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ABSTRACT

research into automated models for forecasting
¢ researchers, and several studies have been carried
approaches such as Long Short-Term Memory, Support
earning, probabilistic and others. These studies are often

quite complex due to thg elevated hyperparameters they contain, with considerable deviations
in accuracy between W icted data. Thus, in order to exploit methods with fewer
hyperparameters iction deviations between consumed and production, this paper
proposes a rneth ng based on a regression ensemble method: adaboost regressor approach
to improve : mption forecasting by application of advanced algorithm. So, this article

presents le@ning MadNalidation tests for the proposed model. The data used, were collected from a
renew; S % & photovoltaic solar energy. While 80% of the data collected was used for
g remaining 20% was used for validation testing. The results of this study give a

and reflect the performance of the proposed model. The proposed model is well adapted
gement of electrical consumption load forecasts to ensure balance between supply and

KEY S

Optimal management, electricity demand, forecasting model, ensemble regression: adaboost regressor.

INTRODUCTION

Electricity is at the heart of development [1]. The need to satisfy electricity demands to
reduce energy insufficiency and, above all, environmental pollution, means that renewable
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energy resources need to be prioritized, as recommended by the United Nations' global
agreements 7 and 13 within its sustainable development goals [2]. However, the intermittent
nature of these renewable resources is an important parameter that influences the quality and
reliability of electrical energy and the balance between supply and demand, especially when
these resources are less controlled [3]. Forecasting electrical energy production is becoming
increasingly essential not only for the efficient and continuous operation of grid operating
systems, but also for the optimal management of these renewable resources. Load forecasting
is an integral process in the planning and operation of electric utilities [4]. It helps reduce the
mismatch between supply and demand, thus ensuring the sustainability of energy systems.

Indeed, load forecasting is necessary for the consistent operation of the power grid and for the

actual
economic

demand values and those predicted by models would have
consequences [8] because forecasts should be optimized accQading
prices into account [9].
The main objective of this study is to improve in ez
application of advanced algorithm like adaboost regressd
identify the strengths and weakness of methods in

al and predicted load values. The
gfoach, for learning and validating

ctions: the theoretical background materials is
presented in Section 2; thg ethods are presented in Section 3; the results and
discussion are presentegdgih 8 d, finally, the conclusion is presented in Section 5.

and, the most pressing concern is the efficient management of electrical load
any studies have been carried out on the subject of more efficient and optimized
energy management [10]. In this context, [zquierdo-Monge O and al. proposed, in their paper,
a methodology for optimizing electrical energy consumption in a distribution network that
involved equipping the network with intelligence [11]; in [12], the authors proposed microgrid
optimization based on a hybridized system of renewable energy resources; Mah AXY and al.
presented an optimization of the design and operation of an autonomous microgrid with electric
and hydrogen loads, showing a significant reduction in load costs [13]; moreover, a strategy
for controlling and managing the energy supply of a microgrid in order to achieve higher
efficiency, reliability and economy was proposed in [14] with demand optimization by
advanced algorithms such as particle swarm optimization [15].



All of these studies propose scientific methods and approaches with the aim of improving the
management of renewable energy systems for the efficient exploitation of these resources to
generate balance between supply and demand. To study the response to disruptions caused by
the reduction of systems using non-renewable fossil resources in favor of renewable resources
in microgrids, a robustness improvement study based on variable-shape LADRC technology
for the electrical load interface was conducted [16]. A study on the dynamic analysis of
microgrid systems for powering sailboat electrical loads using renewable energy was
conducted [17]. S. Rajamand's objective in [18] is to manage energy consumption by adjusting
demand based on supply conditions, often through incentives for consumption during peak
periods. Amado and al. improve microgrid efficiency by integrating renewable energy [19].

