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ABSTRACT  

The dynamic evolution and variation of electrical loads is now, a priority for their optimal management 
and, above all, forecasting. Now, these dynamic load variations require computer tools that are able to 
implement optimal load forecasting models. Scientific research into automated models for forecasting 
electrical loads is therefore a challenge for scientific researchers, and several studies have been carried 
out in this area. These include machine learning approaches such as Long Short-Term Memory, Support 
Vector Machine, Multilayer Perceptron; deep learning, probabilistic and others. These studies are often 
quite complex due to the number of elevated hyperparameters they contain, with considerable deviations 
in accuracy between the real and predicted data. Thus, in order to exploit methods with fewer 
hyperparameters and minimized prediction deviations between consumed and production, this paper 
proposes a method for forecasting based on a regression ensemble method: adaboost regressor approach, 
to improve in energy consumption forecasting by application of advanced algorithm. So, this article 
presents learning and validation tests for the proposed model. The data used, were collected from a 
renewable energy source: photovoltaic solar energy. While 80% of the data collected was used for 
learning purposes, the remaining 20% was used for validation testing. The results of this study give a 
coefficient of determination R2 between 0.9995 and 0.9997 for the learning results and between 0.83 and 
0.958 for the validation test results. According to the metrics parameters, these results are representative 
of the real data and reflect the performance of the proposed model. The proposed model is well adapted 
to the management of electrical consumption load forecasts to ensure balance between supply and 
demand. 

KEYWORDS  
Optimal management, electricity demand, forecasting model, ensemble regression: adaboost regressor. 
 

INTRODUCTION 
     Electricity is at the heart of development [1]. The need to satisfy electricity demands to 
reduce energy insufficiency and, above all, environmental pollution, means that renewable 
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energy resources need to be prioritized, as recommended by the United Nations' global 
agreements 7 and 13 within its sustainable development goals [2]. However, the intermittent 
nature of these renewable resources is an important parameter that influences the quality and 
reliability of electrical energy and the balance between supply and demand, especially when 
these resources are less controlled [3]. Forecasting electrical energy production is becoming 
increasingly essential not only for the efficient and continuous operation of grid operating 
systems, but also for the optimal management of these renewable resources. Load forecasting 
is an integral process in the planning and operation of electric utilities [4]. It helps reduce the 
mismatch between supply and demand, thus ensuring the sustainability of energy systems. 
Indeed, load forecasting is necessary for the consistent operation of the power grid and for the 
optimal management of the energy flows in these systems [5]. It also enables reserves to be 
estimated and managed for power system scheduling and for trading on the electricity market 
[6] and reducing penalties for grid imbalances [7]. Due to the sharp increase in electricity 
production from renewable energies, forecasting this production is becoming increasingly 
important. A number of research studies have been carried out to help power system operators 
to plan the distribution of electricity. However, a fairly significant discrepancy between actual 
demand values and those predicted by models would have technical and economic 
consequences [8] because forecasts should be optimized according to parameters that take 
prices into account [9]. 
The main objective of this study is to improve in energy consumption forecasting by 
application of advanced algorithm like adaboost regressor approach. These studies can help to 
identify the strengths and weakness of methods in that specific context and contribute to the 
advancement of knowledge in electrical load forecasting and energy management. Now, the 
methods consist to minimize the discrepancies between actual and predicted load values. The 
specific objective is to set up the adaboost regressor approach, for learning and validating 
electrical energy demands. For this, 80% of the data collected was used for learning purposes, 
the remaining 20% was used for validation testing. The data for learning and tests, were 
supplied by the Electrical Energy Company of Togo (CEET) and collected from a renewable 
energy production source: photovoltaic solar energy. 
The rest of this article is divided into four sections: the theoretical background materials is 
presented in Section 2; the material and methods are presented in Section 3; the results and 
discussion are presented in Section 4; and, finally, the conclusion is presented in Section 5. 

THEORETICAL BACKGROUND 
  In this section, bibliographical reviews, general forecasting approach, mathematical approach 
of the regression ensemble method and performance metrics, are shown.  

Bibliographical reviews 
  Electricity is a vector of development for countries. However, there is a major challenge in 
optimizing its production due to its integration of intermittent renewable energy sources. On 
the other hand, the most pressing concern is the efficient management of electrical load 
demands. Many studies have been carried out on the subject of more efficient and optimized 
energy management [10]. In this context, Izquierdo-Monge O and al. proposed, in their paper, 
a methodology for optimizing electrical energy consumption in a distribution network that 
involved equipping the network with intelligence  [11]; in [12], the authors proposed microgrid 
optimization based on a hybridized system of renewable energy resources; Mah AXY and al. 
presented an optimization of the design and operation of an autonomous microgrid with electric 
and hydrogen loads, showing a significant reduction in load costs [13]; moreover, a strategy 
for controlling and managing the energy supply of a microgrid in order to achieve higher 
efficiency, reliability and economy was proposed in [14] with demand optimization by 
advanced algorithms such as particle swarm optimization [15]. 
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All of these studies propose scientific methods and approaches with the aim of improving the 
management of renewable energy systems for the efficient exploitation of these resources to 
generate balance between supply and demand. To study the response to disruptions caused by 
the reduction of systems using non-renewable fossil resources in favor of renewable resources 
in microgrids, a robustness improvement study based on variable-shape LADRC technology 
for the electrical load interface was conducted [16]. A study on the dynamic analysis of 
microgrid systems for powering sailboat electrical loads using renewable energy was 
conducted [17]. S. Rajamand's objective in [18] is to manage energy consumption by adjusting 
demand based on supply conditions, often through incentives for consumption during peak 
periods. Amado and al. improve microgrid efficiency by integrating renewable energy [19]. 

