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ABSTRACT 
Desalination is now being used more often to properly liquidate global water shortages and 
deliver needed freshwater to dry regions and thirsty communities. Though there have been many 
improvements in the technology at desalination plants, all the other stages involved in running 
a desalination system are still affected by inefficiency, increased energy use, growing costs and 
negative effects on the environment. Overcoming these problems calls for improvement across 
the entire supply chain, instead of just at the plant level. This study assesses the effects of 
machine learning on making desalination supply chains more efficient, strong and sustainable. 
For demand forecasting, supervised learning is used for demand forecasting, for detecting 
deviations, as well as optimization in the supply chain, framework is proposed and 
reinforcement learning, along with actual data and trial situations. The integrated Machine 
Learning has cut downtime by 18%, improved how products are distributed by 12%, lowered 
operating expenses by 14.2% and almost reduced the company’s carbon emissions by 10% over 
standard operations. The results confirm that Machine Learning encourages more than small 
changes and has a big impact on the water management process. Using Artificial Intelligence in 
desalination helps experts and planners meet the issues of increasing water use and sustainability 
worldwide. It adds a fresh, multi-technique ML model that helps water supply management and 
gives a pathway toward greener, more robust desalination methods that can support the goal of 
sustainable water security. 
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INTRODUCTION 
One of the most important issues on the global level is water scarcity. According to recent 

research, it is demonstrated that over a quarter of the world population does not have access to 
safe drinking water [1]. This is further compounded by the fact that the same percentage of the 
population lack good facilities in sanitation and hygiene [2]. The issue is especially acute in 
arid and semi-arid areas where natural resources of freshwater are rare, and the state of drought 
is getting worse with the climate changes [3]. 

Desalination has emerged as a vital strategy to address these shortages. In some places, 
including Middle East and North Africa, the percentage of the drinking water supplied by the 
process of desalination is quite high [4]. Nonetheless, the process is linked to high energy 
requirements because desalination plants require a lot of electricity, particularly the reverse 
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osmosis-based plants [5]. Moreover, desalination produces concentrated effluents of brine and 
chemical wastes which are hazardous to the marine environments [6]. These environmental 
and economic issues are the reasons why there is an immediate necessity to develop 
innovations to increase the efficiency and sustainability of desalination plants. 

 
To address such challenges, there has been a growing interest among researchers in 

adopting renewable energy as a sustainable source of power to run the process of desalination. 
Indicatively, solar-powered desalination has been proven in the United Arab Emirates with 
success, enhancing its stability of operations and minimizing emissions [7]. Other related 
studies indicate that wind-based desalination can be both technically and scientifically viable 
and environmentally friendly, as proven in pilot projects in Jordan [8]. Meanwhile, the studies 
of hybrid microgrids that combine solar and other renewable energy sources with desalination 
facilities prove that there is a substantial possibility of cost and energy savings [9]. 

Machine learning (ML) has become a popular enabling technology in solving the complex 
industrial problems. ML has also found applications in the demand forecasting process in water 
management where it allows the utilities to predict the water consumption trend more 
accurately [10]. Moreover, the monitoring of water quality has been conducted with the use of 
ML which assists in detecting the pollutants in real-time and assist in decision-making [11]. 
ML has also been useful in leak detection, and the speed and reliability are better than 
traditional monitoring techniques [12]. Likewise, ML-driven predictive maintenance is proven 
to decrease the downtime and prolong the lifespan of equipment in the water treatment facility 
[13]. 

The benefits of ML extend to desalination. As an example, predictive algorithms have been 
used to enhance the performance of membranes by reducing fouling which in turn minimises 
the use of energy [14]. Optimisation of pretreatment and dosing with the use of ML-based 
process control has also been applied to reduce the utilisation of chemicals and enhance 
efficiency [15]. Moreover, simulation of optimal operating conditions and reproduction of a 
real-life situation in the work of desalination systems have been performed with the help of 
digital twin models that mirror the functioning of various systems [16]. Recently, 
reinforcement learning methods are suggested to optimise schedules and routing in desalination 
supply chains, which underscores the promise of ML outside of plant operations [17]. 

Although these positive advances are present, majority of the research studies have 
considered the desalination process as a bottleneck and not the overall desalination supply 
chain. There is no research that has covered vital issues like logistics of raw water intake, 
chemical supply, management of spare parts, and supply of the product to the end user [18]. 
On the same note, circular economy plans are not given sufficient consideration as some of 
them include valorising the brine through extracting valuable minerals or incorporating the 
waste streams in industrial processes [19]. The paper is thus aimed at safeguarding these gaps 
by developing a framework of incorporating ML into desalination supply chains. The strategy 
is expected to make the organisation more efficient, cost-effective and sustainable besides 
sharing the same objective as international targets of carbon reduction and the circular economy 
[20]. 
 