Developing countries have conducted many studies on electricity to further their logment
[20] and explores the challenges and strategies for improving electricffy e and
affordability in these countries [21]. However, the growth of the population at€ ses
on the one hand, an increase in electrical energy demand [22] with the mo@CIIThg ® dptimal
electricity at long term [23]. The lack of electricity in rural areas then % Ttmber of
challenges in mobilizing the resources needed for optimal electrifig g [24] taking

into account, the techno-economic assessment integrating & %
important to electrify rural areas and areas on the outskirts of: a2 DG
from these areas, to mobilize local natural resources [2(dp® o

systems for off-grid [27], in order to minimize distances'§ pctligal losses. These available
natural resources can thus be exploited by microgrigd a nccessary to optimize their
i ystems [29]. At present, the

[25]. It is
er plants not far

the daily variation of short- and long-te ¢ ever-increasing energy needs of the
population. This difficulty in pairin i ptation of electricity production to the
demand for electrical energy is expl
ictive model for the management of these mini-

grids in most sub-Saharan countge wiulty in the operational planning of these power
generation systems. It is necgpsary to develop optimized prediction models for
managing the evolutio S

Thus, machine learni 2] and its importance for forecasting electrical energy
consumption (load ) 0%olve societal problems via different regression methods. In

particular, predi g based on neural network methods [34] for short term loads
forecasting environment [35] and with his radial basis functions [36] for

modelli omplex relationships in times series data [37]. Multilayer perceptron
(MLPs) a h, afid his convolution neural networks (CNNs) have also been presented in
[10 w, artificial neural network has the capacity to imitate biological neural

to incorporate fuzzy logic principles to handle uncertainty and imprecision
their applications in science and engineering are presented in [41] and can be
al-world data under varying weather conditions such as for example, photovoltaic
data [42]. Other models have also been developed, such as the LSTM (Long Short-Term
Memory) technique [43] where authors propose and test a CNN and LSTM models reveal that
the models behave differently when the number of layers changed over the different
configurations; in [44], a short term load forecasting model that integrates a multi-scale CNN-
LSTM hybrid approach neural network is proposed; for support vector regression : a
proposition of algorithms, has been trained and tested with a significant encouraging result
show an accuracy improvement from 20% to 23.4% in [45], and in [46], authors used support
vector machine for the forecasting and recommended a combination of this approach with
algorithms like artificial neural network (ANN) model and clustering; fuzzy polynomial
regression methods is discussed in [47] showing how a fuzzy logic approach can be applied to



predict electrical load during holidays; multiple regression in [48] with the aims to improve the
accuracy of electric load forecasting by a boosting-based approach ; deep learning in [49]
advanced in short term load forecasting by combining deep learning with socioeconomic and
infrastructural data, offering a practical solution for sustainable management in geographically
or economically constrained environments; authors explore in [50], the application of neural
networks in wind resource assessment and forecasting; probabilistic methods : in [51], the
study likely aims to enhance the accuracy and reliability of industrial load forecasting by
adopting a multivariate probabilistic approach involving characterizing the uncertainty in load
predictions which is crucial for managing industrial energy systems effectively and an
improvement of quantile regression neural network architecture can better capture complex
patterns in load data and provide more accurate probabilistic forecasts [52].

to forecast the impact of the environmental and energy factor to improve urba
for Afshin Balal and al. [54], it is possible to use the Random forest regressio
to forecast solar power generation; an application is being carried ou@fi
Meryem El Alaoui and al. [55] have used ARIMA and statistical methods

in [57], a hybrid model based on Gated Recurrent Unit (GR
Each of these methods has its own specificities; the numbg
according to the model, is often high and the forecasting¥
Table 1 provides an overview of the various methgds used
expenses:

ameters to be defined,
me 1§ sOgetimes long.
0 foreCast short- and long-term

Table 1. Summary of ricadplo casting models
Methods References
LSTM-MLP [10][43][57]
[55]
[45][46][58]
Electrical load [49][50]

forecasting [10]

[10][56][57]
d [59]

forecasting
Adaboost used in other areas [60][61]

General forecasting approach

Forecasting is the study of a given quantity, whose future evolution can be estimated by
calculation [62]. Let there be a training set D containing T pairs of input vectors x and scalars
y according to relation eq. (1):

D={(xny)lt=1,..,T} (1

where y; is a time series and x; is a vector of dimension d, defined by relation eq. (2):
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Xt = [xll '--;xd]T (2)

All input vectors are often combined into matrix X, and the output values into output vector Y;

relation eq. (3):
[*1] 1 3)
yr

X

~NN T

The general model of a time series is given by relation eq. (4):

Ve = f(x¢,0) + € 4)

where f is a function; x; is the independent variables (or fes g t; 0 is the
parameter vector, it represents the parameters of the model tha % tionship between
x¢ and y; and are typically estimated from historical data du e megdgl training process;
and €, i1s a Gaussian noise. The forecast at a future ti obtdmed by evaluating the
function f at the test point x1,j, according to relation eq.