Developing countries have conducted many studies on electricity to further their development 
[20] and explores the challenges and strategies for improving electricity access and 
affordability in these countries [21]. However, the growth of the population at present, causes 
on the one hand, an increase in electrical energy demand [22] with the modelling of the optimal 
electricity at long term [23]. The lack of electricity in rural areas then leads to a number of 
challenges in mobilizing the resources needed for optimal electrification planning [24] taking 
into account, the techno-economic assessment integrating renewable sources [25]. It is 
important to electrify rural areas and areas on the outskirts of cities, using power plants not far 
from these areas, to mobilize local natural resources [26] and to develop integrated energy 
systems for off-grid [27], in order to minimize distances and electrical losses. These available 
natural resources can thus be exploited by microgrids [28] with a necessary to optimize their 
design, operation and integration into conventional power systems [29]. At present, the 
management of these microgrids and all of electrical network management, are often robust 
[30] and a robust coordination framework of these microgrids is proposed in [31], because of 
the daily variation of short- and long-term loads due to the ever-increasing energy needs of the 
population. This difficulty in pairing the real-time adaptation of electricity production to the 
demand for electrical energy is explained by the lack of an efficient management program for 
these microgrids. The lack of a modernized predictive model for the management of these mini-
grids in most sub-Saharan countries is a difficulty in the operational planning of these power 
generation systems. It is therefore necessary to develop optimized prediction models for 
managing the evolution of microgrid loads. 
Thus, machine learning techniques [32] and its importance for forecasting electrical energy 
consumption (load) [33], used to solve societal problems via different regression methods. In 
particular, prediction work based on neural network methods [34] for short term loads 
forecasting in microgrids environment [35] and with his radial basis functions [36] for 
modelling nonlinear and complex relationships in times series data [37]. Multilayer perceptron 
(MLPs) approach, and his convolution neural networks (CNNs) have also been presented in 
[10] and in [38]. Now, artificial neural network has the capacity to imitate biological neural 
systems [39] and to incorporate fuzzy logic principles to handle uncertainty and imprecision 
data [40]; so, their applications in science and engineering are presented in [41] and can be 
tested on real-world data under varying weather conditions such as for example, photovoltaic 
data [42]. Other models have also been developed, such as the LSTM (Long Short-Term 
Memory) technique [43] where authors propose and test a CNN and LSTM models reveal that 
the models behave differently when the number of layers changed over the different 
configurations; in [44], a short term load forecasting model that integrates a multi-scale CNN-
LSTM hybrid approach neural network is proposed; for support vector regression : a 
proposition of algorithms, has been trained and tested with a significant encouraging result 
show an accuracy improvement from 20% to 23.4% in [45], and in [46], authors used support 
vector machine for the forecasting and recommended a combination of this approach with 
algorithms like artificial neural network (ANN) model and clustering; fuzzy polynomial 
regression methods is discussed in [47] showing how a fuzzy logic approach can be applied to 
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predict electrical load during holidays; multiple regression in [48] with the aims to improve the 
accuracy of electric load forecasting by a boosting-based approach ; deep learning in [49] 
advanced in short term load forecasting by combining deep learning with socioeconomic and 
infrastructural data, offering a practical solution for sustainable management in geographically 
or economically constrained environments; authors explore in [50], the application of neural 
networks in wind resource assessment and forecasting; probabilistic methods : in [51], the 
study likely aims to enhance the accuracy and reliability of industrial load forecasting by 
adopting a multivariate probabilistic approach involving characterizing the uncertainty in load 
predictions which is crucial for managing industrial energy systems effectively and an 
improvement of quantile regression neural network architecture can better capture complex 
patterns in load data and provide more accurate probabilistic forecasts [52]. 
Other authors such as, Yasameen F. and al. [53], have used the Structural Equations Modeling 
to forecast the impact of the environmental and energy factor to improve urban sustainability; 
for Afshin Balal and al. [54], it is possible to use the Random forest regression and the LSTM 
to forecast solar power generation; an application is being carried out in Lubbock, Texas. 
Meryem El Alaoui and al. [55] have used ARIMA and statistical methods for the prediction of 
energy consumption of an administrative building. Other works have been carried out to 
propose also, a model based on LSTM for enhancing power load forecasting accuracy [56] and 
in [57], a hybrid model based on Gated Recurrent Unit (GRU) and CNN. 
Each of these methods has its own specificities; the number of hyperparameters to be defined, 
according to the model, is often high and the forecasting time is sometimes long. 
Table 1 provides an overview of the various methods used to forecast short- and long-term 
expenses:   
 

Table 1. Summary of electrical load forecasting models 

 

 

 

Electrical load 
forecasting 

Methods References 
LSTM-MLP [10][43][57] 

ARIMA 

SVM, kmeans-SVM 

[55] 

[45][46][58] 
Deep learning [49][50] 
Multilayer perceptron [10] 

Hybrid methods [10][56][57] 

Adaboost used in electrical load 
forecasting 

[59] 

Adaboost used in other areas [60][61] 
  

 

General forecasting approach 
   Forecasting is the study of a given quantity, whose future evolution can be estimated by 
calculation [62]. Let there be a training set D containing T pairs of input vectors x and scalars 
y according to relation eq. (1): 
 

𝐷𝐷 = {(𝑥𝑥𝑡𝑡 ,𝑦𝑦𝑡𝑡)|𝑡𝑡 = 1, … ,𝑇𝑇} (1) 

    where yt is a time series and xt is a vector of dimension d, defined by relation eq. (2): 
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𝑥𝑥𝑡𝑡 = [𝑥𝑥1, … , 𝑥𝑥𝑑𝑑]𝑇𝑇 (2) 

All input vectors are often combined into matrix X, and the output values into output vector Y; 
relation eq. (3): 

𝑋𝑋 =

⎣
⎢
⎢
⎡𝑥𝑥1

𝑇𝑇

𝑥𝑥2𝑇𝑇
⋮
𝑥𝑥𝑇𝑇𝑇𝑇⎦
⎥
⎥
⎤

,𝑌𝑌 = �

𝑦𝑦1
𝑦𝑦2
⋮
𝑦𝑦𝑇𝑇

� 

(3) 

 The general model of a time series is given by relation eq. (4): 

𝑦𝑦𝑡𝑡 = 𝑓𝑓(𝑥𝑥𝑡𝑡 ,𝜃𝜃) + 𝜖𝜖𝑡𝑡 (4) 

    where 𝑓𝑓  is a function; 𝑥𝑥𝑡𝑡  is the independent variables (or features) at time t; 𝜃𝜃  is the 
parameter vector, it represents the parameters of the model that define the relationship between 
𝑥𝑥𝑡𝑡 and 𝑦𝑦𝑡𝑡 and are typically estimated from historical data during the model training process; 
and 𝜖𝜖𝑡𝑡 is a Gaussian noise. The forecast at a future time T+h is obtained by evaluating the 
function f at the test point 𝑥𝑥𝑇𝑇+ℎ according to relation eq. (5): 

𝑦𝑦𝑇𝑇+ℎ = 𝑓𝑓(𝑥𝑥𝑇𝑇+ℎ ,𝜃𝜃� ) (5) 

where 𝜃𝜃� is the vector of parameters from the training data set D. It represents the estimated 
parameters of the model. Indeed, 𝑓𝑓(𝑥𝑥𝑇𝑇+ℎ,𝜃𝜃� ) is a function that models the relationship between 
the explanatory variables and the target variable we want to predict. 𝑥𝑥𝑇𝑇+ℎ  represents the 
explanatory variables at the future time T+h. 𝑓𝑓 is the function that can be linear, nonlinear, a 
regression odel, or any other type of function that describes the relationship between x and y. 
The choice of 𝑓𝑓, depends on the model used.  
 

