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ABSTRACT 
The dynamic evolution and variation of electrical loads is now, a priority for their optimal 
management and, above all, forecasting. Now, these dynamic load variations require computer 
tools that are able to implement optimal load forecasting models. Scientific research into 
automated models for forecasting electrical loads is therefore a challenge for scientific 
researchers, and several studies have been carried out in this area. These include machine 
learning approaches such as Long Short-Term Memory, Support Vector Machine, Multilayer 
Perceptron; deep learning, probabilistic and others. These studies are often quite complex due to 
the number of elevated hyperparameters they contain, with considerable deviations in accuracy 
between the real and predicted data. Thus, in order to exploit methods with fewer 
hyperparameters and minimized prediction deviations between consumed and production, this 
paper proposes a method for forecasting based on a regression ensemble method: adaboost 
regressor approach, to improve in energy consumption forecasting by application of advanced 
algorithm. So, this article presents learning and validation tests for the proposed model. The data 
used, were collected from a renewable energy source: photovoltaic solar energy. While 80% of 
the data collected was used for learning purposes, the remaining 20% was used for validation 
testing. The results of this study give a coefficient of determination R2 between 0.9995 and 
0.9997 for the learning results and between 0.83 and 0.958 for the validation test results. 
According to the metrics parameters, these results are representative of the real data and reflect 
the performance of the proposed model. The proposed model is well adapted to the management 
of electrical consumption load forecasts to ensure balance between supply and demand. 

KEYWORDS 
Optimal management, Electricity demand, Forecasting model, Ensemble regression, Adaboost regressor. 

INTRODUCTION 
Electricity is at the heart of development [1]. The need to satisfy electricity demands to 

reduce energy insufficiency and, above all, environmental pollution, means that renewable 
energy resources need to be prioritized, as recommended by the United Nations' global 
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agreements 7 and 13 within its sustainable development goals [2]. However, the intermittent 
nature of these renewable resources is an important parameter that influences the quality and 
reliability of electrical energy and the balance between supply and demand, especially when 
these resources are less controlled [3]. Forecasting electrical energy production is becoming 
increasingly essential not only for the efficient and continuous operation of grid operating 
systems, but also for the optimal management of these renewable resources. Load forecasting 
is an integral process in the planning and operation of electric utilities [4]. It helps reduce the 
mismatch between supply and demand, thus ensuring the sustainability of energy systems. 

Indeed, load forecasting is necessary for the consistent operation of the power grid and for the 
optimal management of the energy flows in these systems [5]. It also enables reserves to be 
estimated and managed for power system scheduling and for trading on the electricity market [6] 
and reducing penalties for grid imbalances [7]. Due to the sharp increase in electricity production 
from renewable energies, forecasting this production is becoming increasingly important. A 
number of research studies have been carried out to help power system operators to plan the 
distribution of electricity. However, a fairly significant discrepancy between actual demand 
values and those predicted by models would have technical and economic consequences [8] 
because forecasts should be optimized according to parameters that take prices into account [9]. 

The main objective of this study is to improve in energy consumption forecasting by 
application of advanced algorithm like adaboost regressor approach. These studies can help to 
identify the strengths and weakness of methods in that specific context and contribute to the 
advancement of knowledge in electrical load forecasting and energy management. Now, the 
methods consist to minimize the discrepancies between actual and predicted load values. The 
specific objective is to set up the adaboost regressor approach, for learning and validating 
electrical energy demands. For this, 80% of the data collected was used for learning purposes, 
the remaining 20% was used for validation testing. The data for learning and tests, were 
supplied by the Electrical Energy Company of Togo (CEET) and collected from a renewable 
energy production source: photovoltaic solar energy. 

The rest of this article is divided into four sections: the theoretical background materials is 
presented in Section 2; the material and methods are presented in Section 3; the results and 
discussion are presented in Section 4; and, finally, the conclusion is presented in Section 5. 

THEORETICAL BACKGROUND 
In this section, bibliographical reviews, general forecasting approach, mathematical 

approach of the regression ensemble method and performance metrics, are shown. 