Vren = (X, (%)
where 8 is the vector of parameters fro trafiginggtata set D. It represents the estimated
parameters of the model. Indeed, f( 4 furf®fion that models the relationship between
the explanatory variables and t iab% we want to predict. x5 represents the
explanatory variables at the fuigfe ti +h Jf is the function that can be linear, nonlinear, a

regression odel, or any oth nctfon that describes the relationship between x and y.
The choice of f, depends odgl

. regression ensemble method
e Method is a collection of regression models used to make prediction

g cfllicient. It is defined by the following: the space of hypothesis H; a
g prediction elements hi, such as hi= 1.1 € H. Part of the regression
the adaboost regression method, which is a set of machine learning
onsist of combining several sub-predictors to optimize better, prediction.

Journal of Sustainable Development of Energy, Water and Environment Systems 5
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Datasets preprocessing

:

v
Trainset process
Y
Weight Weight Weight
Distribuion Distribuion Distribuion
Dt Di. L
I I ! 4
Weak Weak Weak Testset process
Learner h' Learner hi Learner h¥
Y
Weak Learner Weak Learner Weak Learner
Weight a} Weight a?} Weight ay,
Strong learner H |«
T
H(x) = Z ahy (%)
=1
Model a};plication
N
Figure ow of the adaboost regressor approach
The ensemble method th de ictor H(x), such that equations eq. (6), eq. (7), and

eq. (8) [60]:

T (6)
) = sign () ap.he(x))

Q H = [(hy, a)le=1.7 € (HIRY)" ™
Ht(x) = Hi_1(x) + ap. he(x) ®)
The g to find a sequence of predictor elements h; and weights a: such that the previous
global predictor achieves a small error.
The proposed algorithm is given:
(1) As a given sample (x1, V1), (x;, Vi), ..., (X, Yn): N training samples set

(2) Initialize the weights vector of the sample: D* = (ai, ...a}, ...a})

D=1/N. N is the number of training samples

Journal of Sustainable Development of Energy, Water and Environment Systems 6
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(3) While t < T, T the iteration numbers

(4) Under the probability distribution of training samples: the weak learner h;(x) are
trained

at

N t
Yi=1 9

(5) The probability P =

(6) Update weight distribution

t+1 — (o t+1 t+1 t+1
D"t =(a;" ", a7, ay )

(7) Calculate the combination of learners: H(x) = Y.1_

af"'l = a’itﬁl_lht(xi)_yil, i=12,..,N Q
With Weak learner weight a; = %ln (ﬁi) ; Be = 182 Q
t —&t

Performance metrics
The statistical analyses of the data presented igathe reS$of this study are based on the
minimum and maximum values of the data used ean, §andard deviation and median
of these data (eq. (9), eq. (10) and eq. (11)):
min = min(x;); ma A i = 1,...N )

(10)

(11)

wher repgiesent the mean, the variable and the standard deviation, respectively. The
cal ors inspired in [63] and [64], contained within the model, allowing to

re ference between the predicted model and the real curve, is formulated as
follgws:

The mean square error by eq. (12):

1 , (12)
MSE = EZ(yreal - ypredict)

The average of the absolute errors by eq. (13):

1 (13)
MAE = EZ |yreal — YVpredict

Journal of Sustainable Development of Energy, Water and Environment Systems 7
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The square root of the mean square error by eq. (14):

) (14)
RMSE = EZ(yreal - ypredict)2

The coefficient of determination by eq. (15):

Z(yreal - :Vpred)z (15)

R2=1-
Z(yreal - ypredlct)2

All of these regression metrics are calculated in order to evaluate the err: med
to be minimal.

MATERIAL AND METHODS %

Python 3.10 was used in this work. The following jon pregents the approach based on the
forecasting method using adaboost regressor.

Indeed, adaBoost regressor is an ensem g ithm that combines several weak
models to enhance regression performatNt taks in# account, the number of estimators to
combine: increasing this number, ¢ er ance, but it also increases the risk of
overfitting; the learning rate that coMtribution of each estimator: a smaller value
makes the algorithm more rob larger number of estimators to compensate; the
loss function to minimize. The ffects how sample weights are updated; the base
estimator (the base model € sed to “boosting”); and the random state (by default,
none).

|

However, the in es ime (min) and the output variables are electrical power (in
kW).