 Mathematical approach of the regression ensemble method 
   The regression ensemble method is a collection of regression models used to make prediction 
much faster and more efficient. It is defined by the following: the space of hypothesis H; a 
method for combining prediction elements ht, such as ht = 1...T ∈ H. Part of the regression 
ensemble method is the adaboost regression method, which is a set of machine learning 
procedures that consist of combining several sub-predictors to optimize better, prediction. 
Figure 1  shows the flowchart of the adaboost regressor approach: 
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Figure 1. Flowchart of the adaboost regressor approach 

The ensemble method thus provides a predictor H(x), such that equations eq. (6), eq. (7), and 
eq. (8) [60]: 

𝐻𝐻(𝑥𝑥) = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (�𝛼𝛼𝑡𝑡 .ℎ𝑡𝑡(𝑥𝑥))
𝑇𝑇

𝑡𝑡=1

 
(6) 

𝐻𝐻 = [(ℎ𝑡𝑡 ,𝛼𝛼𝑡𝑡)]𝑡𝑡=1…𝑇𝑇  ∈ (H, 𝐼𝐼𝐼𝐼+∗ )𝑇𝑇 (7) 
 
𝐻𝐻𝑡𝑡

(𝑥𝑥) =  𝐻𝐻𝑡𝑡−1(𝑥𝑥) + 𝛼𝛼𝑡𝑡 .ℎ𝑡𝑡(𝑥𝑥) (8) 

The goal is to find a sequence of predictor elements ht and weights αt such that the previous 
global predictor achieves a small error. 

The proposed algorithm is given: 

(1) As a given sample (𝑥𝑥1,𝑦𝑦1), (𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖), … . , (𝑥𝑥𝑁𝑁 ,𝑦𝑦𝑁𝑁): N training samples set 

(2) Initialize the weights vector of the sample: 𝐷𝐷1 = (𝛼𝛼11, …𝛼𝛼𝑖𝑖1, …𝛼𝛼𝑁𝑁1 ) 

      D=1/N. N is the number of training samples 
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(3) While 𝑡𝑡 < 𝑇𝑇, 𝑇𝑇 the iteration numbers 

(4) Under the probability distribution of training samples: the weak learner ℎ𝑡𝑡(𝑥𝑥) are 
trained 

(5) The probability 𝑃𝑃 = 𝛼𝛼𝑡𝑡

∑ 𝛼𝛼𝑖𝑖
𝑡𝑡𝑁𝑁

𝑖𝑖=1
 

(6) Update weight distribution  

     𝐷𝐷𝑡𝑡+1 = (𝛼𝛼1𝑡𝑡+1, …𝛼𝛼𝑖𝑖𝑡𝑡+1, …𝛼𝛼𝑁𝑁𝑡𝑡+1)  

     𝛼𝛼𝑖𝑖𝑡𝑡+1 = 𝛼𝛼𝑖𝑖𝑡𝑡𝛽𝛽1−|ℎ𝑡𝑡(𝑥𝑥𝑖𝑖)−𝑦𝑦𝑖𝑖|, i = 1,2, …, N 

    With Weak learner weight 𝛼𝛼𝑡𝑡 = 1
2

ln � 1
𝛽𝛽𝑡𝑡
� ;  𝛽𝛽𝑡𝑡 = 𝜀𝜀𝑡𝑡

1−𝜀𝜀𝑡𝑡
                

(7) Calculate the combination of learners: 𝐻𝐻(𝑥𝑥) = ∑ 𝛼𝛼𝑡𝑡ℎ𝑡𝑡(𝑥𝑥)𝑇𝑇
𝑡𝑡=1  

Performance metrics 
     The statistical analyses of the data presented in the rest of this study are based on the 
minimum and maximum values of the data used and the mean, standard deviation and median 
of these data (eq. (9), eq. (10) and eq. (11)): 

𝑚𝑚𝑠𝑠𝑠𝑠 = min(𝑥𝑥𝑖𝑖);  𝑚𝑚𝑚𝑚𝑥𝑥 = max(𝑥𝑥𝑖𝑖) ;  i =  1, … . N  (9) 

𝑋𝑋� =
1
𝑁𝑁�𝑥𝑥𝑖𝑖

𝑁𝑁

𝑖𝑖=1

 
(10) 

𝜎𝜎 =  �
1
𝑁𝑁�

(𝑥𝑥𝑖𝑖 − 𝑋𝑋�)2
𝑁𝑁

𝑖𝑖=1

 

(11) 

 

where 𝑋𝑋�, x and 𝜎𝜎 represent the mean, the variable and the standard deviation, respectively.  The 
calculation of the errors inspired in [63] and [64], contained within the model, allowing to 
appreciate the difference between the predicted model and the real curve, is formulated as 
follows: 

The mean square error by eq. (12): 

MSE =
1
𝑠𝑠�

(𝑦𝑦𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 − 𝑦𝑦𝑝𝑝𝑟𝑟𝑟𝑟𝑑𝑑𝑖𝑖𝑝𝑝𝑡𝑡)2 
(12) 

The average of the absolute errors by eq. (13): 

MAE =
1
𝑠𝑠�

|𝑦𝑦𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 − 𝑦𝑦𝑝𝑝𝑟𝑟𝑟𝑟𝑑𝑑𝑖𝑖𝑝𝑝𝑡𝑡| 
(13) 
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The square root of the mean square error by eq. (14): 

RMSE = �1
𝑠𝑠�(𝑦𝑦𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 − 𝑦𝑦𝑝𝑝𝑟𝑟𝑟𝑟𝑑𝑑𝑖𝑖𝑝𝑝𝑡𝑡)2 

(14) 

The coefficient of determination by eq. (15): 

R2 = 1 −
∑(𝑦𝑦𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 − 𝑦𝑦𝑝𝑝𝑟𝑟𝑟𝑟𝑑𝑑)2

∑(𝑦𝑦𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 − 𝑦𝑦𝑝𝑝𝑟𝑟𝑟𝑟𝑑𝑑𝑝𝑝𝑝𝑝𝑡𝑡����������)2 
(15) 

 

All of these regression metrics are calculated in order to evaluate the error, which is assumed 
to be minimal. 

 
 

MATERIAL AND METHODS    

Python 3.10 was used in this work. The following section presents the approach based on the 
forecasting method using adaboost regressor. 

Indeed, adaBoost regressor is an ensemble learning algorithm that combines several weak 
models to enhance regression performance. It takes into account, the number of estimators to 
combine: increasing this number, can improve performance, but it also increases the risk of 
overfitting; the learning rate that reduces the contribution of each estimator: a smaller value 
makes the algorithm more robust but requires a larger number of estimators to compensate; the 
loss function to minimize. The choice of loss affects how sample weights are updated; the base 
estimator (the base model or weak learner used to “boosting”); and the random state (by default, 
none). 

However, the input variables are time (min) and the output variables are electrical power (in 
kW). 

The general flowchart use for electrical load forecasting and the model selection is shown in 
Figure 2: 
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Figure 2. General flowchart used for electrical load forecasting and optimal model selection 

Data presentation 
     Electrical load consumption data are presented and averaged over a population of more than 
500 households. These data were collected from a renewable energy source photovoltaic solar 
energy and were obtained from the Electrical Energy Company of Togo. These are the data on 
which the forecasts were based and, in fact, represent only 0.87 % of the total consumption 
data for the electrical loads used during this period. The total dataset is around 4100 to 4300. 
To perform simulations using Machine Learning techniques, a considerable quantity of datasets 
is required. In fact, this data represents the consumption of electrical loads over several days 
by months. Figure 3 shows a part of the global datasets: 
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Figure 3. Presentation of a part of load data for simulation 

The results are presented and discussed in the next section. 

