological modelling but also many other research fields as well, and thus further 

research is called for in this area of study [18].  

With respect to wind energy planning specifically for the region under study, wind 

speed forecasting models seemed to produce relatively good results but only for shorter 

horizons (~ 6 hours) compared to those of wind directions; wind directions seemed 

accurate for a longer future period (~ 24 hours). In general the wind directions were 

skewed towards the western side, with a range between 235 and 300 ° measured from due 

north, while wind speeds were normally (Gaussian) distributed between (0 to 16 m/s), 

with 6-12 m/s as the persistent speeds for well over half of the test period (Figures 13 and 

14). According to Aapo Koivuniemi an expert at TuuliSaimaa Oy, a Finnish company 

specializing in wind power production, produced electricity is naturally site and turbine 

specific. With the Finnish feed in tariff and typical modern approximately 110 m 

diameter rotor with 3 MW nominal power turbines, the very easiest sites can be profitable 

with about 6 m/s mean speed at 100 m height. Normal inland site might need a minimum 

of about 6.5-7 m/s to be an attractive investment opportunity. As for offshore, it makes a 

whole difference, because turbine foundations can become much more expensive (up to 

2-3 times of the turbine price), and thus even 9 m/s speeds may not be enough to break 

even [19]. As Puumala lies along the shoreline, it can easily be concluded therefore, that 

the location was strategic and wind speeds were consistent, sufficient and reliable for 

considerable wind power generation.   

NOMENCLATURE  

H  Number of hidden layers in a neural network 

N  The number of samples of data in error measurements 

R  Coefficient of Correlation, dimensionless fraction 
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Greek letters 

μ  Neural network momentum coefficient, dimensionless constant 

  Neural network learning rate, dimensionless constant  

∞  Infinity  

ζ  Neural network transfer  function 

 

Abbrevations 

ABL  Atmospheric Boundary Layer 

AI  Artificial Intelligence 

ANN  Artificial Neural Network 

ARX  Autoregressive eXogeneous 

BBP  Batch Back Propagation 

BR  Bayesian regulation/regularization 

CFFN  Chosen model 

CFNN  Cascade Forward Neural Networks 

FFNN  Feed Forward Neural Network 

JENN  Jordan Elman Neural Network 

L  Long term 

LUT  Lappeenranta University of Technology 

MATLAB Matrix Laboratory 

MLFFNN Multi-Linear Feed Forward Neural Network 

MM5  Fifth-generation Meso-scale Models 

MSE  Mean Square Error 

MSEt    Mean Square Error upon training 

MSEv   Mean Square Error upon verification 

S  Short term 

SSEt    Sum Square Error upon training  

SSEv   Sum Square Error upon verification 
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