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ABSTRACT

Desalination is now being used more often to properly liquidate
deliver needed freshwater to dry regions and thirsty communitj
improvements in the technology at desalination plants, all the
a desalination system are still affected by inefficiency, increas Srgy use, growing costs and
negative effects on the environment. Overcoming thg ajls for improvement across
the entire supply chain, instead of just at the p gvel. THI assesses the effects of

deviations, as well as optimization i in, framework is proposed and
reinforcement learning, along with i
Learning has cut downtime by 18%,
operating expenses by 14.2% an
standard operations. The res

the’company’s carbon emissions by 10% over
achine Learning encourages more than small
gement process. Using Artificial Intelligence in
the issues of increasing water use and sustainability
e ML model that helps water supply management and
C robust desalination methods that can support the goal of

changes and has a big impaging

desalination helps exper: (@ 1

worldwide. It adds a g
gives a pathway tq
sustainable w.

res 1S*demonstrated that over a quarter of the world population does not have access to
i g water [1]. This is further compounded by the fact that the same percentage of the
population lack good facilities in sanitation and hygiene [2]. The issue is especially acute in
arid and semi-arid areas where natural resources of freshwater are rare, and the state of drought
is getting worse with the climate changes [3].

Desalination has emerged as a vital strategy to address these shortages. In some places,
including Middle East and North Africa, the percentage of the drinking water supplied by the
process of desalination is quite high [4]. Nonetheless, the process is linked to high energy
requirements because desalination plants require a lot of electricity, particularly the reverse
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osmosis-based plants [5]. Moreover, desalination produces concentrated effluents of brine and
chemical wastes which are hazardous to the marine environments [6]. These environmental
and economic issues are the reasons why there is an immediate necessity to develop
innovations to increase the efficiency and sustainability of desalination plants.

To address such challenges, there has been a growing interest among researchers in
adopting renewable energy as a sustainable source of power to run the process of desalination.
Indicatively, solar-powered desalination has been proven in the United Arab Emirates with
success, enhancing its stability of operations and minimizing emissions [7]. Other related
studies indicate that wind-based desalination can be both technically and scientifically viable
and environmentally friendly, as proven in pilot projects in Jordan [8]. Meanwhile, studies
of hybrid microgrids that combine solar and other renewable energy sources with i
facilities prove that there is a substantial possibility of cost and energy saving %

Machine learning (ML) has become a popular enabling technology in solv

accurately [10]. Moreover, the monitoring of water quality has bee | h the use of
ML which assists in detecting the pollutants in real-time and ion-making [11].
ML has also been useful in leak detection, and the speed 7 are better than
traditional monitoring techniques [12]. Likewise, ML-dri
to decrease the downtime and prolong the lifespan of eq
[13].

The benefits of ML extend to desalination. As
used to enhance the performance of membra
the use of energy [14]. Optimisation of p
process control has also been applied
efficiency [15]. Moreover, simulatio

lisation of chemicals and enhance
ating conditions and reproduction of a
ems have been performed with the help of

o optimise schedules and routing in desalination
ise of ML outside of plant operations [17].

as a bottleneck and not the overall desalination supply

considered the desald
C as covered vital issues like logistics of raw water intake,

chain. There is

: ework of i 1ncorporat1ng ML into desalination supply chains. The strategy
ake the organisation more efficient, cost-effective and sustainable besides
e objective as international targets of carbon reduction and the circular economy

LITERATURE REVIEW

The desalination and water systems literature has been changing swiftly and includes the
progress of efficiency, renewable energy, and computerization of the processes. But the entire
picture of the desalination supply chain; in terms of how it gets in and out to the distribution is
still not well understood. To build a groundwork to apply machine learning in this sphere, it is
necessary to analyze first the structure and processes of desalination supply chains and identify
critical issues that characterize them.



Desalination supply chains overview

The desalination supply chain begins with seawater or brackish water intake. Research
indicates that the intake systems should be developed in such a way that they resist the variation
in salinity and temperature and avoid biofouling [1]. Pretreatment process, like filtration, has been
used to eliminate suspended solids prior to desalination [2]. To remove colloidal particles and
organic matter that would otherwise cause damage to the downstream units, coagulation is a
typical approach to achieve that [3]. Secondly, the system uses chemical dosing to maintain
biological growth to have a stable system functioning [4].

Reverse osmosis (RO) is the most common process of obtaining the core desalinati

the necessary pH, introduce the necessary mineral content, and compl
quality [8]. Research has established that the absence of appropri
distribution systems corrosive to desalinated water [9].

Another crucial part of the chain of desalination supply 4
(brine and chemical). The discharges of high salinity m3
particularly when discharged into closed coastal watg

The integration of renewable energy 1
It has been demonstrated that solar-p

ve tRe capability of minimizing emissions as well as

operational risks [14]. In Jord nation has been also tested and proven to be
environmentally and tech | 15]. Renewable microgrids studies indicate that
desalination plants sho ¢ ; solar and wind energy, which will increase resilience
and guarantee the co bility”of water [16].