RESULTS AND DISCUSSIONS 
  This section shows the different results of the forecasting and the discussions.  

Results  
  This section presents a study based on forecasting results. The studies present the statistical 
indicators of the data, then, the various prediction results and the correlation results between 
the predicted and the real value.  

Statistical results    
  The forecasting results obtained were based on load data recorded on a monthly basis, the 
statistical indicators of which are presented in Table 2: 
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Table 2.  General statistical data indicators 

 

Months 

points 

 

Step 

(min) 

min max mean std median 

January  

 

4100-
4300 

 

 

    5 

0 71.97 16.3 16.44 10.237 
February 0 71.778 16.00 15.80 10.1 
March 0 75.369 16.179 15.93 10.285 
April 0 80.59 16.37 15.67 10.64 
May 0 80.453 16.58 16.11 10.28 
June 0 87.4 16.67 16.06 10.26 
July 0 86.127 15.98 14.757 9.937 
August 0 93.5 15.9 15.21 9.68 
September 0 90.014 15.02 14.92 9.083 
October 0 93.73 14.95 15.34 8.467 
November 0 73.001 16.42 16.28 9.14 
December 0 65.0 16.25 15.6 9.37 

std = standard deviation. 

Table 2 shows the minimum, maximum, mean, standard deviation and median values of the 
electrical load data. The number of data analyzed per month is about 4100 to 4300. The 
maximum value recorded during these half months is 71.974. The overall mean was 16.2, with 
a standard deviation of around 15.7, showing the non-homogeneity of the consumption load 
each month and the variance in the data: the load of the installed microgrid therefore varies 
dynamically.  

The results of the electrical loads forecasting, are presented. 

Forecast results on selected monthly data    
The statistical indicators are presented in Table 2.  
The following figure, Figure 4, shows the variation over time (by step of 5 min) of the electrical 
consumption loads (in kW). The forecast results over time, are also shown: 

 
(a)                                                                     (b) 

 
Figure 4. (a) Real curve for the month of January; (b) Real and forecast curves for January 

Figure 4 (a) and (b), respectively show the actual and predicted electrical loads for the month 
of January. During this month, the electrical consumption loads recorded are to the order of 70 
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kW. These loads vary over the course of the month. The results of the learning and test model 
are shown in Table 3.  

The same results are shown for the others months : February, March, April, May, June, July, 
August, September, October, November and December, respectively in Figure 5 (a) and (b),  
Figure 6(a) and (b), Figure 7 (a) and (b), Figure 8 (a) and (b), Figure 9 (a) and (b), Figure 10(a) 
and (b), Figure 11(a) and (b), Figure 12(a) and (b), Figure 13(a) and (b), Figure 14(a) and (b), 
and Figure 15(a) and (b).  

Figure 5 (a) and (b), show respectively the real curve and the forecast curve for the month of 
February: 
 

 
(a)                                                                     (b) 

 
    Figure 5. (a) Real curve for the month of February; (b) Real and forecast curves for February 

 
The real curve and the forecast curve are shown respectively in Figure 6 (a) and (b) for the 
month of March: 
 

 
(a)                                                                         (b) 

 
Figure 6. (a) Real curve for the month of March; (b) Real and forecast curves for March 

 
The variation of the curves depends on the variation of the data for each month. Figure 7, shows 
the results of the real and the forecast curves for the month of April: 
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(a)                                                                         (b) 

 
Figure 7. (a) Real curve for the month of April; (b) Real and forecast curves for April 

 
The real curves and the forecast curves for the month of May are presented respectively in 
Figure 8 (a) and (b).  

 
(a)                                                                        (b) 

 
Figure 8. (a) Real curve for the month of May; (b) Real and forecast curves for May 

 
 
Figure 9 (a) and (b) show respectively the real curve and the forecast curve for the month 

of June. 
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(a)                                                                       (b) 

 
Figure 9. (a) Real curve for the month of June; (b) Real and forecast curves for June 

 
However, Figure 10 (a) and (b) show respectively the real curve and the forecast curve for the 

month of July.  

 
(a)                                                                         (b) 

 
Figure 10. (a) Real curve for the month of July; (b) Real and forecast curves for July 

 
 
Figure 11 (a) and (b) show respectively the real curve and the forecast curve for the month 

of August. 
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(a)                                                                         (b) 

 
Figure 11. (a) Real curve for the month of August; (b) Real and forecast curves for August 

 
And in Figure 12 (a) and (b), the real curve and forecast curve of the month of September are 
presented: 

 

 
(a)                                                                        (b) 

 
Figure 12. (a) Real curve for the month of September; (b) Real and forecast curves for September 

 
 
Figure 13 (a) and (b) show respectively the real curve and the forecast curve for the month 

of October. 
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(a)                                                                         (b) 

 
Figure 13. (a) Real curve for the month of October; (b) Real and forecast curves for October 

 
 
Figure 14 (a) and (b) show respectively the real curve and the forecast curve for the month 

of November. 
 
 

 
(a)                                                                           (b) 

 
Figure 14. (a) Real curve for the month of November; (b) Real and forecast curves for November 

 
Figure 15 (a) and (b) show respectively the real curve and the forecast curve for the month 

of December. 
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(a)                                                                      (b) 
 

Figure 15. (a) Real curve for the month of December; (b) Real and forecast curves for December 

The results obtained for the various months show the variance in electrical load demands. In 
fact, these loads are dynamic and show a good correlation with the predicted data. 

The results of the forecasting model's performance indicators, in relation to the actual loads, 
are shown in Table 3, and the model's learning and test results are thus obtained:  

Table 3.  Results of the forecasting model's measurable performance indicators 

Months/ 
indicators 

MAE RMSE Learning (R2) Test (R2) 

January 1.62 3.39 0.9995 0.958 
February 1.63 3.35 0.9997 0.954 
March 1.63 3.567 0.9997 0.949 
April 2.19 4.46 0.9996 0.919 
May 2.11 4.49 0.99975 0.93 
June 2.64 5.93 0.9998 0.86 
July 2.90 6.87 0.9990 0.78 
August 1.38 4.11 0.9997 0.928 
September 2.59 6.147 0.99975 0.83 
October 2.71 6.085 0.9997 0.84 
November 2.215 5.118 0.9998 0.90 
December 1.66 3.4 0.9996 0.953 

The analysis of the various indicators of the model’s performance in Table 3 demonstrates the 
level of variation present in the data compared to the model, as seen in all the real and forecast 
curves. In fact, these results show a fairly significant coefficient of determination, indicating 
that the model is representing real data with a low MAE, MSE and RMSE. This reflects the 
minimal nature of the errors made by the model, showing that the errors are much smaller than 
the variance present in the data, which explains the model's performance. 