The gendygglgowc ¢ for electrical load forecasting and the model selection is shown in
Figureg:

N

Journal of Sustainable Development of Energy, Water and Environment Systems 8



Import packages and datasets

I

Datasets pre-processing by months
(12): Janwary, February,..., December

¥

Dratasets partition : 80% for training
and 20 % for tests

!

Simulation by Machine learning :
adaboost regressor (algorithm)

h 4

Learning forecasting (per month, 12}

ol

T

Optimizations of hyperparameters
and errors calculation

>

yves

Simulations of tests data

~~~w
art used for electrical load forecasting and optimal model selection

consumption data are presented and averaged over a population of more than
. These data were collected from a renewable energy source photovoltaic solar
re obtained from the Electrical Energy Company of Togo. These are the data on
orecasts were based and, in fact, represent only 0.87 % of the total consumption
data for the electrical loads used during this period. The total dataset is around 4100 to 4300.
To perform simulations using Machine Learning techniques, a considerable quantity of datasets
is required. In fact, this data represents the consumption of electrical loads over several days
by months. Figure 3 shows a part of the global datasets:
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rle 3 e Toutes_les_données_pour_article - Excel KABE Moyéme
Fichier Accueil Insertion Dessin Mise en page Formules Données Révision Affichage Aide Q Dites-le-nous
Q29 v 5
A | B | ¢ | b | E | F | & | H Ly k| M | N

1 |Version CSV1|Tool CLUSTERCONTROLLER | Linebreaks CR/LF | Delimiter semicolon| Decimalpoint comma | Precision 2

2 |Time January February March  April May June July August  SeptembeOctober Novembe December
3 |DD.MM.YYYY hh:mm W w w w W w W w W w w W
4 |01.12.2015 00:00 10358 8927 8628 8550 10189 9408 8889 9859 8277 8971 3868 6992
5 |01.12.2015 00:05 10566 8935 8624 8517 10172 9340 8831 9780 8263 8914 3839 6955
6 |01.12.2019 00:10 10507 9042 8635 8603 10121 9316 8895 9778 8162 8932 3733 7503
7 |01.12.2015 00:15 10574 9079 8617 8617 10134 9212 8869 9779 7872 8921 3721 7405
8 |01.12.2015 00:20 10578 9049 8588 8616 10145 9198 8856 9781 8054 8943 3759 7083
9 |01.12.2019 00:25 10576 9093 8622 8583 10104 9331 8970 9775 7970 8960 3713 7226
10 |01.12.2015 00:30 10598 8976 8569 8576 10023 9365 8976 9864 8075 9111 3697 7452
11 |01.12.2015 00:35 10649 8992 8571 8482 10169 9401 8933 9857 8039 9153 3669 7391
12 /01.12.2019 00:40 10560 8989 8571 8538 11388 9329 8927 9832 8036 9188 3622 7116
13 |01.12.2015 00:45 10468 9055 8553 8495 10754 9293 8820 9793 7964 9192 3616 7086
14 |01.12.2015 00:50 10411 9034 8531 8446 9870 9312 8850 9688 7998 9149 3645 7357
15 |01.12.2019 00:55 10479 9140 8616 8528 10374 9359 8768 9657 7979 9058 3700 7224
1 67 01.12.2019 01:00 10507 9126 8657 8561 11180 9354 8798 9653 8114 8930 3657 6928
17 |01.12.2019 01:05 10563 9176 8579 8550 10654 9248 8805 9610 8177 9003 3640 7030
18 /01.12.2019 01:10 10433 9149 8501 8564 9748 9191 8935 9641 8200 9147 3657 7227
19 |01.12.2015 01:15 10380 9063 8564 8565 10367 9282 8887 9737 8190 9119 3648 7279
20 |01.12.2015 01:20 10336 9063 8583 8513 11441 9307 8925 9766 8218 9139 3678 7068
21 |01.12.2019 01:25 10410 9088 8529 8522 10582 9393 8956 9761 8136 9248 3681 7099
227 01.12.2019 01:30 10330 9056 8500 8485 9359 9411 8926 9726 8135 9282 3708 7139
23 |01.12.2019 01:35 10279 9058 8497 8481 10201 9439 8922 9655 8130 9205 3717 7154
24 101.12.2019 01:40 10178 9132 8512 8528 11489 9398 8933 9675 8122 9181 3609 6906
25 |01.12.2019 01:45 10315 9195 8499 8573 10632 9443 8891 9578 8140 9106 3589 6953
26 |01.12.2015 01:50 10257 9175 8493 8508 9304 9483 8963 9544 8221 9120 3688 7193
27 |01.12.2019 01:55 10211 9177 8488 8511 10176 9322 8984 9501 8237 9111 3774 7179
28 |01.12.2015 02:00 10141 9093 8504 3490 11812 9459 9066 9554 8316 9081 3798 6940
29 |01.12.2019 02:05 10227 9143 8536 8439 11638 9489 9009 9544 8266 9143 3786 7029
30 /01.12.2019 02:10 10140 9101 8554 8466 11436 9561 9046 9582 8263 9130 3808 7151
317 01.12.2019 02:15 10158 9075 8544 8476 11329 9579 8908 9632 8135 8900 3801 7022
32 |01.12.2015 02:20 10113 9101 8518 8465 11345 9565 89596 9558 8152 8783 3796 6854
33 |01.12.2019 02:25 10208 9238 8590 8344 11268 9548 8910 9401 8115 8756 3802 6886
34 |01.12.2015 02:30 10112 9303 8553 8435 11252 9546 8947 9432 8078 8736 3300 6957