Bibliographical reviews 
Electricity is a vector of development for countries. However, there is a major challenge in 

optimizing its production due to its integration of intermittent renewable energy sources. On 
the other hand, the most pressing concern is the efficient management of electrical load 
demands. Many studies have been carried out on the subject of more efficient and optimized 
energy management [10]. In this context, Izquierdo-Monge et al. proposed, in their paper, a 
methodology for optimizing electrical energy consumption in a distribution network that 
involved equipping the network with intelligence [11]; in [12], the authors proposed microgrid 
optimization based on a hybridized system of renewable energy resources; Mah et al. presented 
an optimization of the design and operation of an autonomous microgrid with electric and 
hydrogen loads, showing a significant reduction in load costs [13]; moreover, a strategy for 
controlling and managing the energy supply of a microgrid in order to achieve higher 
efficiency, reliability and economy was proposed in [14] with demand optimization by 
advanced algorithms such as particle swarm optimization [15]. 

All of these studies propose scientific methods and approaches with the aim of improving 
the management of renewable energy systems for the efficient exploitation of these resources 
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to generate balance between supply and demand. To study the response to disruptions caused 
by the reduction of systems using non-renewable fossil resources in favor of renewable 
resources in microgrids, a robustness improvement study based on variable-shape LADRC 
technology for the electrical load interface was conducted [16]. A study on the dynamic 
analysis of microgrid systems for powering sailboat electrical loads using renewable energy 
was conducted [17]. Rajamand's objective in [18] is to manage energy consumption by 
adjusting demand based on supply conditions, often through incentives for consumption during 
peak periods. Amado et al. improve microgrid efficiency by integrating renewable energy [19]. 

Developing countries have conducted many studies on electricity to further their development 
[20] and explores the challenges and strategies for improving electricity access and affordability 
in these countries [21]. However, the growth of the population at present, causes on the one hand, 
an increase in electrical energy demand [22] with the modelling of the optimal electricity at long 
term [23]. The lack of electricity in rural areas then leads to a number of challenges in mobilizing 
the resources needed for optimal electrification planning [24] taking into account, the 
techno-economic assessment integrating renewable sources [25]. It is important to electrify rural 
areas and areas on the outskirts of cities, using power plants not far from these areas, to mobilize 
local natural resources [26] and to develop integrated energy systems for off-grid [27], in order to 
minimize distances and electrical losses. These available natural resources can thus be exploited 
by microgrids [28] with a necessary to optimize their design, operation and integration into 
conventional power systems [29]. At present, the management of these microgrids and all of 
electrical network management, are often robust [30] and a robust coordination framework of 
these microgrids is proposed in [31], because of the daily variation of short- and long-term loads 
due to the ever-increasing energy needs of the population. This difficulty in pairing the real-time 
adaptation of electricity production to the demand for electrical energy is explained by the lack of 
an efficient management program for these microgrids. The lack of a modernized predictive 
model for the management of these mini-grids in most sub-Saharan countries is a difficulty in the 
operational planning of these power generation systems. It is therefore necessary to develop 
optimized prediction models for managing the evolution of microgrid loads. 