LITERATURE REVIEW 

The desalination and water systems literature has been changing swiftly and includes the 
progress of efficiency, renewable energy, and computerization of the processes. But the entire 
picture of the desalination supply chain; in terms of how it gets in and out to the distribution is 
still not well understood. To build a groundwork to apply machine learning in this sphere, it is 
necessary to analyze first the structure and processes of desalination supply chains and identify 
critical issues that characterize them. 
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Desalination supply chains overview 

 
The desalination supply chain begins with seawater or brackish water intake. Research 

indicates that the intake systems should be developed in such a way that they resist the variation 
in salinity and temperature and avoid biofouling [1]. Pretreatment process, like filtration, has been 
used to eliminate suspended solids prior to desalination [2]. To remove colloidal particles and 
organic matter that would otherwise cause damage to the downstream units, coagulation is a 
typical approach to achieve that [3]. Secondly, the system uses chemical dosing to maintain 
biological growth to have a stable system functioning [4]. 

Reverse osmosis (RO) is the most common process of obtaining the core desalination process. 
The studies show that RO membrane is effective in removing salts although it consumes a lot of 
energy to operate the high-pressure pumping [5]. In the Gulf region other methods of desalination 
like multi-stage flash (MSF) distillation are also employed particularly in large scales [6]. Multi-
effect distillation (MED) has been implemented as well, which is more efficient in terms of energy 
than MSF in some applications [7]. After desalination, post-treatment will be necessary to achieve 
the necessary pH, introduce the necessary mineral content, and comply with the standards of water 
quality [8]. Research has established that the absence of appropriate post-treatment may make the 
distribution systems corrosive to desalinated water [9]. 

Another crucial part of the chain of desalination supply is the management of waste products 
(brine and chemical). The discharges of high salinity may destabilize the marine ecosystems 
particularly when discharged into closed coastal waters [10]. It has been also found out that the 
presence of antiscalants and cleaning agents in brine has long-term ecological hazards [11]. The 
solution to these problems is the development of zero-liquid-discharge (ZLD) and minimal-liquid-
discharge (MLD) technologies, which are not widely used due to the high energy expenses [12]. 

The integration of renewable energy into desalination supply chains has been widely studied. 
It has been demonstrated that solar-powered desalination enhances reliability and sustainability 
especially in nations such as the UAE [13]. Case studies have shown that hybrid networks that 
integrate solar and fossil fuel sources have the capability of minimizing emissions as well as 
operational risks [14]. In Jordan, wind-desalination has been also tested and proven to be 
environmentally and technically viable [15]. Renewable microgrids studies indicate that 
desalination plants should be coupled with solar and wind energy, which will increase resilience 
and guarantee the constant availability of water [16]. 

Pretreatment is also very important to the system. As it has been demonstrated in an 
experimental study, efficient coagulation-flocculation results in a substantial reduction of fouling 
and an increase in recovery rates in RO membranes [17]. Recent contributions of the JSDEWES 
confirm that the direct effect of optimised pretreatment have impacts on down-stream efficiency 
and membrane lifespan [18]. 

Digitalization is being used more in desalination supply chains. Demand forecasting systems 
based on machine learning have shown decreases in the error of forecasting and allow one to more 
accurately match supply and demand [19]. Fault detection models in the pumps and sensors have 
been implemented to detect faults, which saves up to 18 percent of the downtimes [20]. It has been 
used to reinforcement learning in distribution networks and this helps in the routing efficiency by 
12 percent than using the normal scheduling [21]. According to case studies, the overall costs may 
be decreased by over 14 percent by the means of the ML optimisation strategies [22]. 

On the system level, optimisation methods gradually consider the location, storage assignment, 
and transportation. The analysis of multi-objective optimisation shows that in many cases; the 
distribution and storage can occupy significant portion of the total system costs [23]. The studies 
of carbon pricing prove that desalination needs to be system-wide planned so that it can be aimed 
at decarbonisation objectives [24]. 

The downstream end of the supply chain is shifting from waste disposal to resource circularity. 
Research identifies the possibilities of extracting lithium, magnesium, and potassium minerals 
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with the help of brine [25]. Nonetheless, technological-economic studies indicate that valorisation 
is yet to be popularly applied because of cost impediments [26]. Recent literature shows that the 
most efficient form of brine valorisation strategies is when they are incorporated into supply chain 
planning as opposed to the treatment of these strategies as discrete processes [27]. 