35‘ 01.12.2019 02:35 10059 9273 8575 8428 11292 9472 8973 9437 8115 8586 3739 7021
36 |01.12.2015 02:40 10147 9280 8557 8476 11286 9506 9060 9486 8237 8558 3690 6898
37 |01.12.2019 02:45 10288 9269 8588 8398 11260 9537 9051 9578 8210 8522 3582 7025
38 |01.12.2015 02:50 10184 9243 8624 8399 11220 9543 9048 9578 8206 8467 3629 7054

»

e 3. Presentation of a part of load data for simulation

ted and discussed in the next section.

D DISCUSSIONS
n shows the different results of the forecasting and the discussions.

Results

This section presents a study based on forecasting results. The studies present the statistical
indicators of the data, then, the various prediction results and the correlation results between
the predicted and the real value.

Statistical results

The forecasting results obtained were based on load data recorded on a monthly basis, the
statistical indicators of which are presented in Table 2:

Journal of Sustainable Development of Energy, Water and Environment Systems 10
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Table 2. General statistical data indicators

points  Step min max mean std median
Months (min)

January 0 71.97
February 0 71.778
March 0 75.369
April 0 80.59
May 4100- 5 0 80.453
June 4300 0 87.4
July 0 86.127
August 0 93.5
September 0 90.014
October 0 93.73
November 0 73.001
December 0 65.0

std = standard deviation.

Table 2 shows the minimum, maximum, mean, standard g
electrical load data. The number of data analyzed pe
maximum value recorded during these half months is 71.972
a standard deviation of around 15.7, showing thg
each month and the variance in the data: the
dynamically.

The results of the electrical loads for in

Forecast results on selected

The statistical indicators are gre
The following figure, Fig

consumption loads (iﬂ ]

=== Real curve 704 ™ Forecast curve
® Real curve

t results over time, are also shown:

70 A

60 60
50 - 50 4
E 40 4 § 40 1
w wn
H % 30
9 30 9 30
20 20
10 1 H 101
0- 0
T T T T T T T T T T
0 5000 10000 15000 20000 0 5000 10000 15000 20000
Time (min) Time (min)
(a) (b)

Figure 4. (a) Real curve for the month of January; (b) Real and forecast curves for January

Figure 4 (a) and (b), respectively show the actual and predicted electrical loads for the month
of January. During this month, the electrical consumption loads recorded are to the order of 70

Journal of Sustainable Development of Energy, Water and Environment Systems 11
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kW. These loads vary over the course of the month. The results of the learning and test model
are shown in Table 3.

The same results are shown for the others months : February, March, April, May, June, July,
August, September, October, November and December, respectively in Figure 5 (a) and (b),
Figure 6(a) and (b), Figure 7 (a) and (b), Figure 8 (a) and (b), Figure 9 (a) and (b), Figure 10(a)
and (b), Figure 11(a) and (b), Figure 12(a) and (b), Figure 13(a) and (b), Figure 14(a) and (b),
and Figure 15(a) and (b).

Figure 5 (a) and (b), show respectively the real curve and the forecast curve for the month of

February: (
_ »

701 = real curve

— forecast curve
® real curve

~
o
L

60

(=]
o
L

v
(=]
L

S
=]
L

Loads (kw)
Loads (KW)

w
o
L

N
o
L

=
o
L

0 I 04

T T T T T T T T T T
0 5000 10000 15000 20000 0 5000 10000 15000 20000
Time (min)

v Time (min)
@ ’V (b)
Figure 5. (a) Real curve for t \‘<nth of FebMyary; (b) Real and forecast curves for February
a

The real curve and the fore wn respectively in Figure 6 (a) and (b) for the

month of March:
A
= real curve - forecast curve
70 4 70 4 @ real curve
60 60
50 50 4
s s
< 40 2 40
w wn
hei o
© T
S 304 3 301 |
\ 1 !
201 20
‘ ¢
- 10 l { =l
0 01

0 5000 10000 15000 20000 0 5000 10000 15000 20000
Time (min) Time (min)
(a) (b)

Figure 6. (a) Real curve for the month of March; (b) Real and forecast curves for March

The variation of the curves depends on the variation of the data for each month. Figure 7, shows
the results of the real and the forecast curves for the month of April:

Journal of Sustainable Development of Energy, Water and Environment Systems 12
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Figure 7. (a) Real curve for the month of April; (b) Real and forg

The real curves and the forecast curves for the month of Ma

Figure 8 (a) and (b).