Thus, machine learning techniques [32] and its importance for forecasting electrical energy 
consumption (load) [33], used to solve societal problems via different regression methods. In 
particular, prediction work based on neural network methods [34] for short term loads forecasting 
in microgrids environment [35] and with his radial basis functions [36] for modelling nonlinear 
and complex relationships in times series data [37]. Multilayer perceptron (MLPs) approach, and 
his convolution neural networks (CNNs) have also been presented in [10] and in [38]. Now, 
artificial neural network has the capacity to imitate biological neural systems [39] and to 
incorporate fuzzy logic principles to handle uncertainty and imprecision data [40]; so, their 
applications in science and engineering are presented in [41] and can be tested on real-world data 
under varying weather conditions such as for example, photovoltaic data [42]. Other models have 
also been developed, such as the LSTM (Long Short-Term Memory) technique [43] where 
authors propose and test a CNN and LSTM models reveal that the models behave differently 
when the number of layers changed over the different configurations; in [44], a short term load 
forecasting model that integrates a multi-scale CNN-LSTM hybrid approach neural network is 
proposed; for support vector regression : a proposition of algorithms, has been trained and tested 
with a significant encouraging result show an accuracy improvement from 20% to 23.4% in [45], 
and in [46], authors used support vector machine for the forecasting and recommended a 
combination of this approach with algorithms like artificial neural network (ANN) model and 
clustering; fuzzy polynomial regression methods is discussed in [47] showing how a fuzzy logic 
approach can be applied to predict electrical load during holidays; multiple regression in [48] 
with the aims to improve the accuracy of electric load forecasting by a boosting-based approach; 
deep learning in [49] advanced in short term load forecasting by combining deep learning with 
socioeconomic and infrastructural data, offering a practical solution for sustainable management 
in geographically or economically constrained environments; authors explore in [50], the 
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application of neural networks in wind resource assessment and forecasting; probabilistic 
methods: in [51], the study likely aims to enhance the accuracy and reliability of industrial load 
forecasting by adopting a multivariate probabilistic approach involving characterizing the 
uncertainty in load predictions which is crucial for managing industrial energy systems effectively 
and an improvement of quantile regression neural network architecture can better capture 
complex patterns in load data and provide more accurate probabilistic forecasts [52]. 

Other authors such as, Yasameen et al. [53], have used the Structural Equations Modeling 
to forecast the impact of the environmental and energy factor to improve urban sustainability; 
for Afshin Balal et al. [54], it is possible to use the Random forest regression and the LSTM to 
forecast solar power generation; an application is being carried out in Lubbock, Texas. 
Meryem El Alaoui et al. [55] have used ARIMA and statistical methods for the prediction of 
energy consumption of an administrative building. Other works have been carried out to 
propose also, a model based on LSTM for enhancing power load forecasting accuracy [56] and 
in [57], a hybrid model based on Gated Recurrent Unit (GRU) and CNN. 

Each of these methods has its own specificities; the number of hyperparameters to be 
defined, according to the model, is often high and the forecasting time is sometimes long. 

Table 1 provides an overview of the various methods used to forecast short- and long-term 
expenses. 

Table 1. Summary of electrical load forecasting models 

Electrical load 
forecasting 

Methods References 
LSTM-MLP [10][43][57] 
ARIMA  
SVM, kmeans-SVM 

[55]  
[45][46][58] 

Deep learning [49][50] 
Multilayer perceptron [10] 
Hybrid methods [10][56][57] 
Adaboost used in electrical load forecasting [59] 
Adaboost used in other areas [60][61] 
  

General forecasting approach 
Forecasting is the study of a given quantity, whose future evolution can be estimated by 

calculation [62]. Let there be a training set D containing T pairs of input vectors x and scalars y 
according to relation eq. (1): 
 

𝐷𝐷 = {(𝑥𝑥𝑡𝑡,𝑦𝑦𝑡𝑡)|𝑡𝑡 = 1, … ,𝑇𝑇} (1) 
 
where yt is a time series and xt is a vector of dimension d, defined by relation eq. (2): 
 

𝑥𝑥𝑡𝑡 = [𝑥𝑥1, … , 𝑥𝑥𝑑𝑑]𝑇𝑇 (2) 
 
All input vectors are often combined into matrix X, and the output values into output vector 

Y, relation eq. (3): 

𝑋𝑋 =

⎣
⎢
⎢
⎡𝑥𝑥1

𝑇𝑇

𝑥𝑥2𝑇𝑇
⋮
𝑥𝑥𝑇𝑇𝑇𝑇⎦
⎥
⎥
⎤

,𝑌𝑌 = �

𝑦𝑦1
𝑦𝑦2
⋮
𝑦𝑦𝑇𝑇

� (3) 
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The general model of a time series is given by relation eq. (4): 
 