Pretreatment jgma gnportant to the system. As it has been demonstrated in an

experimental stud dichf coagulation-flocculation results in a substantial reduction of fouling
and an increg88w tes in RO membranes [17]. Recent contributions of the JSDEWES
confirm tha fect of optimised pretreatment have impacts on down-stream efficiency
and

being used more in desalination supply chains. Demand forecasting systems
learning have shown decreases in the error of forecasting and allow one to more
ac ch supply and demand [19]. Fault detection models in the pumps and sensors have
been ented to detect faults, which saves up to 18 percent of the downtimes [20]. It has been
used to reinforcement learning in distribution networks and this helps in the routing efficiency by
12 percent than using the normal scheduling [21]. According to case studies, the overall costs may
be decreased by over 14 percent by the means of the ML optimisation strategies [22].

On the system level, optimisation methods gradually consider the location, storage assignment,
and transportation. The analysis of multi-objective optimisation shows that in many cases; the
distribution and storage can occupy significant portion of the total system costs [23]. The studies
of carbon pricing prove that desalination needs to be system-wide planned so that it can be aimed
at decarbonisation objectives [24].

The downstream end of the supply chain is shifting from waste disposal to resource circularity.
Research identifies the possibilities of extracting lithium, magnesium, and potassium minerals
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with the help of brine [25]. Nonetheless, technological-economic studies indicate that valorisation
is yet to be popularly applied because of cost impediments [26]. Recent literature shows that the
most efficient form of brine valorisation strategies is when they are incorporated into supply chain
planning as opposed to the treatment of these strategies as discrete processes [27].

Digital twin technologies are being introduced to enhance system performance. As an example,
whole desalination supply chains have been simulated with digital twins, which connects
operational data and predictive analytics [28]. In other research, optimisation of the membrane
and the brine can be optimised faster through high-throughput simulations under the support of
ML [29]. The latter tools are essential to attain real-time decision support and resilience in
desalination supply chains [30].

Challenges

Energy consumption remains one of the greatest barriers to sustainable desali %
D

findings have shown that RO is a power-intensive process, and the high#prcSy s take
almost half the cost of running the process [31]. Although the energy rd devices have
g traditional water

improved, the energy consumption per unit is still high compared to ffost8
treatment methods [32]. According to recent reviews, the further r O require disruptive
ectricity grids that are

innovations like batch RO and pressure-retarded osmosis [33].
Carbon emissions related to desalination are aggravate
based on fossil. It has been indicated that desalination faci t U8g fossil fuel as the source of
energy are the major emitters of greenhouse gases, and it not atiger well with the global
carbon reduction agreements [34]. The researchergatfirig that ¥ge switch to renewable energy
sources will allow cutting these emissions, but % al complexity is also placed by this
transition [35].
Photovoltaic energy can be directly 1

tedgito R@ Systems, but the issue of intermittency
has been demonstrated to make press d ra termittent thus capable of damaging the
membranes [7]. The relevance of grid @ storage sWgtem hybridisation is proved by the case studies
about solar-powered desalinatigf” i ENA countries to ensure stability [16]. Likewise,
desalination systems driven by Wy \% proven to be technically feasible although they
need sophisticated energy tions to endure the fluctuating winds [8].

Brine management
sea shows that saline
has been establiged Scarchers that chemical additives present in brine like the
antiscalants imp
minimal-liq 1

®Ronetheless, these approaches are not widely applied at a large scale because
st and technology [26].
nt is also a major source of concern. It has been determined that improper
t increases the rate of fouling, and thus, adds more cleaning cycles and reduced
membrane life [17]. On the other hand, coagulation flocculation methods optimisation can also
enhance RO efficiency substantially, as validated in the full-scale experimental works [18].

Economic volatility continues to destabilise desalination operations. Recent studies indicate
that there are high changes in the price of the desalinated water due to changes in energy prices
[23]. The replacement cycles of the membranes and the alternation of the prices of chemical
supplies also contribute to the cost unpredictability to a greater extent [13]. These results imply
that desalination plants should be prepared to have adaptable energy and supply chain policies to
guarantee the economic sustainability in the long term [30].

Finally, governance and systemic challenges persist. The sustainability measurements indicate
that efficiency at the plant level can be compromised in the areas of intake, distribution, or waste



management [17]. The solutions lie in the digitalisation: e.g., anomaly detection based on ML has
been demonstrated to minimize operational downtimes [20], and digital twins can offer real-time
simulations to make decisions [28]. Nonetheless, these tools need massive and high-quality
datasets and system interoperability, which necessitate considerable institutional and financial
investment [24].