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ulve for the month of May; (b) Real and forecast curves for May

) show respectively the real curve and the forecast curve for the month
of Ju
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Figure 9. (a) Real curve for the month of June; (b) Real and forecast \
However, Figure 10 (a) and (b) show respectively the real curve and Oygcas®Curve for the
month of July. A
= real curve — forecast curve
80 801 e realcurve o © 4
° ° M H
o s . °
60 60 [ ] H
g H
S 401 S 40
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(b)
Figure'l 1 curve for the month of July; (b) Real and forecast curves for July

and (b) show respectively the real curve and the forecast curve for the month
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Figure 11. (a) Real curve for the month of August; (b) Real and foreca ust
And in Figure 12 (a) and (b), the real curve and forecast curve of tig A tember are
presented:
= real curve — forecast curve
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Figurg 1R. (a) Rg e for the month of September; (b) Real and forecast curves for September
F nd (b) show respectively the real curve and the forecast curve for the month
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Figure 13. (a) Real curve for the month of October; (b) Real and forecas ber
Figure 14 (a) and (b) show respectively the real curve an e for the month
of November.
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Figure 15. (a) Real curve for the month of December; (b) Real and

The results obtained for the various months show the varia
fact, these loads are dynamic and show a good correlation g

The results of the forecasting model's performance indica in refation to the actual loads,
are shown in Table 3, and the model's learning ang 5 ¢ thus obtained:

ble performance indicators

Months/ MAE Learning (R?)  Test (R?)
indicators
January 1.62 3. 0.9995 0.958
February 1.6 3.3 0.9997 0.954
March 0.9997 0.949
April 0.9996 0.919
May 0.99975 0.93
June 0.9998 0.86
July 0.9990 0.78
August ; 0.9997 0.928
Septerffoer .59 6.147 0.99975 0.83
2.71 6.085 0.9997 0.84
2.215 5.118 0.9998 0.90
1.66 34 0.9996 0.953

is of the various indicators of the model’s performance in Table 3 demonstrates the
level o iation present in the data compared to the model, as seen in all the real and forecast
curves. In fact, these results show a fairly significant coefficient of determination, indicating
that the model is representing real data with a low MAE, MSE and RMSE. This reflects the
minimal nature of the errors made by the model, showing that the errors are much smaller than
the variance present in the data, which explains the model's performance.

Correlation results between actual and predicted data

The correlation results between the microgrid-generated consumption loads and predicted
consumption loads for all months, are shown respectively in Figure 16 (a) and (b), Figure 17(a)
and (b), Figure 18(a) and (b), Figure 19(a) and (b), Figure 20(a) and (b), Figure 21(a) and (b).
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Figure 16 (a) and (b) show respectively correlation curve for January and February.

70 { = Test: R-squared = 0.958 70 4 = Test: R-squared = 0.95
@ Sample
60 - 60 1
= 50 = 50 1
H g
g 40 § 40
S S
@ 30 % 304
£ 20 € 504
10 10 1
0 b 0 B
0o 10 20 30 4 S0 60 70 o 10 20 ' ' ' i '
Real values (kW)
(a)
Figure 16. (a) Correlation curve for January; (b) CO
Figure 17 (a) and (b) show respectively correlgffon e f@gmarch and April.
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Figure 17. (a) Correlation curve for March; (b) Correlation curve for April

Figure 18 (a) and (b) show respectively correlation curve for May and June.
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Figure 19 (a) and (b) show respectively correlation curve -yl
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Figure 21 (a) and (b) show respectively correlation curve d December.
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R-square

w the test results of the developed model by month. The more points nearer
etter the prediction performance. However, it should be noted that the model is
1tted directly to the test data, as the latter have the effect of minimizing the model's
overfit{f#¢ for testing purposes. These results therefore show the good correlation between the