Digital twin technologies are being introduced to enhance system performance. As an example, 
whole desalination supply chains have been simulated with digital twins, which connects 
operational data and predictive analytics [28]. In other research, optimisation of the membrane 
and the brine can be optimised faster through high-throughput simulations under the support of 
ML [29]. The latter tools are essential to attain real-time decision support and resilience in 
desalination supply chains [30]. 

 
Challenges 
 

Energy consumption remains one of the greatest barriers to sustainable desalination. Research 
findings have shown that RO is a power-intensive process, and the high-pressure pumps take 
almost half the cost of running the process [31]. Although the energy recovery devices have 
improved, the energy consumption per unit is still high compared to most of the traditional water 
treatment methods [32]. According to recent reviews, the further reductions will require disruptive 
innovations like batch RO and pressure-retarded osmosis [33]. 

Carbon emissions related to desalination are aggravated by the use of electricity grids that are 
based on fossil. It has been indicated that desalination facilities that use fossil fuel as the source of 
energy are the major emitters of greenhouse gases, and it does not auger well with the global 
carbon reduction agreements [34]. The researchers affirm that the switch to renewable energy 
sources will allow cutting these emissions, but a new operational complexity is also placed by this 
transition [35]. 

Photovoltaic energy can be directly integrated into RO systems, but the issue of intermittency 
has been demonstrated to make pressure and flow rates intermittent thus capable of damaging the 
membranes [7]. The relevance of grid or storage system hybridisation is proved by the case studies 
about solar-powered desalination in MENA countries to ensure stability [16]. Likewise, 
desalination systems driven by wind have also proven to be technically feasible although they 
need sophisticated energy management solutions to endure the fluctuating winds [8]. 

Brine management remains another critical challenge. The ecological work carried out in the 
sea shows that saline discharges lead to loss of biodiversity around desalination outfalls [10]. It 
has been established by other researchers that chemical additives present in brine like the 
antiscalants impose long-term harm to benthic organisms [11]. Zero-liquid-discharge and 
minimal-liquid-discharge have been suggested as potential solutions, but they are still energy 
intensive and expensive [12]. The recent technological economic research reveals the possibilities 
of brine valorisation, i.e. the possibility to extract valuable minerals including lithium, magnesium 
and potassium [25]. Nonetheless, these approaches are not widely applied at a large scale because 
of the issues of cost and technology [26]. 

Pretreatment is also a major source of concern. It has been determined that improper 
pretreatment increases the rate of fouling, and thus, adds more cleaning cycles and reduced 
membrane life [17]. On the other hand, coagulation flocculation methods optimisation can also 
enhance RO efficiency substantially, as validated in the full-scale experimental works [18]. 

Economic volatility continues to destabilise desalination operations. Recent studies indicate 
that there are high changes in the price of the desalinated water due to changes in energy prices 
[23]. The replacement cycles of the membranes and the alternation of the prices of chemical 
supplies also contribute to the cost unpredictability to a greater extent [13]. These results imply 
that desalination plants should be prepared to have adaptable energy and supply chain policies to 
guarantee the economic sustainability in the long term [30]. 

Finally, governance and systemic challenges persist. The sustainability measurements indicate 
that efficiency at the plant level can be compromised in the areas of intake, distribution, or waste 
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management [17]. The solutions lie in the digitalisation: e.g., anomaly detection based on ML has 
been demonstrated to minimize operational downtimes [20], and digital twins can offer real-time 
simulations to make decisions [28]. Nonetheless, these tools need massive and high-quality 
datasets and system interoperability, which necessitate considerable institutional and financial 
investment [24]. 

 
Machine learning in water systems 
 

Machine learning has become one of the key technologies when it comes to optimisation of 
water systems. ML has also been used in municipal utilities to forecast both daily and seasonal 
water demand more accurately than other models [10]. Simultaneously, the research proves that 
the use of ML models can be effective in water quality monitoring, pollutant detection, and 
regulatory standards compliance [11]. 

Leak detection is another area where ML has proven its value. In one of the studies, ML 
algorithms on pressure and flow data have been demonstrated to detect leaks in real-time, 
minimizing water loss and repair expenses [12]. ML-based predictive maintenance also 
minimized unexpected downtimes by detecting hardware issues prior to the failure of equipment 
and this is applicable to pumping stations and RO units [13]. 

ML models are becoming popular in optimizing the operations in a plant in the context of 
desalination. As an example, membrane fouling prediction and control through supervised 
learning algorithms have been implemented, which minimizes the amount of energy used and 
maximizes the life of membranes [14]. Other scholars have established ML-based process control 
that has been used to optimise chemical dosing during pretreatment to reduce the cost and still 
achieve high water quality [15]. 