Machine learning in water systems

Machine learning has become one of the key technologies when it comes to optimisation of
water systems. ML has also been used in municipal utilities to forecast both daily and seasonal
water demand more accurately than other models [10]. Simultaneously, the research pféves that
and

regulatory standards compliance [11].
Leak detection is another area where ML has proven its value. In one of

and this is applicable to pumping stations and RO units [13].
ML models are becoming popular in optimizing the operaff
desalination. As an example, membrane fouling predicty

achieve high water quality [15].
Digital twin technology that models the

models has been successfully impleme i

operators to experiment with various si

ical systems with the help of ML
facilities. Such digital twins allow

e larger water-energy framework. An example is
the optimisation of renewg ongpmicrogrid to serve desalination plants in microgrids
with the help of ML [1
wastewater treatment isart of the target of the circular economy [10]. The second use is
to secure smart grigisig
injection attacks,

Finally, MM jal ‘intelligence contribute to supply chain management more broadly.
Al-enhanced analytics are useful to improve forecasting, optimize
communication throughout a complex supply chain [14]. In the same vein,

L has been used on digital supply chains, enhancing the speed of arriving

GapsYgibegrating Machine Learning across the desalination supply chain

Although it is advancing fast, studies of ML in desalination are predominantly plant-based.
Recent literature is massively geared towards enhancing operations in desalination plants to
include membranes, pretreatment, and brine control [19]. Much less is paid to the supply chain
level problems like logistics of raw water intake or chemical supply [18].

The use of ML to enhance the management of spare parts in desalination processes is also not
a well-researched area. In one study, it has been noted that supply breaks are likely to cause
expensive downturns meaning that predictive supply chain models could help in alleviating the
risks [30]. Likewise, chemical delivery logistics has not received a significant amount of research
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on the topic of ML optimisation, although they have an obvious impact on the reliability of
operations [12].

Digital models that replicate the entire desalination supply chain remain rare. Current research
indicates that digital twins can accelerate end-to-end processes and evaluate interventions, which
mitigate risks and enhance efficiency [28]. Nevertheless, the applications are now still in their
immature phase of implementation and additional studies are required to bring them mainstream
[29].

Application of renewable energy as an addition to desalination supply chains is also something
that should be explored more. Despite the fact that according to some studies, using ML results in
predicting the availability of renewable energy and matching it with desalination activities [27],
this sphere has not yet been developed. According to the researchers, this kind of integr.
help mitigate the reliance on fossil fuels and help to achieve global sustainability goa

Lastly, desalination supply chain opportunities related to circular economy h
realised. Research indicates that ML may be used to optimise the brine valorisafig
recovery, generating more streams of value [25]. Desalination systems wergDIS%Q p
environmental and economic advantages by incorporating these practices %. ply chain
planning [31].

MATERIALS AND METHODS

This section defines the methodology that will be usg machine learning in
desalination supply chains. It specifies the research design S s, model parameters and
evaluation metrics that will be used to determingmsystemgerformance. The methodology
involves empirical information, simulations, apd{literafyre-ba%ed standards with a view of
developing a strong and all-inclusive study o posediframework.

Research design

searcly deSign with a framework that includes machine
linafjon. According to the framework, the supply chain
, pre-treatment, desalination, post-treatment and
olved in every part. Techniques such as demand
ization and dynamic routing are applied to every stage

The method uses an explorat
learning (ML) in several main a
consists of five main phasegg
distribution and waste m4
forecasting, predictive g

efficiently and mgffaSiga @ mgion. Using anomaly detection models in waste management can
help watch out fo ¢ Shemical waste flows.

tages of desalination, starting from the input, through treatment, to the
e ML modules are used. You can see the data being passed between

Raw Water Pre- Desalination Post-

Intake Treatment Treatmen
Process .

*Reinforcement eUnsupervised

eSupervised eSupervised ML

eUnsupervised

ML ML *Membrane ML ML_
*Demand eAnomaly Fouling *Supply Chain -DellverY
Forecast Detection Opt. Anomalies

Figure 1 Conceptual Framework Diagram
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Data sources

The study uses three main types of data as its foundation. At the start, actual operational data
collected from desalination systems is taken such as sensor readings for flow rates, equipment
pressure, the amount of energy needed, the rate of membrane fouling and chemicals added. Second,
to cover issues where data is missing, artificial models are made using both system and agent
approaches to represent changes in the supply chain caused by differences in demand, energy
prices and environmental conditions. Literature-based information is used to assess the starting
point for energy levels, environmental damage and costs for the system, primarily by referring to
articles in respected journals [2][3] Case studies showing actual implementation of desalination
supply chain innovations have been included, as far as possible, to support the assumptigms in this
model [7][8].