𝑦𝑦𝑡𝑡 = 𝑓𝑓(𝑥𝑥𝑡𝑡,𝜃𝜃) + 𝜖𝜖𝑡𝑡 (4) 
 
where 𝑓𝑓 is a function; 𝑥𝑥𝑡𝑡 is the independent variables (or features) at time t; 𝜃𝜃 is the parameter 
vector, it represents the parameters of the model that define the relationship between 𝑥𝑥𝑡𝑡 and 𝑦𝑦𝑡𝑡 
and are typically estimated from historical data during the model training process; and 𝜖𝜖𝑡𝑡 is a 
Gaussian noise. The forecast at a future time T+h is obtained by evaluating the function f at the 
test point 𝑥𝑥𝑇𝑇+ℎ according to relation eq. (5): 
 

𝑦𝑦𝑇𝑇+ℎ = 𝑓𝑓(𝑥𝑥𝑇𝑇+ℎ,𝜃𝜃� ) (5) 

where 𝜃𝜃� is the vector of parameters from the training data set D. It represents the estimated 
parameters of the model. Indeed, 𝑓𝑓(𝑥𝑥𝑇𝑇+ℎ,𝜃𝜃� ) is a function that models the relationship between 
the explanatory variables and the target variable we want to predict. 𝑥𝑥𝑇𝑇+ℎ  represents the 
explanatory variables at the future time T+h. 𝑓𝑓 is the function that can be linear, nonlinear, a 
regression odel, or any other type of function that describes the relationship between x and y. 
The choice of 𝑓𝑓, depends on the model used. 

Mathematical approach of the regression ensemble method 
The regression ensemble method is a collection of regression models used to make 

prediction much faster and more efficient. It is defined by the following: the space of 
hypothesis H; a method for combining prediction elements ht, such as ht = 1...T ∈ H. Part of the 
regression ensemble method is the adaboost regression method, which is a set of machine 
learning procedures that consist of combining several sub-predictors to optimize better, 
prediction. Figure 1 shows the flowchart of the adaboost regressor approach. 

 

 

Figure 1. Flowchart of the adaboost regressor approach 
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The ensemble method thus provides a predictor H(x), such that equations eqs. (6) - (8) [60]: 
 

𝐻𝐻(𝑥𝑥) = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (�𝛼𝛼𝑡𝑡 .ℎ𝑡𝑡(𝑥𝑥))
𝑇𝑇

𝑡𝑡=1

 (6) 

 
𝐻𝐻 = [(ℎ𝑡𝑡 ,𝛼𝛼𝑡𝑡)]𝑡𝑡=1…𝑇𝑇  ∈ (𝐻𝐻, 𝐼𝐼𝐼𝐼+∗ )𝑇𝑇 (7) 

  
𝐻𝐻𝑡𝑡

(𝑥𝑥) =  𝐻𝐻𝑡𝑡−1(𝑥𝑥) +  𝛼𝛼𝑡𝑡.ℎ𝑡𝑡(𝑥𝑥) (8) 
 
The goal is to find a sequence of predictor elements ht and weights αt such that the previous 

global predictor achieves a small error. 
The proposed algorithm is given: 
(1) As a given sample (𝑥𝑥1,𝑦𝑦1), (𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖), … . , (𝑥𝑥𝑁𝑁 ,𝑦𝑦𝑁𝑁): N training samples set; 
(2) Initialize the weights vector of the sample: 𝐷𝐷1 = (𝛼𝛼11, …𝛼𝛼𝑖𝑖1, …𝛼𝛼𝑁𝑁1 ), 
 D=1/N. N is the number of training samples; 
(3) While 𝑡𝑡 < 𝑇𝑇, 𝑇𝑇 the iteration numbers; 
(4) Under the probability distribution of training samples: 
 the weak learner ℎ𝑡𝑡(𝑥𝑥) are   trained; 
(5) The probability 𝑃𝑃 = 𝛼𝛼𝑡𝑡

∑ 𝛼𝛼𝑖𝑖
𝑡𝑡𝑁𝑁

𝑖𝑖=1
; 

(6) Update weight distribution 
 𝐷𝐷𝑡𝑡+1 = (𝛼𝛼1𝑡𝑡+1, …𝛼𝛼𝑖𝑖𝑡𝑡+1, …𝛼𝛼𝑁𝑁𝑡𝑡+1); 
 𝛼𝛼𝑖𝑖𝑡𝑡+1 = 𝛼𝛼𝑖𝑖𝑡𝑡𝛽𝛽1−|ℎ𝑡𝑡(𝑥𝑥𝑖𝑖)−𝑦𝑦𝑖𝑖|, i = 1,2, …, N; 
 With weak learner weight 𝛼𝛼𝑡𝑡 = 1