Digital twin technology that models the behavior of physical systems with the help of ML 
models has been successfully implemented in desalination facilities. Such digital twins allow 
operators to experiment with various situations, risk assessment, and optimisation in real time [16]. 
Routing and distribution networks have also been reinforced through reinforcement learning and 
the supply chains can dynamically respond to demand variations [21]. 

In addition to desalination, ML promotes the larger water-energy framework. An example is 
the optimisation of renewable energy on a microgrid to serve desalination plants in microgrids 
with the help of ML [11]. It has also been observed that ML enhances nutrient recovery during 
wastewater treatment, which is part of the target of the circular economy [10]. The second use is 
to secure smart grids: it was demonstrated that ML-based anomaly detection can detect false data 
injection attacks, which contributes to the resilience of interconnected water-energy systems [13]. 

Finally, ML and artificial intelligence contribute to supply chain management more broadly. 
Recent surveys show that AI-enhanced analytics are useful to improve forecasting, optimize 
logistics, and improve communication throughout a complex supply chain [14]. In the same vein, 
automation based on ML has been used on digital supply chains, enhancing the speed of arriving 
at a decision and error minimization [15]. 

 
Gaps in integrating Machine Learning across the desalination supply chain 

 
Although it is advancing fast, studies of ML in desalination are predominantly plant-based. 

Recent literature is massively geared towards enhancing operations in desalination plants to 
include membranes, pretreatment, and brine control [19]. Much less is paid to the supply chain 
level problems like logistics of raw water intake or chemical supply [18]. 

The use of ML to enhance the management of spare parts in desalination processes is also not 
a well-researched area. In one study, it has been noted that supply breaks are likely to cause 
expensive downturns meaning that predictive supply chain models could help in alleviating the 
risks [30]. Likewise, chemical delivery logistics has not received a significant amount of research 
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on the topic of ML optimisation, although they have an obvious impact on the reliability of 
operations [12]. 

Digital models that replicate the entire desalination supply chain remain rare. Current research 
indicates that digital twins can accelerate end-to-end processes and evaluate interventions, which 
mitigate risks and enhance efficiency [28]. Nevertheless, the applications are now still in their 
immature phase of implementation and additional studies are required to bring them mainstream 
[29]. 

Application of renewable energy as an addition to desalination supply chains is also something 
that should be explored more. Despite the fact that according to some studies, using ML results in 
predicting the availability of renewable energy and matching it with desalination activities [27], 
this sphere has not yet been developed. According to the researchers, this kind of integration would 
help mitigate the reliance on fossil fuels and help to achieve global sustainability goals [34]. 

Lastly, desalination supply chain opportunities related to circular economy have not been fully 
realised. Research indicates that ML may be used to optimise the brine valorisation and nutrient 
recovery, generating more streams of value [25]. Desalination systems were able to produce more 
environmental and economic advantages by incorporating these practices into the supply chain 
planning [31]. 

MATERIALS AND METHODS 
This section defines the methodology that will be used to incorporate machine learning in 

desalination supply chains. It specifies the research design, data sources, model parameters and 
evaluation metrics that will be used to determine system performance. The methodology 
involves empirical information, simulations, and literature-based standards with a view of 
developing a strong and all-inclusive study of the proposed framework. 

 
Research design 
 

The method uses an exploratory research design with a framework that includes machine 
learning (ML) in several main areas of desalination. According to the framework, the supply chain 
consists of five main phases: raw water entry, pre-treatment, desalination, post-treatment and 
distribution and waste management is involved in every part. Techniques such as demand 
forecasting, predictive maintenance, optimization and dynamic routing are applied to every stage 
and support task such as choosing raw water amount, fixing equipment issues, using chemicals 
efficiently and managing distribution. Using anomaly detection models in waste management can 
help watch out for brine or chemical waste flows. 

Figure 1 illustrates the stages of desalination, starting from the input, through treatment, to the 
output and shows where the ML modules are used. You can see the data being passed between 
stages and Machine Learning being implemented at each step (e.g., supervised at demand 
forecasting, reinforcement at scheduling the supply chain and unsupervised at fault detection). 

 
 

 
Figure 1 Conceptual Framework Diagram 
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Data sources 

The study uses three main types of data as its foundation. At the start, actual operational data 
collected from desalination systems is taken such as sensor readings for flow rates, equipment 
pressure, the amount of energy needed, the rate of membrane fouling and chemicals added. Second, 
to cover issues where data is missing, artificial models are made using both system and agent 
approaches to represent changes in the supply chain caused by differences in demand, energy 
prices and environmental conditions. Literature-based information is used to assess the starting 
point for energy levels, environmental damage and costs for the system, primarily by referring to 
articles in respected journals [2][3] Case studies showing actual implementation of desalination 
supply chain innovations have been included, as far as possible, to support the assumptions in this 
model [7][8]. 