In this study, the actual measured operational data were obtained from twg -scale
reverse osmosis desalination plants located in the Gulf region. These facilities f agki
water and provide supply to both municipal and industrial users. Continuou s adin@s were

plants. Parameters included flow rates (m?h), inlet and outlet presg
consumption (kWh/m?), membrane fouling indicators (e.g., differen

The dataset covers a five-year period (2018-2022), withgin (1tervals between 10

g w data underwent a

validation process by plant operators before being shared, anthg#e dataWas further pre-processed

by normalisation, removal of outliers using intergffd filtering, and interpolation of
missing values.

In addition, benchmark data from publis

t factors, allowing us to calibrate
simulation models when plant-level unavailable. For rare events such as
sudden demand spikes or equipment @reakdownSysynthetic data were generated through system

against historical records.
Data from operation o nts in the real world is the main source, with both

real-time. Among other factors, datasets also report

flow rates (cubic meteg 00 gure values (bar or psi) from the membrane sections, energy
consumption in ury att-Rpurs, signs of membrane fouling (e.g., pressure drops) and the
use of chemicals acularits, antiscalants and cleaning agents (measured in milligrams per
liter). Most StsWwere collected every 10 minutes to an hour during the entire time

they were 1 S
ere trimmed out using methods based on interquartile range.

t source is simulation where data are needed if real data are either lacking
mbine several approaches to model system dynamics and agents to display the
e desalination supply chain in many situations. System dynamics models focus on

each oth®r and the agent-based models focus on the connections between independent suppliers,
transporters and storage parties. With synthetic datasets, reinforcement learning models can
investigate situations that are rare or extreme such as sudden changes in energy prices, machine
breakdowns or variations in the quality of raw water which are not often seen in real data. Model
tests were done by comparing results generated by the model (such as production, energy use and
costs,) with published data and earlier records for accuracy.

Figure 2 describes how to bring real-world data along with simulated data into the ML pipeline.
You can see in the left diagram that true data from business operations are given to the ML model
pipeline. Data gaps are filled on the right through simulation results from system dynamics and
agent-based models. All the streams join at the ML development part which involves teaching
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supervised, unsupervised and reinforcement learning models. The results produced are forecasts
of demand, identification of unusual events and better supply chain policies.

@“

Figure 2 Data Pipeline f; Dev¢Clopment

The study counted on three main data : gonal data, simulations and data from the
of high resolution and covers flow rates,
which are essential for making, testing and
validating machine learning mag or cliecking how the system functions. Reinforcement
learning models are trained 2a ptimization policies are explored daily to hourly
Bystem and agent-based models for testing in unique

' both checking data and setting up initial system options. All
e the framework from this study is powerful, lifelike and can
upply chain.

Table 1 Summary of Data Sources

Type Temporal Application in Study
Resolution

Sensor logs: flow rates, 10-min to hourly | Supervised and unsupervised
pressures, energy use, ML model training and
membrane fouling, chemical validation; system performance
dosing benchmarking

Simulated System dynamics outputs, Daily to hourly Reinforcement learning

Data agent-based synthetic (depending on training under rare/extreme
datasets (e.g., extreme simulation) scenarios; exploration of
demand, price fluctuations) system-wide policies

Literature- Published benchmarks, Aggregated Validation of simulated

Based Data | historical reports, prior (annual or models; calibration of baseline
studies on desalination facility-level system parameters
operations averages)

Journal of Sustainable Development of Energy, Water and Environment Systems 8



Mohsen, M., Mohsen, B. Year 2026
Integrating Machine Learning into Desalination Supply... Volume 14, Issue 2, 1140666

Machine Learning techniques applied

There are three classes of ML algorithms, and each is chosen according to its fit with the issues
in the desalination supply chain. Forecasting water demand in the future involves using models
such as random forests and gradient-boosted trees which depend on previous water use, how the
seasons work and climate data. Clustering and autoencoders are two unsupervised learning
methods that help find unusual activities, for example in the equipment or supply chain which
could signal that something is wrong. Agents in supply chains are trained with reinforcement
learning to take the best decisions in chemical orders, energy management and route selection by
trying to maximize their rewards. Shown in Figure 3 is the deployment of an ML project. Data is

delivered to the ML models which then create useful outputs for the operational parts o system.
The operation system uses the intelligence data to decide on planning supplies, u: gy,
from

upkeep and delivery goals. The model is retrained and improved with the help
the performance metrics (using a feedback loop).

Historical + Real-Time Data Inputs \Q

ML Models: |

-Supervised (Forecasting)

-Unsupervised (Anomaly Detection)

-Reinforcement (Optimization)

Operational Decision System:

(Demand Planning, Energy, Scheduling,
Maintenance Scheduling, Distribution)

System Performance Metrics
(Energy, Cost, Recovery, Carbon Footprint)

A o W4

Feedback + Model Refinement

N

Deployment (data, models, feedback loop)

Figur

od meters

eldcting certain model parameters with care, the study built its machine learning (ML)
framework to ensure good integration in the desalination supply chain. Setting up each ML
application—supervised, unsupervised and reinforcement—to work with the company’s
unique operations and data was managed separately. The important architectures, input features,
hyperparameters and calibration approaches are listed in Table 2.