Correlation results between actual and predicted data 

   The correlation results between the microgrid-generated consumption loads and predicted 
consumption loads for all months, are shown respectively in Figure 16 (a) and (b), Figure 17(a) 
and (b), Figure 18(a) and (b), Figure 19(a) and (b), Figure 20(a) and (b), Figure 21(a) and (b). 
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 Figure 16 (a) and (b) show respectively correlation curve for January and February. 

 
(a)                                                                              (b) 

 
Figure 16. (a) Correlation curve for January; (b) Correlation curve for February      

   

Figure 17 (a) and (b) show respectively correlation curve for march and April. 
 

 

(a)                                                                    (b) 
 

Figure 17. (a) Correlation curve for March; (b) Correlation curve for April 
 

 
Figure 18 (a) and (b) show respectively correlation curve for May and June. 
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(a)                                                                     (b) 

 
Figure 18. (a) Correlation curve for May; (b) Correlation curve for June 

 
 
Figure 19 (a) and (b) show respectively correlation curve for July and august. 
 

 
(a)                                                                       (b) 

 
Figure 19. (a) Correlation curve for July; (b) Correlation curve for August 

 
Figure 20 (a) and (b) show respectively correlation curve for September and October.  
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(a)                                                                   (b) 

 
Figure 20. (a) Correlation curve for September; (b) Correlation curve for October 

 
Figure 21 (a) and (b) show respectively correlation curve for November and December. 
 

 
(a)                                                                         (b) 

Figure 21. (a) Correlation curve for November; (b) Correlation curve for December 

R-squared = R2. 

These figures show the test results of the developed model by month. The more points nearer 
the line, the better the prediction performance. However, it should be noted that the model is 
not actually fitted directly to the test data, as the latter have the effect of minimizing the model's 
overfitting for testing purposes. These results therefore show the good correlation between the 
measured and predicted values. The dynamic variation in load by month, shown in the figures 
above, demonstrates the usefulness of this study and the accuracy with which a model should 
forecast trends. The initial results from the forecasting tests in this study are conclusive, with 
satisfactory performance indicators.  

Discussions    
    The forecasting results obtained and the calculated performance indices MAPE, MSE, 
RMSE and R2 have allowed to evaluate the proposed model. In fact, these different indicators, 
by month, reflect the minimization of the error between the actual electrical load consumption 
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data and those predicted. The first MAE results, according to the different months studied 
(January, February, March, April, May, June, July, August, September, November and 
December) have values ranging from 1.38 to 2.9. These differences can be explained by the 
variances in the data for each month, as there were variations in the dynamic loads recorded. 
Although these values are low, it provides information on the difference between the actual 
values and those predicted. The results obtained for the MAE therefore show the minimum 
variation between the actual and predicted data. In addition, the values recorded for the MSE 
and RMSE of the forecasting model enabled to determine whether deviating values would 
interfere with the forecasting data. These values being relatively low indicates that the accuracy 
of the model is high. Finally, the R2 coefficient, which expresses the correlation between actual 
and predicted data, shows that, on average, over 90% of the actual load data is represented by 
the proposed model. This indicates the accuracy of the predictive model in relation to the 
electrical consumption data. 

In general, the minimization of performance indicators reflects the optimal forecasting of 
electricity demand, necessary to minimize the cost of energy supply or production. Indeed, if 
the deviations (errors) between actual and predicted data are significant, this would mean that 
the model would be less efficient and, consequently, could lead to significant financial losses; 
hence the importance of developing models that minimize errors as much as possible. In 
addition, these studies contribute to the management of the electrical load and are necessary 
for any study contributing to the optimization, for example, of the electrical network 
installation (microgrids): previous studies carried out by kabe and al. [65]. 

Indeed, the model of adaboost regressor proposed, learns better and minimize significant errors. 
It is therefore recommended that network managers opt for more accurate models with 
minimized errors, such as the one proposed in this article. The proposed model demonstrates 
its excellent performance in forecasting electrical loads. The minimization of its performance 
coefficients such as MAPE, MSE, RMSE and R2 show the accuracy of the proposed model. 
However, a more extensive study with other approaches of forecasting electrical loads 
consumption could be envisaged in order to appreciate the limitations of the model. 
 

CONCLUSION    

   The study of the efficient management of the evolution of electrical consumption loads is 
essential to satisfy the demand for electrical loads, ensuring a balance between supply and 
demand. Studies have been carried out to improve the learning accuracy of forecasting models; 
these studies continue today, with the aim of minimizing the errors that forecasting models can 
make in predicting real data. This paper proposes a model made up of ensemble regression 
method: adaboost regression approach, based on a machine learning technique, to predict the 
temporal evolution of the variation in electrical loads. The initial test results for the model were 
satisfactory, minimizing the error gap between the actual and predicted data. First, the results 
of this study give a coefficient of determination R2 between 0.9995 and 0.9997 for the learning 
results and second, a coefficient of determination R2 between 0.83 and 0.958 for the validation 
test results. The coefficient of determination of the proposed model is in perfect agreement 
with the experimental results obtained according by month. This coefficient demonstrates that 
the proposed model is a suitable representation for the actual prediction of electrical loads in 
future forecasts. The high number of data, shows that, the model can predict as short and long 
terms the electrical load consumption. The results of these studies conducted in this article, will 
contribute to optimal decision-making in energy system management and planning, especially 
in daily, monthly and annual forecasts of electrical energy demands. However, updates of 
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electrical load forecasting models can be considered with other forecasting models, in order to 
regularly adapt electrical load forecasts to the new forecasting models. 
 

ACKNOWLEDGEMENTS 

   Authors thank the CERME (Centre d’Excellence Régional pour la Maîtrise de l’Electricité) 
of the World Bank, for supporting this research.  

Conflicts of Interest: The authors declare no conflicts of interest. 
 

REFERENCES 

1. “L’accès universel à l’énergie durable restera hors de portée tant que les inégalités 
n’auront pas été aplanies, indique le rapport Tracking SDG7.” Accessed: Jul. 05, 2024.  
Available: https://www.who.int/fr/news/item/07-06-2021-global-launch-tracking-sdg7-
the-energy-progress-report 

2. “Objectifs de développement durable.” Accessed: May 18, 2024. Available: 
https://www.un.org/sustainabledevelopment/fr/objectifs-de-developpement-durable/ 

3. A. J. Harker Steele, J. W. Burnett, and J. C. Bergstrom, “The impact of variable 
renewable energy resources on power system reliability,” 2021, doi: 
10.1016/j.enpol.2020.111947. 

4. H. K. Alfares and M. Nazeeruddin, “Electric load forecasting: literature survey and 
classi®cation of methods,” Int. l J. Syst. Sci., vol. 33, no. 1, pp. 23–34, 2002, doi: 
10.1080/00207720110067421. 

5. A. Botterud, “Forecasting Renewable Energy for Grid Operations,” Renew. Energy 
Integr. Pract. Manag. Var. Uncertainty, Flex. Power Grids Second Ed., pp. 133–143, 
Jun. 2017, doi: 10.1016/B978-0-12-809592-8.00010-X. 