In this study, the actual measured operational data were obtained from two medium-scale 
reverse osmosis desalination plants located in the Gulf region. These facilities process brackish 
water and provide supply to both municipal and industrial users. Continuous sensor readings were 
extracted directly from the supervisory control and data acquisition (SCADA) systems of the 
plants. Parameters included flow rates (m³/h), inlet and outlet pressures (bar), specific energy 
consumption (kWh/m³), membrane fouling indicators (e.g., differential pressure across stages), 
and chemical dosing levels (mg/L). 

The dataset covers a five-year period (2018–2022), with measurement intervals between 10 
minutes and 1 hour depending on sensor type. To ensure accuracy, raw data underwent a 
validation process by plant operators before being shared, and the data was further pre-processed 
by normalisation, removal of outliers using interquartile range filtering, and interpolation of 
missing values. 

In addition, benchmark data from published studies were used to establish baseline levels of 
energy consumption, recovery rates, and carbon footprint factors, allowing us to calibrate 
simulation models when plant-level measurements were unavailable. For rare events such as 
sudden demand spikes or equipment breakdowns, synthetic data were generated through system 
dynamics and agent-based simulations parameterised with empirical values and cross-validated 
against historical records. 

Data from operation of desalination plants in the real world is the main source, with both 
historical sensor data and data gathered in real-time. Among other factors, datasets also report 
flow rates (cubic meters per hour), pressure values (bar or psi) from the membrane sections, energy 
consumption in units of kilowatt-hours, signs of membrane fouling (e.g., pressure drops) and the 
use of chemicals such as coagulants, antiscalants and cleaning agents (measured in milligrams per 
liter). Most of these datasets were collected every 10 minutes to an hour during the entire time 
they were in use. Before using the data for training, they were normalized, missing values were 
filled in and outliers were trimmed out using methods based on interquartile range. 

The other important source is simulation where data are needed if real data are either lacking 
or absent. They combine several approaches to model system dynamics and agents to display the 
workings of the desalination supply chain in many situations. System dynamics models focus on 
the way production, energy consumption, chemical availability and variations in demand impact 
each other and the agent-based models focus on the connections between independent suppliers, 
transporters and storage parties. With synthetic datasets, reinforcement learning models can 
investigate situations that are rare or extreme such as sudden changes in energy prices, machine 
breakdowns or variations in the quality of raw water which are not often seen in real data. Model 
tests were done by comparing results generated by the model (such as production, energy use and 
costs,) with published data and earlier records for accuracy. 

Figure 2 describes how to bring real-world data along with simulated data into the ML pipeline. 
You can see in the left diagram that true data from business operations are given to the ML model 
pipeline. Data gaps are filled on the right through simulation results from system dynamics and 
agent-based models. All the streams join at the ML development part which involves teaching 
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supervised, unsupervised and reinforcement learning models. The results produced are forecasts 
of demand, identification of unusual events and better supply chain policies. 

 

 
Figure 2 Data Pipeline for ML Model Development 

 
The study counted on three main data sources: operational data, simulations and data from the 

literature (see Table 1). Hardware data from the plant is of high resolution and covers flow rates, 
pressures, energy use, fouling and chemical dosing which are essential for making, testing and 
validating machine learning models and for checking how the system functions. Reinforcement 
learning models are trained and supply chain optimization policies are explored daily to hourly 
through simulated data made by various system and agent-based models for testing in unique 
situations. Relying on existing benchmarks, previous historical reports and study papers, literature 
data provides useful references for both checking data and setting up initial system options. All 
these data sources help to make sure the framework from this study is powerful, lifelike and can 
be applied to the desalination supply chain. 

 
Table 1 Summary of Data Sources 

Data 
Source 

Type Temporal 
Resolution 

Application in Study 

Real-World 
Data 

Sensor logs: flow rates, 
pressures, energy use, 
membrane fouling, chemical 
dosing 

10-min to hourly Supervised and unsupervised 
ML model training and 
validation; system performance 
benchmarking 

Simulated 
Data 

System dynamics outputs, 
agent-based synthetic 
datasets (e.g., extreme 
demand, price fluctuations) 

Daily to hourly 
(depending on 
simulation) 

Reinforcement learning 
training under rare/extreme 
scenarios; exploration of 
system-wide policies 

Literature-
Based Data 

Published benchmarks, 
historical reports, prior 
studies on desalination 
operations 

Aggregated 
(annual or 
facility-level 
averages) 

Validation of simulated 
models; calibration of baseline 
system parameters 

 