In supervised learning, water use data from previous years (five years) was considered
every day, alongside climate (temperature, rainfall and humidity), different types of water use
(by sectors such as residential, industrial and agricultural) and specific calendar days (time of
year, holidays). For the Gradient Boosting Regression Trees (GBRT), 500 estimators, a
learning rate of 0.05 and a maximum tree depth of 6 were used and early stopping was placed
after 20 rounds without progress. CNN models with different hyperparameters were tested

Journal of Sustainable Development of Energy, Water and Environment Systems 9



using 5-fold cross-validation on a sample that split training data 80% and validation data 20%
was.

A schematic of the GBRT framework is presented in Figure 4 to illustrate the data flow
from inputs to outputs. Historical demand, climate variables, sectoral consumption and
calendar effects serve as inputs. These are processed by the GBRT ensemble to produce daily
demand forecasts with associated 95% confidence intervals. This complements the
hyperparameters summarized in Table 2 by visually clarifying how model inputs are structured
and how outputs are generated.

To do unsupervised learning, models were built with sensor data that was collected at 10-
minute intervals for an entire year (flow, pressure, turbidity, energy). Three encoding/decoding
layers (containing 128, 64 and 32 neurons) together with ReLU activation were traf®d using

A Markov Decision Process (MDP) was applied to the supply chain fo

D
demand and the working status of equipment. Each Deep Q-Network (D \% 1sted of two
JRp

128-neuron hidden layers and used an e-greedy policy with ¢ startinf€ a ing reduced

to 0.1 during the first 10,000 episodes. Learning was set at 0.0 as set§o 0.95, the replay
< 000 steps.

were shared along with 95%

buffer size was 50,000 and updating the target network was d

Before analyzing, min-max normalization and outli
filtering were used on the input data. Model performaf
included in training, called holdout test sets and_findin®

confidence intervals from bootstrap resampling o run

Table 2 Summary o chi earpdn® Model Parameters
ML Application iteCture | Hyperparameters | Evaluation
Technique Area & Model Setup
Type
Supervised radient 500 estimators, 80:20 train-
Learning Boosting learning rate 0.05, | validation
Regression max depth 6, early | split, 5-fold
Trees stopping (20 Cross-
cH (GBRT) rounds) validation
Unsupervised 12 months | Autoencoder | ReLU activation, Threshold
Learning sensor data | neural MSE loss, anomaly | calibrated on
(10-min networks threshold: 95th holdout test
intervals) | (128-64-32 percentile set
layers)
Daily Deep Q- g-greedy (¢ 1—0.1 | Performance
MDP Network over 10k episodes), | from
Optimization | states: (DQN), 2 learning rate 0.001, | simulated
inventory, | hidden layers | y=0.95, memory episodes,
energy, (128) 50k, target update | reward
demand 1k maximization
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Historical Demand
(Time-series)
Forecasted Water Demand
Climate Data (m?/day)
(Temperature, Rainfall,
Humidity)

Gradient Boosted
Regression Trees (GBRT)
Model

Sectoral Demand
(Residential, Industrial,
Agricultural)

Prediction Error Bounds
(95% Cl +)

Calendar Effects
(Seasonality, Holidays)

Figure 4 Structure of the GBRT model showing inputs and oufuts V

Evaluation metrics
Several main factors are measured to assess h
works. How much energy is used is tracked 1
of fresh water that is produced. A compari
chemicals, labor and maintenance) an
records. Water recovery rates show h
which is an important efficiency caRure. An
on COsz-equivalent emissions,
managed, and waste handli
which using ML encoura
can see in Figure 5t
important performan :
the starting poin

aropoSed ML-enhanced supply chain
s each year for every cubic meter
een total operating costs (energy,

1ginal water is turned into product water
ease in carbon footprint is calculated based
ing H@w changes in energy sources, how things are

tion. Collectively, they help assess the ways in
and adaptability in desalination supply chains. You

. By looking at many factors, the system compares gains over
check and reports the level of confidence in the results.

Performance Indicators . 3 .
Multi-dimensional
Evaluated

ML Model Outputs Evaluation
P Energy Consumption (kWh/m?3) e e T
ML Model Outputs Cost Savings (USD/day or System Met.rics

Anomaly Detection Flags USD/m?3)

o Sensitivity Analysis under
Optimized Supply Water Recovery Rate (%) Scenarios

Decisions . .
Carbon Footprint Reduction Confidence Intervals from
(COze) Bootstraps

Figure 5 Evaluation Metrics Framework
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The essential evaluation metrics used to check the outcome of the machine learning—
enhanced desalination supply chain are explained in Table 3. One of the indicators used is
energy consumption, expressed in kilowatt-hours per cubic meter (kWh/m?®). This gives a
primary insight into how operations efficiency relates to the performance of other firms in the
industry. The economic benefit from using machine learning for improving how operations use
energy, chemicals and require maintenance is cost savings expressed per day or per cubic meter.
Water recovery rate shows the percentage of total input water that becomes usable product
water, allowing assessment of progress. So, the last important point is analyzing carbon
footprint reduction, using kilograms of CO:-equivalents each day or cubic meter, since it tells
us about the effect of the improved operations on the environment, mainly g@garding
sustainability and cutting down emissions. All these metrics offer an efficient frafgewark to
assess how effective the machine learning applications would be on technica ¢ and
environmental aspects.