6. H. Acaroğlu, F. G. M.- Energies, 2021, “Comprehensive review on electricity market 
price and load forecasting based on wind energy,” mdpi.com, 2021, doi: 
10.3390/en14227473. 

7. G. Koeppel and M. Korpås, “Improving the network infeed accuracy of non-
dispatchable generators with energy storage devices,” Electr. Power Syst. Res., vol. 78, 
no. 12, pp. 2024–2036, Dec. 2008, doi: 10.1016/J.EPSR.2008.06.008. 

8. S. Goodarzi, H. Perera, 2019, “The impact of renewable energy forecast errors on 
imbalance volumes and electricity spot prices,” ElsevierS Goodarzi, HN Perera, D 
BunnEnergy Policy, 2019•Elsevier, vol. 134, Nov. 2019, doi: 
10.1016/j.enpol.2019.06.035. 

9. O. Ruhnau, P. Hennig, and R. Madlener, “Economic implications of forecasting 
electricity generation from variable renewable energy sources,” 2020, doi: 
10.1016/j.renene.2020.06.110. 

10. Y. Xie, Y. Ueda, M. Sugiyama, and A. Bielecki, “A two-stage short-term load 
forecasting method using long short-term memory and multilayer perceptron,” 
mdpi.comY Xie, Y Ueda, M SugiyamaEnergies, 2021•mdpi.com, vol. 14, no. 18, Sep. 
2021, doi: 10.3390/en14185873. 

11. O. Izquierdo-Monge, P. Peña-Carro, L. Hernández-Callejo, O. Duque-Perez, A. Zorita-
Lamadrid, and R. Villafafila-Robles, “A Methodology for the Conversion of a Network 
Section with Generation Sources, Storage and Loads into an Electrical Microgrid Based 
on Raspberry Pi and Home Assistant,” Commun. Comput. Inf. Sci., vol. 1359, pp. 246–
258, 2021, doi: 10.1007/978-3-030-69136-3_17. 

12. D. P. E Silva, M. D. Queiroz, J. F. Fardin, J. L. F. Sales, and M. T. D. Orlando, “Hybrid 



Moyème, K., Bokovi, Y., et al. 
Machine Learning Electrical Load Forecasting: an application…  

Year 2025 
Volume 13, Issue 4, 1130606 

 
 

Journal of Sustainable Development of Energy, Water and Environment Systems 23 

 

modeling of energy storage system and electrical loads in a pilot-microgrid,” 2018 13th 
IEEE Int. Conf. Ind. Appl. INDUSCON 2018 - Proc., pp. 433–438, Jul. 2019, doi: 
10.1109/INDUSCON.2018.8627180. 

13. A. X. Y. Mah et al., “Optimization of a standalone photovoltaic-based microgrid with 
electrical and hydrogen loads,” Energy, vol. 235, Nov. 2021, doi: 
10.1016/J.ENERGY.2021.121218. 

14. E. Akarslan and F. O. Hocaoglu, “Electricity demand forecasting of a micro grid using 
ANN,” 2018 9th Int. Renew. Energy Congr. IREC 2018, pp. 1–5, May 2018, doi: 
10.1109/IREC.2018.8362471. 

15. A. Nazari and R. Keypour, “Participation of responsive electrical consumers in load 
smoothing and reserve providing to optimize the schedule of a typical microgrid,” 
Energy Syst., vol. 11, no. 4, pp. 885–908, Nov. 2020, doi: 10.1007/S12667-019-00349-
9. 

16. L. Tao, P. Wang, X. Ma, Y. Wang, and X. Zhou, “Variable Form LADRC-Based 
Robustness Improvement for Electrical Load Interface in Microgrid: A Disturbance 
Response Perspective,” IEEE Trans. Ind. Informatics, vol. 20, no. 1, pp. 432–441, Jan. 
2024, doi: 10.1109/TII.2023.3265534. 

17. L. Wang, “Dynamic analysis of a Microgrid system for supplying electrical loads in a 
sailing boat,” IEEE Power Energy Soc. Gen. Meet., 2012, doi: 
10.1109/PESGM.2012.6344601. 

18. S. Rajamand, “Vehicle-to-Grid and vehicle-to-load strategies and demand response 
program with bender decomposition approach in electrical vehicle-based microgrid for 
profit profile improvement,” J. Energy Storage, vol. 32, Dec. 2020, doi: 
10.1016/J.EST.2020.101935. 

19. A. A. Herrera-Guerra, E. E. Henao-Bravo, and J. P. Villegas-Ceballos, “Digital twin of 
electrical motorcycle battery charger as AC Load in a Microgrid Based on Renewable 
Energy,” 2023 IEEE Lat. Am. Electron Devices Conf. LAEDC 2023, 2023, doi: 
10.1109/LAEDC58183.2023.10208283. 

20. B. Mainali and S. Silveira, “Alternative pathways for providing access to electricity in 
developing countries,” Renew. Energy, vol. 57, pp. 299–310, Sep. 2013, doi: 
10.1016/J.RENENE.2013.01.057. 

21. H. Winkler, A. Felipe Simo, B. LA Rovere, M. Alam, A. Rahman, and S. Mwakasonda, 
“Access and affordability of electricity in developing countries,” ElsevierH Winkler, AF 
Simões, EL La Rovere, M Alam, A Rahman, S MwakasondaWorld Dev. 2011•Elsevier, 
vol. 39, no. 6, pp. 1037–1050, Jun. 2011, doi: 10.1016/j.worlddev.2010.02.021. 

22. Z. M. Chen and G. Q. Chen, “An overview of energy consumption of the globalized 
world economy,” 2011, doi: 10.1016/j.enpol.2011.06.046. 

23. E.-W. Honoré Tchandao, A. Adekunlé Salami, K. Mawugno Kodjo, A. Nabiliou, and S. 
Ouedraogo, “International Journal of Renewable Energy Development Modelling the 
Optimal Electricity Mix for Togo by 2050 Using OSeMOSYS,” Int. J. Renew. Energy 
Dev, vol. 2023, no. 2, pp. 430–439, 2023, doi: 10.14710/ijred.2023.50104. 

24. G. T. F. Vinicius, C. Silvia, D. Aleksandar, B. Massimo, and M. Marco, “Rural 
electrification planning based on graph theory and geospatial data: A realistic topology 
oriented approach,” Sustain. Energy, Grids Networks, vol. 28, p. 100525, Dec. 2021, 
doi: 10.1016/J.SEGAN.2021.100525. 

25. M. Kamal, I. Ashraf, E. F.-E. Storage, and  undefined 2022, “Efficient two‐layer rural 
electrification planning and techno‐economic assessment integrating renewable 
sources,” Wiley Online Libr. Kamal, I Ashraf, E FernandezEnergy Storage, 2022•Wiley 
Online Libr., vol. 4, no. 3, Jun. 2021, doi: 10.1002/est2.314. 