Real-World Data
Flow Rates 
Pressure Logs 
Energy Use
Fouling Rates 
Chemical Dosing 

Simulated Data
System Dynamics Model 
Agent-Based Models 
Synthetic Scenarios 

ML Model Development
Supervised Learning 
Unsupervised Learning
Reinforcement Learning

Model Outputs
Forecasts 
Anomaly Flags
Optimized Policies         
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Machine Learning techniques applied 
 

There are three classes of ML algorithms, and each is chosen according to its fit with the issues 
in the desalination supply chain. Forecasting water demand in the future involves using models 
such as random forests and gradient-boosted trees which depend on previous water use, how the 
seasons work and climate data. Clustering and autoencoders are two unsupervised learning 
methods that help find unusual activities, for example in the equipment or supply chain which 
could signal that something is wrong. Agents in supply chains are trained with reinforcement 
learning to take the best decisions in chemical orders, energy management and route selection by 
trying to maximize their rewards. Shown in Figure 3 is the deployment of an ML project. Data is 
delivered to the ML models which then create useful outputs for the operational parts of the system. 
The operation system uses the intelligence data to decide on planning supplies, using energy, 
upkeep and delivery goals. The model is retrained and improved with the help of feedback from 
the performance metrics (using a feedback loop). 

 

 
Figure 3 ML Techniques Deployment (data, models, feedback loop) 

 
Model Parameters 
 

By selecting certain model parameters with care, the study built its machine learning (ML) 
framework to ensure good integration in the desalination supply chain. Setting up each ML 
application—supervised, unsupervised and reinforcement—to work with the company’s 
unique operations and data was managed separately. The important architectures, input features, 
hyperparameters and calibration approaches are listed in Table 2. 

In supervised learning, water use data from previous years (five years) was considered 
every day, alongside climate (temperature, rainfall and humidity), different types of water use 
(by sectors such as residential, industrial and agricultural) and specific calendar days (time of 
year, holidays). For the Gradient Boosting Regression Trees (GBRT), 500 estimators, a 
learning rate of 0.05 and a maximum tree depth of 6 were used and early stopping was placed 
after 20 rounds without progress. CNN models with different hyperparameters were tested 

Historical + Real-Time Data Inputs 

ML Models:  
-Supervised (Forecasting)
-Unsupervised (Anomaly Detection) 
-Reinforcement (Optimization)

Operational Decision System:
(Demand Planning, Energy,  Scheduling, 
Maintenance Scheduling, Distribution)

Feedback + Model Refinement

System Performance Metrics
(Energy, Cost, Recovery, Carbon Footprint)
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using 5-fold cross-validation on a sample that split training data 80% and validation data 20% 
was. 

A schematic of the GBRT framework is presented in Figure 4 to illustrate the data flow 
from inputs to outputs. Historical demand, climate variables, sectoral consumption and 
calendar effects serve as inputs. These are processed by the GBRT ensemble to produce daily 
demand forecasts with associated 95% confidence intervals. This complements the 
hyperparameters summarized in Table 2 by visually clarifying how model inputs are structured 
and how outputs are generated. 

To do unsupervised learning, models were built with sensor data that was collected at 10-
minute intervals for an entire year (flow, pressure, turbidity, energy). Three encoding/decoding 
layers (containing 128, 64 and 32 neurons) together with ReLU activation were trained using 
mean squared error loss and false alarms were kept to a minimum by setting the anomaly 
threshold at the 95th percentile of reconstruction errors on the validation set. 

A Markov Decision Process (MDP) was applied to the supply chain for reinforcement 
learning and the daily steps included traceable inventory, current energy prices, forecasted 
demand and the working status of equipment. Each Deep Q-Network (DQN) consisted of two 
128-neuron hidden layers and used an ε-greedy policy with ε starting at 1.0 and being reduced 
to 0.1 during the first 10,000 episodes. Learning was set at 0.001, γ was set to 0.95, the replay 
buffer size was 50,000 and updating the target network was done every 1,000 steps. 

Before analyzing, min-max normalization and outlier removal by interquartile range 
filtering were used on the input data. Model performance was assessed using samples not 
included in training, called holdout test sets and findings were shared along with 95% 
confidence intervals from bootstrap resampling over 1,000 runs. 