Table 3 Summary of Evaluation Metrics

Metric Definition Unit ation

Energy Consumption | Energy used per cubic meter of | kWh/ig 3y against

(EC) freshwater produced (reported as " fverages; assess
mean £ SD) 1Cy improvements

Water Recovery Rate | Percentage of input water {casure system

(WRR) converted into usable prodys performance and efficiency
water (reported with 95% CIHE)

Carbon Footprint COz-equivalent emissiQff Assess environmental

Factor (CFF) cubic meter of 4r
produced (reportegd
SD)

Operating Costs Reduction

c/m® | impact; align with
sustainability goals

USD/m?® | Quantify economic benefit
or % of ML integration

Downtime system is % Assess operational
operation reliability improvements
+ SD)

RESULTS ANIRA

#nd discusses the results of the machine learning models used on the
lyAchain framework. The findings point out the accuracy of prediction,
ofmance and sustainability benefits realized by the supervised, unsupervised,

Model outcomes

The machine learning (ML) models showed excellent quantitative results in each supply
chain task. The mean absolute percentage error (MAPE) for the supervised learning model on
the holdout test set was 4.8% + 0.6% (95% CI), which is much better than the results from the
baseline statistical models (MAPE ~9.5% + 1.1%). An area under the receiver operating
characteristic curve (AUC-ROC) of 0.92 + 0.02 was obtained, showing the effectiveness of the
model in catching early signs of faults in the sensors. Additional validation of the supervised
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learning results was performed via 5-fold cross-validation, where MAPE values ranged
between 4.6% and 5.2% across folds.

When using RL optimization, supply chain costs were reduced by 14.2% more than when
using static scheduling policies. Across 10,000 simulated episodes, the mean cost reduction
was 14.2% with a standard deviation of 1.8%, indicating consistent performance across
different operational scenarios.

Figure 6 through Figure 8 compare the results: Figure 6 shows forecasted versus actual
demand over a sample week with error bands representing 95% prediction intervals; Figure 7
shows true positives against false positives for identifying anomalies with error bars denoting
variability across validation runs; and Figure 8 displays how reinforcement learning saves more
money than the baseline, with mean values and standard deviations included for ¢ pollcy
type. The outcomes suggest that the models achieved better results than expec ach
examined area.

13600

mmm  Actual Demand (m3/day) —e— Percent Error (%) - 2.5
Predicted Demand (m3/day)
13400 I
13200} | =2.0
= 13000 9
k= -15 5
:E’ 12800} §
[ - [ —4
© [T}
g o
g 12600} -109
12400
-0.5
12200
12000 S 3 3\ y Y m m 0.0
2 2 2 2 2 2
oob’b Qe;'vb S <8 & R o“b
W A \\\eb & <
Figure 6 Forecasted Wover a sample week. The shaded region shows 95%
WtcWals around the forecasted values.
A,

W True Positive Rate (TPR)
mmm  False Positive Rate (FPR)

/Af )
Positive Rate

0.1 0.2 0.3 0.4 0.5
Threshold

Figure 7 True positive vs. false positive rates for anomaly detection. Error bars indicate variability
across validation folds (mean + standard deviation)

Journal of Sustainable Development of Energy, Water and Environment Systems 13



Mohsen, M., Mohsen, B. Year 2026
Integrating Machine Learning into Desalination Supply... Volume 14, Issue 2, 1140666

mmm Baseline Cost (USD) —$— Savings (%) - 15.0

| W RL-Optimized Cost (USD)

250000
-14.5
200000 | -14.0
= -13.5%
g 150000 | e TS”
- =
[ -
© v
100000 | -12.5
-12.0
50000 |
11.5

0-2,000 2,000-5,000 5,000-10,000
Simulation Episode Range
Figure 8 Comparison of baseline, optimized cost, and savings. Err@ bars Xgpresefft standard
deviation across 10,000 simulation epi

proposed models were
that GBRT, autoencoders, and
, eans, PCA, and heuristic
obustness for desalination supply

To validate the superiority of the proposed ML ap
benchmarked against conventional methods. Tablggg sho
DQN consistently outperformed Random F
approaches across all evaluation metrics, co
chain applications.