26. J. Mohtasham, “ScienceDirect International Conference on Technologies and Materials 
for Renewable Energy, Environment and Sustainability, TMREES15 Review Article-
Renewable Energies,” Energy Procedia, vol. 74, pp. 1289–1297, 2015, doi: 



Moyème, K., Bokovi, Y., et al. 
Machine Learning Electrical Load Forecasting: an application…  

Year 2025 
Volume 13, Issue 4, 1130606 

 
 

Journal of Sustainable Development of Energy, Water and Environment Systems 24 

 

10.1016/j.egypro.2015.07.774. 
27. R. P. Saini, A. B. Kanase-Patil, and M. P. Sharma, “Integrated renewable energy systems 

for off grid rural electrification of remote area,” 2009, doi: 
10.1016/j.renene.2009.10.005. 

28. L. Xuan and S. Bin, “Microgrids - An integration of renewable energy technologies,” 
2008 China Int. Conf. Electr. Distrib. CICED 2008, 2008, doi: 
10.1109/CICED.2008.5211651. 

29. M. H. Saeed, W. Fangzong, B. A. Kalwar, and S. Iqbal, “A Review on Microgrids’ 
Challenges Perspectives,” IEEE Access, vol. 9, pp. 166502–166517, 2021, doi: 
10.1109/ACCESS.2021.3135083. 

30. C. Zhang, Y. Xu, Z. Y. Dong, and J. Ma, “Robust Operation of Microgrids via Two-
Stage Coordinated Energy Storage and Direct Load Control,” IEEE Trans. Power Syst., 
vol. 32, no. 4, pp. 2858–2868, Jul. 2017, doi: 10.1109/TPWRS.2016.2627583. 

31. C. Zhang, Y. Xu, Z. Y. Dong, and K. P. Wong, “Robust Coordination of Distributed 
Generation and Price-Based Demand Response in Microgrids,” IEEE Trans. Smart 
Grid, vol. 9, no. 5, pp. 4236–4247, Sep. 2018, doi: 10.1109/TSG.2017.2653198. 

32. B. Yu, J. Li, C. Liu, and B. Sun, “A novel short-term electrical load forecasting 
framework with intelligent feature engineering,” Appl. Energy, vol. 327, p. 120089, Dec. 
2022, doi: 10.1016/J.APENERGY.2022.120089. 

33. R. Ahmadiahangar, T. Häring, A. Rosin, T. Korõtko, and J. Martins, “Residential Load 
Forecasting for Flexibility Prediction Using Machine Learning-Based Regression 
Model,” Proc. - 2019 IEEE Int. Conf. Environ. Electr. Eng. 2019 IEEE Ind. Commer. 
Power Syst. Eur. EEEIC/I CPS Eur. 2019, Jun. 2019, doi: 
10.1109/EEEIC.2019.8783634. 

34. L. Hernandez, C. Baladrón, J. M. Aguiar, B. Carro, A. J. Sanchez-Esguevillas, and J. 
Lloret, “Short-term load forecasting for microgrids based on artificial neural networks,” 
Energies, vol. 6, no. 3, pp. 1385–1408, 2013, doi: 10.3390/en6031385. 

35. L. Hernández, C. Baladrón, J. M. Aguiar, B. Carro, A. Sánchez-Esguevillas, and J. 
Lloret, “Artificial neural networks for short-term load forecasting in microgrids 
environment,” Energy, vol. 75, pp. 252–264, Oct. 2014, doi: 
10.1016/J.ENERGY.2014.07.065. 

36. C. N. Ko and C. M. Lee, “Short-term load forecasting using SVR (support vector 
regression)-based radial basis function neural network with dual extended Kalman 
filter,” Energy, vol. 49, no. 1, pp. 413–422, Jan. 2013, doi: 
10.1016/J.ENERGY.2012.11.015. 

37. D. Ranaweera, N. Hubele, Proceedings-Generation, 1995, “Application of radial basis 
function neural network model for short-term load forecasting,” IETDK Ranaweera, NF 
Hubele, AD PapalexopoulosIEE Proceedings-Generation, Transm. Distrib. 1995•IET, 
vol. 142, no. 1, pp. 45–50, Jan. 1995, doi: 10.1049/ip-gtd:19951602. 

38. G. Dudek, “Multilayer perceptron for short-term load forecasting: from global to local 
approach,” Neural Comput. Appl., vol. 32, no. 8, pp. 3695–3707, Apr. 2020, doi: 
10.1007/S00521-019-04130-Y. 

39. J. M.-A. in A. N. Systems 2011, “Using artificial neural networks to predict direct solar 
irradiation,” downloads.hindawi.com, vol. 2011, 2011, doi: 10.1155/2011/142054. 

40. W. Shubiao et al., “Evolving Fuzzy k-Nearest Neighbors Using an Enhanced Sine 
Cosine Algorithm: Case Study of Lupus Nephritis,” Artic. Comput. Biol. Med., p. 
104582, 2021, doi: 10.1016/j.compbiomed.2021.104582. 

41. O. I. Abiodun, A. Jantan, A. E. Omolara, K. V. Dada, N. A. E. Mohamed, and H. Arshad, 
“State-of-the-art in artificial neural network applications: A survey,” Heliyon, vol. 4, no. 
11, p. e00938, Nov. 2018, doi: 10.1016/J.HELIYON.2018.E00938. 

42. A. T. Mohammad, H. M. Hussen, and H. J. Akeiber, “Prediction of the output power of 
photovoltaic module using artificial neural networks model with optimizing the neurons 



Moyème, K., Bokovi, Y., et al. 
Machine Learning Electrical Load Forecasting: an application…  

Year 2025 
Volume 13, Issue 4, 1130606 

 
 

Journal of Sustainable Development of Energy, Water and Environment Systems 25 

 

number,” Int. J. Renew. Energy Dev., vol. 12, no. 3, pp. 478–487, May 2023, doi: 
10.14710/IJRED.2023.49972. 

43. F. A. Agga, S. A. Abbou, Y. El Houm, and M. Labbadi, “Short-Term Load Forecasting 
Based on CNN and LSTM Deep Neural Networks,” IFAC-PapersOnLine, vol. 55, no. 
12, pp. 777–781, Jan. 2022, doi: 10.1016/J.IFACOL.2022.07.407. 

44. X. Guo, Q. Zhao, D. Zheng, Y. Ning, and Y. Gao, “A short-term load forecasting model 
of multi-scale CNN-LSTM hybrid neural network considering the real-time electricity 
price,” Energy Reports, vol. 6, pp. 1046–1053, Dec. 2020, doi: 
10.1016/J.EGYR.2020.11.078. 

45. E. Ceperic, V. Ceperic, A. B.-I. T. on Power, 2013, “A strategy for short-term load 
forecasting by support vector regression machines,” ieeexplore.ieee.org, 2013, doi: 
10.1109/TPWRS.2013.2269803. 