2
ln � 1

𝛽𝛽𝑡𝑡
� ;  𝛽𝛽𝑡𝑡 = 𝜀𝜀𝑡𝑡

1−𝜀𝜀𝑡𝑡
 ; 

(7) Calculate the combination of learners: 𝐻𝐻(𝑥𝑥) = ∑ 𝛼𝛼𝑡𝑡ℎ𝑡𝑡(𝑥𝑥)𝑇𝑇
𝑡𝑡=1 . 

Performance metrics 
The statistical analyses of the data presented in the rest of this study are based on the 

minimum and maximum values of the data used and the mean, standard deviation and median 
of these data (eqs. (9), (10), (11)): 
 

min = min(𝑥𝑥𝑖𝑖);  max = max(𝑥𝑥𝑖𝑖) ;  𝑖𝑖 =  1, … .𝑁𝑁  (9) 
 
 

𝑋𝑋� =
1
𝑁𝑁
�𝑥𝑥𝑖𝑖

𝑁𝑁

𝑖𝑖=1

 (10) 

 

𝜎𝜎 =  �
1
𝑁𝑁
�(𝑥𝑥𝑖𝑖 − 𝑋𝑋�)2
𝑁𝑁

𝑖𝑖=1

 (11) 

where 𝑋𝑋�, x and 𝜎𝜎 represent the mean, the variable and the standard deviation, respectively. The 
calculation of the errors inspired in [63] and [64], contained within the model, allowing to 
appreciate the difference between the predicted model and the real curve, is formulated as 
follows. 
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The mean square error by eq. (12): 
 

𝑀𝑀𝑀𝑀𝑀𝑀 =
1
𝑛𝑛
�(𝑦𝑦real − 𝑦𝑦predict)2 (12) 

 
The average of the absolute errors by eq. (13): 
 

𝑀𝑀𝑀𝑀𝑀𝑀 =
1
𝑛𝑛
� |𝑦𝑦real − 𝑦𝑦predict| (13) 

 
The square root of the mean square error by eq. (14): 

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �1
𝑛𝑛
�(𝑦𝑦real − 𝑦𝑦predict)2 (14) 

 
The coefficient of determination by eq. (15): 
 

𝑅𝑅2 = 1 −
∑(𝑦𝑦real − 𝑦𝑦pred)2

∑(𝑦𝑦real − 𝑦𝑦predıct���������)2
 (15) 

 
All of these regression metrics are calculated in order to evaluate the error, which is 

assumed to be minimal. 

MATERIAL AND METHODS 
Python 3.10 was used in this work. The following section presents the approach based on 

the forecasting method using adaboost regressor. 
Indeed, adaBoost regressor is an ensemble learning algorithm that combines several weak 

models to enhance regression performance. It takes into account, the number of estimators to 
combine: increasing this number, can improve performance, but it also increases the risk of 
overfitting; the learning rate that reduces the contribution of each estimator: a smaller value 
makes the algorithm more robust but requires a larger number of estimators to compensate; the 
loss function to minimize. The choice of loss affects how sample weights are updated; the base 
estimator (the base model or weak learner used to “boosting”); and the random state (by 
default, none). 

However, the input variables are time (min) and the output variables are electrical power  
(in kW). 

The general flowchart use for electrical load forecasting and the model selection is shown 
in Figure 2. 

Data presentation 
Electrical load consumption data are presented and averaged over a population of more 

than 500 households. These data were collected from a renewable energy source photovoltaic 
solar energy and were obtained from the Electrical Energy Company of Togo. These are the 
data on which the forecasts were based and, in fact, represent only 0.87 % of the total 
consumption data for the electrical loads used during this period. The total dataset is around 
4100 to 4300. 
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Figure 2. General flowchart used for electrical load forecasting and optimal model selection 

To perform simulations using Machine Learning techniques, a considerable quantity of 
datasets is required. In fact, this data represents the consumption of electrical loads over several 
days by months. Figure 3 shows a part of the global datasets: 
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Figure 3. Presentation of a part of load data for simulation 

The results are presented and discussed in the next section. 