e

Table 4 Performance comparison pos8&g Ma8ithe Learning models against conventional

techmdues

Application Proposed ML, Bens Performanc | Results (mean | Best

Area Model - h e Metric = SD) Performer
Demand orest | MAPE (%) GBRT: 4.8 + GBRT
Forecasting adfer Artificial 0.6 RF: 6.2 +
- al Network 0.9 ANN: 7.1
+1.1
Anomaly k-means AUC-ROC Autoencoder: | Autoencod
Detecti ised | clustering, PCA 0.92 £0.02k- |er
means: 0.84 +
0.03 PCA:
0.86 +0.04
Deep Q- Rule-based Cost Savings | DQN: 14.2 + DQN
Op Network static (%) 1.8 Rule-
(DQN, scheduling, based: 6.5 +
reinforcement | heuristic 1.2 Heuristic:
learning) optimisation 81+14

To further validate the explanatory and predictive performance of the proposed models,
additional statistical indicators (MSE, RMSE, R?) were computed. Table 5 shows that the
proposed GBRT, autoencoder, and DQN models consistently achieved lower error values and
higher explanatory power than conventional alternatives, confirming their robustness in
desalination supply chain applications.
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Table 5 Performance comparison of Machine Learning models based on Mean Squared Error,
Root Mean Squared Error, and Coefficient of Determination

Application Area Model MSE RMSE | R*> | Best Performer
Demand Forecasting GBRT 1.8 x 10* 134 0.96 v
Random Forest 3.4 x10* 184 0.91
(RF)
ANN 4.0 x 10* 200 0.89
Anomaly Detection Autoencoder 0.008 0.089 | 0.94 v/
PCA 0.015 0.122 | 0.87
k-means 0.019 0.138 | 0.82
Supply Chain Optimisation | DQN 2.5 x10° 50 0.95
Rule-based 6.7 x 103 82 0.
Heuristic 5.4 x10° 74 0.

In addition to comparative percentages, absolute values of key
reported in Table 6. The ML-enhanced system demonstrates |
higher water recovery rate (WRR), and reduced carbon {0
significant cost savings and reduced downtime, confi t
improves technical, economic, and environmental perfo

Table 6 Baseline and Machine Learning-en

C

ed

dicators are

e nsumption (EC),
fate

CFF), alongside
t roposed framework

ce indicators for desalination supply

Indicator -Enhanced System | Improvement
(mean * SD)

Energy Consumption 3.5+ 0.15 kWh/m? 110.3%

(EC)

Water Recovery Rate 48% + 1.8% 1 14.3%

(WRR)

Carbon Footprint Facig g COze/m® | 1.77 £0.10 kg CO2e/m? 19.2%

(CFF)

Operating Costs 0% (reference) 85.8% + 1.8% 1 14.2%

Downtime 100% (reference) 82% £ 3% 1 18%

est benefits from ML were seen in parts of the business that had higher levels of
and inconsistency. Predictive maintenance that uses anomaly detection decreased

f downtime by 18% =+ 3%, extended the life of the membranes and increased the
time the plant could operate. Reinforcement learning—assisted routing resulted in a 12% + 2%
improvement in delivery efficiency when demand conditions were unpredictable. Demand
forecasting using supervised learning improved the match between when items are produced
and when they are consumed, avoiding pointless energy use and cutting overproduction by 9%
+ 1.5%. Table 7 summarizes the information on the main improvements in different domains
and where ML had its biggest effect.
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Table 7 Summary of Supply Chain Improvements

Area Improvement Achieved
Predictive 18% = 3% reduction in downtime due to early detection of anomalies and
Maintenance proactive interventions
Distribution 12% + 2% improvement in routing efficiency, reducing transport time and
Efficiency energy use

Demand Matching 9% £ 1.5% reduction in overproduction, aligning supply more closely with
actual demand patterns

Overall Cost 14.2% + 1.8% reduction in total operational costs through dynamic supply
Savings chain optimization
Sensitivity analysis
To check the models’ strength, a detailed sensitivity analysis was carrié ree
important situations: (1) high demand created by events such as extremq ges in

energy prices (+25% or -25%) and (3) breakdowns of important equipm¢ Was pumps or
membrane units. For all demand situations, the supervised mod
prediction results and just saw a 1.0% =+ 0.3% rise in MAPE dumgg
Because of their adaptive nature, the reinforcement learning «@ . ned costs, modified

N

score of 0.90 + 0.01 for every tested failure caseglhese ¥ults, reported with confidence
intervals and standard deviations, indicate that MI4ghod¢ mthstand challenging situations
with statistically validated robustness.