measured and predicted values. The dynamic variation in load by month, shown in the figures
above, demonstrates the usefulness of this study and the accuracy with which a model should
forecast trends. The initial results from the forecasting tests in this study are conclusive, with
satisfactory performance indicators.

Discussions
The forecasting results obtained and the calculated performance indices MAPE, MSE,
RMSE and R? have allowed to evaluate the proposed model. In fact, these different indicators,
by month, reflect the minimization of the error between the actual electrical load consumption
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data and those predicted. The first MAE results, according to the different months studied
(January, February, March, April, May, June, July, August, September, November and
December) have values ranging from 1.38 to 2.9. These differences can be explained by the
variances in the data for each month, as there were variations in the dynamic loads recorded.
Although these values are low, it provides information on the difference between the actual
values and those predicted. The results obtained for the MAE therefore show the minimum
variation between the actual and predicted data. In addition, the values recorded for the MSE
and RMSE of the forecasting model enabled to determine whether deviating values would
interfere with the forecasting data. These values being relatively low indicates that the accuracy
of the model is high. Finally, the R? coefficient, which expresses the correlation between actual
and predicted data, shows that, on average, over 90% of the actual load data is reprgéented by
the proposed model. This indicates the accuracy of the predictive model in reldgon go the
electrical consumption data.

electricity demand, necessary to minimize the cost of energy supply or p . Mmdeed, if
d mean that

the model would be less efficient and, consequently, could lead t financial losses;
hence the importance of developing models that minimize as possible. In
addition, these studies contribute to the management of tasngl3g and are necessary
for any study contributing to the optimization, for 8 ] electrical network

Indeed, the model of adaboost regressor propo Siter and minimize significant errors.
It is therefore recommended that networ for more accurate models with
minimized errors, such as the one prop in { ig]C. The proposed model demonstrates
its excellent performance in forecastiggaglectiy gls. The minimization of its performance
coefficients such as MAPE, MSE, RKISE and the accuracy of the proposed model.
However, a more extensive sg#dy With other approaches of forecasting electrical loads
consumption could be envisage®y e preciate the limitations of the model.
CONCLUSION %

management of the evolution of electrical consumption loads is

d for electrical loads, ensuring a balance between supply and

goh carried out to improve the learning accuracy of forecasting models;
today, with the aim of minimizing the errors that forecasting models can
cal data. This paper proposes a model made up of ensemble regression
regression approach, based on a machine learning technique, to predict the
tion of the variation in electrical loads. The initial test results for the model were

The study of t
essential to gamgt

of this study give a coefficient of determination R? between 0.9995 and 0.9997 for the learning
results and second, a coefficient of determination R? between 0.83 and 0.958 for the validation
test results. The coefficient of determination of the proposed model is in perfect agreement
with the experimental results obtained according by month. This coefficient demonstrates that
the proposed model is a suitable representation for the actual prediction of electrical loads in
future forecasts. The high number of data, shows that, the model can predict as short and long
terms the electrical load consumption. The results of these studies conducted in this article, will
contribute to optimal decision-making in energy system management and planning, especially
in daily, monthly and annual forecasts of electrical energy demands. However, updates of



electrical load forecasting models can be considered with other forecasting models, in order to
regularly adapt electrical load forecasts to the new forecasting models.
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