RESULTS AND DISCUSSIONS 
This section shows the different results of the forecasting and the discussions. 

Results 
This section presents a study based on forecasting results. The studies present the statistical 

indicators of the data, then, the various prediction results and the correlation results between 
the predicted and the real value. 

Statistical results 
The forecasting results obtained were based on load data recorded on a monthly basis, the 

statistical indicators of which are presented in Table 2. 
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Table 2. General statistical data indicators 

Months Points Step 
(min) min max mean std median 

January 

4100-43
00 5 

0 71.97 16.3 16.44 10.237 
February 0 71.778 16.00 15.80 10.1 
March 0 75.369 16.179 15.93 10.285 
April 0 80.59 16.37 15.67 10.64 
May 0 80.453 16.58 16.11 10.28 
June 0 87.4 16.67 16.06 10.26 
July 0 86.127 15.98 14.757 9.937 
August 0 93.5 15.9 15.21 9.68 
September 0 90.014 15.02 14.92 9.083 
October 0 93.73 14.95 15.34 8.467 
November 0 73.001 16.42 16.28 9.14 
December 0 65.0 16.25 15.6 9.37 

std = standard deviation 

Table 2 shows the minimum, maximum, mean, standard deviation and median values of 
the electrical load data. The number of data analyzed per month is about 4100 to 4300. The 
maximum value recorded during these half months is 71.974. The overall mean was 16.2, with 
a standard deviation of around 15.7, showing the non-homogeneity of the consumption load 
each month and the variance in the data: the load of the installed microgrid therefore varies 
dynamically. 

The results of the electrical loads forecasting, are presented. 

Forecast results on selected monthly data 
The statistical indicators are presented in Table 2. 
The following figure, Figure 4, shows the variation over time (by step of 5 min) of the 

electrical consumption loads (in kW). The forecast results over time are also shown. 
 

 
(a) (b) 

Figure 4. Real curve for the month of January (a); real and forecast curves for January (b) 

Figure 4a and Figure 4b, respectively show the actual and predicted electrical loads for the 
month of January. During this month, the electrical consumption loads recorded are to the 
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order of 70 kW. These loads vary over the course of the month. The results of the learning and 
test model are shown in Table 3. 

The same results are shown for the others months : February, March, April, May, June, 
July, August, September, October, November and December, respectively in Figure 5a and 
Figure 5b, Figure 6a and Figure 6b, Figure 7a and Figure 7b, Figure 8a and Figure 8b, 
Figure 9a and Figure 9b, Figure 10a and Figure 10b, Figure 11a and Figure 11b,  
Figure 12a and Figure 12b, Figure 13a and Figure 13b, Figure 14a and Figure 14b, and 
Figure 15a and Figure 15b. 

Figure 5a and Figure 5b show respectively the real curve and the forecast curve for the 
month of February. 
 

 
(a) (b) 

Figure 5. Real curve for the month of February (a); real and forecast curves for February (b) 

The real curve and the forecast curve are shown respectively in Figure 6a and Figure 6b 
for the month of March. 
 

 
(a) (b) 

Figure 6. Real curve for the month of March (a); real and forecast curves for March (b) 

The variation of the curves depends on the variation of the data for each month. Figure 7 shows 
the results of the real (a) and the forecast (b) curves for the month of April. 
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(a) (b) 

Figure 7. Real curve for the month of April (a); real and forecast curves for April (b) 

The real curves and the forecast curves for the month of May are presented respectively in 
Figure 8a and Figure 8b. 

 
(a) (b) 

Figure 8. Real curve for the month of May (a); real and forecast curves for May (b) 

Figure 9a and Figure 9b show respectively the real curve and the forecast curve for the 
month of June. 

 

 
(a) (b) 

Figure 9. Real curve for the month of June (a); real and forecast curves for June (b) 
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However, Figure 10a and Figure 10b show respectively the real curve and the forecast 
curve for the month of July. 