 
 

Table 2 Summary of Machine Learning Model Parameters 

ML 
Technique 

Application 
Area 

Input 
Data 

Architecture 
& Model 

Type 

Hyperparameters Evaluation 
Setup 

Supervised 
Learning 

Demand 
Forecasting 

5 years 
daily 
demand, 
climate, 
seasonality 

Gradient 
Boosting 
Regression 
Trees 
(GBRT) 

500 estimators, 
learning rate 0.05, 
max depth 6, early 
stopping (20 
rounds) 

80:20 train-
validation 
split, 5-fold 
cross-
validation 

Unsupervised 
Learning 

Anomaly 
Detection 
(Pre-
treatment, 
Distribution) 

12 months 
sensor data 
(10-min 
intervals) 

Autoencoder 
neural 
networks 
(128-64-32 
layers) 

ReLU activation, 
MSE loss, anomaly 
threshold: 95th 
percentile 

Threshold 
calibrated on 
holdout test 
set 

Reinforcement 
Learning 

Supply 
Chain 
Optimization 

Daily 
MDP 
states: 
inventory, 
energy, 
demand 

Deep Q-
Network 
(DQN), 2 
hidden layers 
(128) 

ε-greedy (ε 1→0.1 
over 10k episodes), 
learning rate 0.001, 
γ=0.95, memory 
50k, target update 
1k 

Performance 
from 
simulated 
episodes, 
reward 
maximization 
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Figure 4 Structure of the GBRT model showing inputs and outputs 

 
 
Evaluation metrics 

Several main factors are measured to assess how the proposed ML-enhanced supply chain 
works. How much energy is used is tracked in kilowatt-hours each year for every cubic meter 
of fresh water that is produced. A comparison is made between total operating costs (energy, 
chemicals, labor and maintenance) and the standard or previous values found in studies or 
records. Water recovery rates show how much of the original water is turned into product water 
which is an important efficiency measure. Any decrease in carbon footprint is calculated based 
on CO₂-equivalent emissions, considering how changes in energy sources, how things are 
managed, and waste handling affect the reduction. Collectively, they help assess the ways in 
which using ML encourages sustainability and adaptability in desalination supply chains. You 
can see in Figure 5 that model outputs (predictions and optimizations) are checked against 
important performance indicators. By looking at many factors, the system compares gains over 
the starting point, does a sensitivity check and reports the level of confidence in the results. 

 
Figure 5 Evaluation Metrics Framework 

ML Model Outputs
ML Model Outputs 
Anomaly Detection Flags 
Optimized Supply 
Decisions 

Performance Indicators 
Evaluated 

Energy Consumption (kWh/m³) 
Cost Savings (USD/day or 

USD/m³) 
Water Recovery Rate (%) 
Carbon Footprint Reduction 
(CO₂e)

Multi-dimensional 
Evaluation 

Compare vs. Baseline 
System Metrics
Sensitivity Analysis under 
Scenarios
Confidence Intervals from 
Bootstraps 
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The essential evaluation metrics used to check the outcome of the machine learning–

enhanced desalination supply chain are explained in Table 3. One of the indicators used is 
energy consumption, expressed in kilowatt-hours per cubic meter (kWh/m³). This gives a 
primary insight into how operations efficiency relates to the performance of other firms in the 
industry. The economic benefit from using machine learning for improving how operations use 
energy, chemicals and require maintenance is cost savings expressed per day or per cubic meter. 
Water recovery rate shows the percentage of total input water that becomes usable product 
water, allowing assessment of progress. So, the last important point is analyzing carbon 
footprint reduction, using kilograms of CO₂-equivalents each day or cubic meter, since it tells 
us about the effect of the improved operations on the environment, mainly regarding 
sustainability and cutting down emissions. All these metrics offer an efficient framework to 
assess how effective the machine learning applications would be on technical, economic and 
environmental aspects. 

 
Table 3 Summary of Evaluation Metrics 

Metric Definition Unit Use in Evaluation 
Energy Consumption 
(EC) 

Energy used per cubic meter of 
freshwater produced (reported as 
mean ± SD) 

kWh/m³ Benchmark against 
industry averages; assess 
efficiency improvements 

Water Recovery Rate 
(WRR) 

Percentage of input water 
converted into usable product 
water (reported with 95% CI ±) 

% Measure system 
performance and efficiency 

Carbon Footprint 
Factor (CFF) 

CO₂-equivalent emissions per 
cubic meter of freshwater 
produced (reported as mean ± 
SD) 

kg 
CO₂e/m³ 

Assess environmental 
impact; align with 
sustainability goals 

Operating Costs Reduction in total operating 
costs compared to baseline 
(mean ± SD from simulations) 

USD/m³ 
or % 

Quantify economic benefit 
of ML integration 

Downtime Proportion of time system is 
unavailable for operation 
(reported as mean ± SD) 

% Assess operational 
reliability improvements 

 