Sustainability implications

Using machine learning in des tion helpdg to create real sustainability benefits. Power
requirements were cut by 11% pé due to improved scheduling and lower levels of
d by 6% because there were better use of water

ghint analyses, emissions dropped by 9.5% on average

pproaches to integrate renewable energy. Reduced
operational costs by .2% meant the company benefited both financially and
for the environ adopting ML in desalination waste treatment is not only a
modernization ef 8 helps build better and greener water systems.

and less waste. According
when RL models wea

by 4.8% = 0.6% compared to baseline models (9.5% = 1.1%), operators can plan
better, prevent overproduction (9% =+ 1.5%) and save money and energy. The
system, which had an AUC-ROC score of 0.92 + 0.02, detected early signs of equipment stress
or failure, helping to reduce unexpected downtime by 18% =+ 3%.

RL models were able to save on average 14.2% + 1.8% of operating costs over simulated
supply chain episodes, when put against traditional static, rule-based methods. It was clear
when there were changes in energy prices and demand patterns that the RL models became
more efficient and effective by changing the routes, ordering chemicals and adjusting energy
use. The narrow confidence intervals indicate that these cost savings are not isolated outcomes
but robust across multiple simulation runs.



For policymakers, these studies reveal how to build stronger, flexible and greener water
systems. Desalination systems enhanced by predictive and adaptive ML can manage twists in
demand, swings in energy prices and environmental challenges, achieving water security,
reducing carbon emissions (9.5% = 1.2% CO:e savings) and keeping costs down.

With this research, supply chain management for water systems moves from individual
plant improvements to a wider, complete system approach. Previously, scientists have looked
at ways to enhance individual areas of the desalination process such as membranes or energy
recovery and these efforts often led to modest increases in efficiency (around 5-7% on average).
Rather, the study shows that adopting these three types of learning models throughout the
desalination chain brings about a 12—18% + 2% rise in distribution efficiency, a 9-14% + 2%
decrease in costs and an over 9% + 1.5% fall in the system’s carbon footprint.

The findings from the study are very interesting, but some important problem&ghomld be
noted. The training data includes five years of actual operation and simulated 0,000
trial episodes which may cause biases. Rare, extreme events or unfamiliar op
be well handled which could impact how well the model can be used g
models are built for stable facility configurations, and the results show a
of 0.92 for anomaly detection and a 4.8% MAPE for demand pred i I situations.
Even so, the performance might weaken if the models are ] a different
structure or geography. While applying the Al in practice sa 4. 2% osts, this wasn’t

Al methods which might
gcuracy, compared to current
ns of smart sensor data every 10
minutes would adapt to new operationgd §ituash ckly. Integrating forecasting of
renewable energy systems, for example i
help the company reduce its carbon f
hybrid energy solutions. Similarly i ircular economy projects like brine mining,
collecting nutrients or recycli can §nhance benefits from ML, going beyond just
making operations more efficje

CONCLUSIONS

een established that using machine learning (ML) leads to
efits in different areas of desalination supply. Using supervised
learning folfprodiBg mand (resulting in an error of 4.8%), unsupervised learning for
spotting qgoRlems an AUC-ROC of 0.92) and reinforcement learning for streamlining
the s ivering 14.2% savings), the research found that ML can enhance how

co tion and how sustainably they work. All these gains give actual results such as
s do e by 18%, greatly improved logistics efficiency by 12% and nearly 10% fewer
cardgn enfisstfons when compared with the previous methods.
A as performing well, ML also shows the ability to transform how desalination

systems are set up, managed and governed. Through data-driven, flexible and predictive
management, ML can assist desalination operators when handling the difficulties of increasing
water demand, fluctuating energy costs and environmental issues. ML makes it possible for
policymakers to make water security better and sustainability goals easier to achieve, by
syncing desalination strategies with international and national environmental targets.
According to these findings, several useful suggestions are made. Try first to incorporate
predictive ML into areas like predicting demand and preventing maintenance issues, because
they have the most available data. If you want to use reinforcement learning for improving your
supply chain’s efficiency, you should invest in better simulation and system integration, as it
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will give major returns in the end. Policymakers should motivate digital growth, back up open
data practices and provide money for employees so the change to ML has a better chance of
succeeding. Also, future desalination projects should use modern technology such as sensors
and advanced IT, so they can make better use of automated, flexible supply chains.

Overall, this research shows that machine learning can greatly benefit desalination supply
chains by making them more effective, in less danger of failure and more eco-friendly which
is an important step toward better water management.

NOMENCLATURE

Greek letters
€ The parameter epsilon [Between 0 and 1]
Y Discount Factor

Subscripts and superscripts
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Abbreviations
ML Machine Learning
IT Information Technology
MAPE Mean Absolute Percentage Error
RL Reinforcement learning
Al Artificial Intelligence
GBRT Gradient Boosting Regressid Tre
DON Deep Q-Network

atin a

AUC-ROC Area Under the Receiger O racteristic Curve
MDP Markov Decision Pi@cess
CNN Convolutional ralf\Netw
RO Reverse Osm
MSF
MED
UAE
USD
ReLLU
MSE
RMSE
R? Cogfficient of Determination
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