 

 
(a) (b) 

Figure 10. Real curve for the month of July (a); real and forecast curves for July (b) 

Figure 11a and Figure 11b show respectively the real curve and the forecast curve for the 
month of August. 

 

 
(a) (b) 

 

Figure 11. Real curve for the month of August (a); real and forecast curves for August (b) 

In Figure 12a and Figure 12b, the real curve and forecast curve of the month of September are 
presented. 

 
(a) (b) 

Figure 12. Real curve for the month of September (a); real and forecast curves for September (b) 
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Figure 13a and Figure 13b show respectively the real curve and the forecast curve for the 
month of October. 
 

 
(a) (b) 

Figure 13. Real curve for the month of October (a); real and forecast curves for October (b) 

Figure 14a and Figure 14b show respectively the real curve and the forecast curve for the 
month of November. 

 

 
(a) (b) 

Figure 14. Real curve for the month of November (a); real and forecast curves for November (b) 

Figure 15a and Figure 15b show respectively the real curve and the forecast curve for the 
month of December. 

 

 
(a) (b) 

Figure 15. Real curve for the month of December (a); real and forecast curves for December (b) 
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The results obtained for the various months show the variance in electrical load demands. 
In fact, these loads are dynamic and show a good correlation with the predicted data. 

The results of the forecasting model's performance indicators, in relation to the actual loads, 
are shown in Table 3, and the model's learning and test results are thus obtained. 

Table 3. Results of the forecasting model's measurable performance indicators 

Months / 
indicators MAE RMSE Learning (R2) Test (R2) 

January 1.62 3.39 0.9995 0.958 
February 1.63 3.35 0.9997 0.954 
March 1.63 3.567 0.9997 0.949 
April 2.19 4.46 0.9996 0.919 
May 2.11 4.49 0.99975 0.93 
June 2.64 5.93 0.9998 0.86 
July 2.90 6.87 0.9990 0.78 
August 1.38 4.11 0.9997 0.928 
September 2.59 6.147 0.99975 0.83 
October 2.71 6.085 0.9997 0.84 
November 2.215 5.118 0.9998 0.90 
December 1.66 3.4 0.9996 0.953 

 
The analysis of the various indicators of the model’s performance in Table 3 demonstrates 

the level of variation present in the data compared to the model, as seen in all the real and 
forecast curves. In fact, these results show a fairly significant coefficient of determination, 
indicating that the model is representing real data with a low MAE, MSE and RMSE. This 
reflects the minimal nature of the errors made by the model, showing that the errors are much 
smaller than the variance present in the data, which explains the model's performance. 

Correlation results between actual and predicted data 
The correlation results between the microgrid-generated consumption loads and predicted 

consumption loads for all months, are shown respectively in Figure 16a and Figure 16b, 
Figure 17a and Figure 17b, Figure 18a and Figure 18b, Figure 19a and Figure 19b, Figure 
20a and Figure 20b, Figure 21a and Figure 21b. 

Figure 16a and Figure 16b show respectively correlation curve for January and February. 
 

 
(a) (b) 

Figure 16. Correlation curve for January (a); correlation curve for February (b) 
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Figure 17a and Figure 17b show respectively correlation curve for March and April. 
 

 
(a) (b) 

Figure 17. Correlation curve for March (a); correlation curve for April (b) 

Figure 18a and Figure 18b show respectively correlation curve for May and June. 
 

 
(a) (b) 

 
Figure 18. Correlation curve for May (a); correlation curve for June (b) 

Figure 19a and Figure 19b show respectively correlation curve for July and August. 
 

 
(a) (b) 

Figure 19. Correlation curve for July (a); correlation curve for August (b) 
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Figure 20a and Figure 20b show respectively correlation curve for September and 
October. 

 

 
(a) (b) 

Figure 20. Correlation curve for September (a); correlation curve for October (b) 

Figure 21a and Figure 21b show respectively correlation curve for November and 
December. 