46. A. A. Emhamed and J. Shrivastava, “Electrical load distribution forecasting utilizing 
support vector model (SVM),” Mater. Today Proc., vol. 47, pp. 41–46, Jan. 2021, doi: 
10.1016/J.MATPR.2021.03.516. 

47. H. Cevik, M. Ç.-I. J. of M. L. and,  2016, “A fuzzy logic based short term load forecast 
for the holidays,” ijmlc.org, doi: 10.18178/ijmlc.2016.6.1.572. 

48. D. Wu, B. Wang, D. Precup, and B. Boulet, “Multiple Kernel Learning-Based Transfer 
Regression for Electric Load Forecasting,” IEEE Trans. Smart Grid, vol. 11, no. 2, pp. 
1183–1192, Mar. 2020, doi: 10.1109/TSG.2019.2933413. 

49. A. Moradzadeh, H. Moayyed, S. Zakeri, B. Mohammadi-Ivatloo, and A. P. Aguiar, 
“Deep learning-assisted short-term load forecasting for sustainable management of 
energy in microgrid,” mdpi.com, 2021, doi: 10.3390/inventions6010015. 

50. N. Rotich, J. Backman, 2014, “Wind resource assessment and forecast planning with 
neural networks,” hrcak.srce.hrNK Rotich, J Backman, L Linnanen, P DaniilJournal 
Sustain. Dev. Energy, Water Environ. Syst. 2014•hrcak.srce.hr, vol. 2, no. 2, pp. 174–
190, Jun. 2014, doi: 10.13044/j.sdewes.2014.02.0015. 

51. A. Bracale, P. Caramia, P. De Falco, and T. Hong, “A Multivariate Approach to 
Probabilistic Industrial Load Forecasting,” Electr. Power Syst. Res., vol. 187, Oct. 2020, 
doi: 10.1016/J.EPSR.2020.106430. 

52. W. Zhang, H. Quan, and D. Srinivasan, “An Improved Quantile Regression Neural 
Network for Probabilistic Load Forecasting,” IEEE Trans. Smart Grid, vol. 10, no. 4, 
pp. 4425–4434, Jul. 2019, doi: 10.1109/TSG.2018.2859749. 

53. Y. Al-Abayechi, A.S Al Khafaji, “Forecasting the impact of the environmental and 
energy factor to improve urban sustainability by using (SEM),” Res. Al-Abayechi, AS 
Al-KhafajiCivil Eng. Journal, 2023•researchgate.net, 

54. A. Balal, Y. Jafarabadi, and A. Demir, “Forecasting solar power generation utilizing 
machine learning models in Lubbock,” 2023, doi: 10.28991/ESJ-2023-07-04-02. 

55. M. El Alaoui, L. Chahidi, M. Rougui and al., “Prediction of energy consumption of an 
administrative building using machine learning and statistical methods,” Acad. El 
Alaoui, LO Chahidi, M Rougui, A Lamrani, A MechaqraneCivil Eng. Journal, 
2023•academia.edu, Accessed: Oct. 12, 2024. Available: 
https://www.academia.edu/download/104704365/pdf.pdf 

56. C. Cui, M. He, F. Di, Y. Lu, Y. Dai, and F. Lv, “Research on Power Load Forecasting 
Method Based on LSTM Model,” Proc. 2020 IEEE 5th Inf. Technol. Mechatronics Eng. 
Conf. ITOEC 2020, pp. 1657–1660, Jun. 2020, doi: 
10.1109/ITOEC49072.2020.9141684. 

57. L. Wu, C. Kong, X. Hao, and W. Chen, “A Short-Term Load Forecasting Method Based 
on GRU-CNN Hybrid Neural Network Model,” Math. Probl. Eng., vol. 2020, 2020, doi: 
10.1155/2020/1428104. 

58. X. Dong, S. Deng, and D. Wang, “A short-term power load forecasting method based 
on k-means and SVM,” J. Ambient Intell. Humaniz. Comput., vol. 13, no. 11, pp. 5253–



Moyème, K., Bokovi, Y., et al. 
Machine Learning Electrical Load Forecasting: an application…  

Year 2025 
Volume 13, Issue 4, 1130606 

 
 

Journal of Sustainable Development of Energy, Water and Environment Systems 26 

 

5267, Nov. 2022, doi: 10.1007/S12652-021-03444-X/METRICS. 
59. X. Han, J. Su, Y. Hong, P. Gong, and D. Zhu, “Mid- to Long-Term Electric Load 

Forecasting Based on the EMD–Isomap–Adaboost Model,” Sustain. 2022, Vol. 14, Page 
7608, vol. 14, no. 13, p. 7608, Jun. 2022, doi: 10.3390/SU14137608. 

60. L. Xiao, Y. Dong, and Y. Dong, “An improved combination approach based on 
Adaboost algorithm for wind speed time series forecasting,” Energy Convers. Manag., 
vol. 160, pp. 273–288, Mar. 2018, doi: 10.1016/J.ENCONMAN.2018.01.038. 

61. P. Kankanala, S. Das, and A. Pahwa, “ADABOOST + : an ensemble learning approach 
for estimating weather-related outages in distribution systems,” 2013, doi: 
10.1109/TPWRS.2013.2281137. 

62. Z. Li, F. Guo, L. Chen, K. Hao, and B. Huang, “Hybrid kernel approach to Gaussian 
process modeling with colored noises,” Comput. Chem. Eng., vol. 143, Dec. 2020, doi: 
10.1016/J.COMPCHEMENG.2020.107067. 

63. Y. Xie, Y. Ueda, M. Sugiyama, and A. Bielecki, “A two-stage short-term load 
forecasting method using long short-term memory and multilayer perceptron,” 
mdpi.com, 2021, doi: 10.3390/en14185873. 

64. A. L. Schubert, D. Hagemann, A. Voss, and K. Bergmann, “Evaluating the model fit of 
diffusion models with the root mean square error of approximation,” J. Math. Psychol., 
vol. 77, pp. 29–45, Apr. 2017, doi: 10.1016/J.JMP.2016.08.004. 

65. M. Kabe, Y. Bokovi, K. Sedzro, P. Takouda, Y. L.- Energies, 2024, “Optimal 
Electrification Using Renewable Energies: Microgrid Installation Model with Combined 
Mixture k-Means Clustering Algorithm, Mixed Integer Linear,” mdpi.com, 2024, doi: 
10.3390/en17123022. 

 
 

 

 

 


	Electrical Load Forecasting using Machine Learning approach: simulation of a microgrid energy consumption with adaboost regressor
	ABSTRACT
	KEYWORDS
	INTRODUCTION
	THEORETICAL BACKGROUND
	Bibliographical reviews
	General forecasting approach
	Mathematical approach of the regression ensemble method
	Performance metrics

	MATERIAL AND METHODS
	Data presentation

	RESULTS AND DISCUSSIONS
	Results
	Statistical results
	Forecast results on selected monthly data
	Correlation results between actual and predicted data
	Discussions

	CONCLUSION
	ACKNOWLEDGEMENTS