 

 
(a) (b) 

Figure 21. Correlation curve for November (a); correlation curve for December (b) 

In the previous figures R-squared denotes R2. 
These figures show the test results of the developed model by month. The more points 

nearer the line, means the better the prediction performance. However, it should be noted that 
the model is not actually fitted directly to the test data, as the latter have the effect of 
minimizing the model's overfitting for testing purposes. These results therefore show the good 
correlation between the measured and predicted values. The dynamic variation in load by 
month, shown in the figures above, demonstrates the usefulness of this study and the accuracy 
with which a model should forecast trends. The initial results from the forecasting tests in this 
study are conclusive, with satisfactory performance indicators. 
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Discussions 
The forecasting results obtained and the calculated performance indices MAPE, MSE, 

RMSE and R2 have allowed to evaluate the proposed model. In fact, these different indicators, 
by month, reflect the minimization of the error between the actual electrical load consumption 
data and those predicted. The first MAE results, according to the different months studied 
(January, February, March, April, May, June, July, August, September, November and 
December) have values ranging from 1.38 to 2.9. These differences can be explained by the 
variances in the data for each month, as there were variations in the dynamic loads recorded. 
Although these values are low, it provides information on the difference between the actual 
values and those predicted. The results obtained for the MAE therefore show the minimum 
variation between the actual and predicted data. In addition, the values recorded for the MSE 
and RMSE of the forecasting model enabled to determine whether deviating values would 
interfere with the forecasting data. These values being relatively low indicates that the 
accuracy of the model is high. Finally, the R2 coefficient, which expresses the correlation 
between actual and predicted data, shows that, on average, over 90% of the actual load data is 
represented by the proposed model. This indicates the accuracy of the predictive model in 
relation to the electrical consumption data. 

In general, the minimization of performance indicators reflects the optimal forecasting of 
electricity demand, necessary to minimize the cost of energy supply or production. Indeed, if 
the deviations (errors) between actual and predicted data are significant, this would mean that 
the model would be less efficient and, consequently, could lead to significant financial losses; 
hence the importance of developing models that minimize errors as much as possible. In 
addition, these studies contribute to the management of the electrical load and are necessary for 
any study contributing to the optimization, for example, of the electrical network installation 
(microgrids): previous studies carried out by Kabe et al. [65]. 

Indeed, the model of adaboost regressor proposed, learns better and minimize significant 
errors. It is therefore recommended that network managers opt for more accurate models with 
minimized errors, such as the one proposed in this article. The proposed model demonstrates its 
excellent performance in forecasting electrical loads. The minimization of its performance 
coefficients such as MAPE, MSE, RMSE and R2 show the accuracy of the proposed model. 

However, a more extensive study with other approaches of forecasting electrical loads 
consumption could be envisaged in order to appreciate the limitations of the model. 

CONCLUSION 
The study of the efficient management of the evolution of electrical consumption loads is 

essential to satisfy the demand for electrical loads, ensuring a balance between supply and 
demand. Studies have been carried out to improve the learning accuracy of forecasting models; 
these studies continue today, with the aim of minimizing the errors that forecasting models can 
make in predicting real data. This paper proposes a model made up of ensemble regression 
method: adaboost regression approach, based on a machine learning technique, to predict the 
temporal evolution of the variation in electrical loads. The initial test results for the model were 
satisfactory, minimizing the error gap between the actual and predicted data. First, the results 
of this study give a coefficient of determination R2 between 0.9995 and 0.9997 for the learning 
results and second, a coefficient of determination R2 between 0.83 and 0.958 for the validation 
test results. The coefficient of determination of the proposed model is in perfect agreement 
with the experimental results obtained according by month. This coefficient demonstrates that 
the proposed model is a suitable representation for the actual prediction of electrical loads in 
future forecasts. The high number of data, shows that, the model can predict as short and long 
terms the electrical load consumption. The results of these studies conducted in this article, will 
contribute to optimal decision-making in energy system management and planning, especially 
in daily, monthly and annual forecasts of electrical energy demands. However, updates of 
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electrical load forecasting models can be considered with other forecasting models, in order to 
regularly adapt electrical load forecasts to the new forecasting models. 
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