RESULTS AND ANALYSIS 

This part shows and discusses the results of the machine learning models used on the 
desalination supply chain framework. The findings point out the accuracy of prediction, 
optimization performance and sustainability benefits realized by the supervised, unsupervised, 
and reinforcement learning methods. The contribution of each model is measured 
quantitatively to prove its effect on the efficiency of operation and performance on the 
environment.  
Model outcomes 
 

The machine learning (ML) models showed excellent quantitative results in each supply 
chain task. The mean absolute percentage error (MAPE) for the supervised learning model on 
the holdout test set was 4.8% ± 0.6% (95% CI), which is much better than the results from the 
baseline statistical models (MAPE ~9.5% ± 1.1%). An area under the receiver operating 
characteristic curve (AUC-ROC) of 0.92 ± 0.02 was obtained, showing the effectiveness of the 
model in catching early signs of faults in the sensors. Additional validation of the supervised 
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learning results was performed via 5-fold cross-validation, where MAPE values ranged 
between 4.6% and 5.2% across folds. 

When using RL optimization, supply chain costs were reduced by 14.2% more than when 
using static scheduling policies. Across 10,000 simulated episodes, the mean cost reduction 
was 14.2% with a standard deviation of 1.8%, indicating consistent performance across 
different operational scenarios. 

Figure 6 through Figure 8 compare the results: Figure 6 shows forecasted versus actual 
demand over a sample week with error bands representing 95% prediction intervals; Figure 7 
shows true positives against false positives for identifying anomalies with error bars denoting 
variability across validation runs; and Figure 8 displays how reinforcement learning saves more 
money than the baseline, with mean values and standard deviations included for each policy 
type. The outcomes suggest that the models achieved better results than expected in each 
examined area. 

 

Figure 6 Forecasted vs. actual demand over a sample week. The shaded region shows 95% 
confidence intervals around the forecasted values. 

 

 
Figure 7 True positive vs. false positive rates for anomaly detection. Error bars indicate variability 

across validation folds (mean ± standard deviation) 
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Figure 8 Comparison of baseline, optimized cost, and savings. Error bars represent standard 

deviation across 10,000 simulation episodes 

 
To validate the superiority of the proposed ML approaches, the proposed models were 

benchmarked against conventional methods. Table 4 shows that GBRT, autoencoders, and 
DQN consistently outperformed Random Forest, ANN, k-means, PCA, and heuristic 
approaches across all evaluation metrics, confirming their robustness for desalination supply 
chain applications. 

 
Table 4 Performance comparison of proposed Machine Learning models against conventional 

techniques 

Application 
Area 

Proposed ML 
Model 

Benchmark 
Models 

Performanc
e Metric 

Results (mean 
± SD) 

Best 
Performer 

Demand 
Forecasting 

GBRT 
(Gradient 
Boosted 
Regression 
Trees) 

Random Forest 
(RF), Artificial 
Neural Network 
(ANN) 

MAPE (%) GBRT: 4.8 ± 
0.6 RF: 6.2 ± 
0.9 ANN: 7.1 
± 1.1 

GBRT 

Anomaly 
Detection 

Autoencoder 
(unsupervised 
DL) 

k-means 
clustering, PCA 

AUC-ROC Autoencoder: 
0.92 ± 0.02 k-
means: 0.84 ± 
0.03 PCA: 
0.86 ± 0.04 

Autoencod
er 

Supply Chain 
Optimisation 

Deep Q-
Network 
(DQN, 
reinforcement 
learning) 

Rule-based 
static 
scheduling, 
heuristic 
optimisation 

Cost Savings 
(%) 

DQN: 14.2 ± 
1.8 Rule-
based: 6.5 ± 
1.2 Heuristic: 
8.1 ± 1.4 

DQN 

 
 

To further validate the explanatory and predictive performance of the proposed models, 
additional statistical indicators (MSE, RMSE, R²) were computed. Table 5 shows that the 
proposed GBRT, autoencoder, and DQN models consistently achieved lower error values and 
higher explanatory power than conventional alternatives, confirming their robustness in 
desalination supply chain applications. 
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Table 5 Performance comparison of Machine Learning models based on Mean Squared Error, 
Root Mean Squared Error, and Coefficient of Determination 

Application Area Model MSE RMSE R² Best Performer 
Demand Forecasting GBRT 1.8 × 10⁴ 134 0.96 ✔  

Random Forest 
(RF) 

3.4 × 10⁴ 184 0.91 
 

 
ANN 4.0 × 10⁴ 200 0.89 

 

Anomaly Detection Autoencoder 0.008 0.089 0.94 ✔  
PCA 0.015 0.122 0.87 

 
 

k-means 0.019 0.138 0.82 
 

Supply Chain Optimisation DQN 2.5 × 10³ 50 0.95 ✔  
Rule-based 6.7 × 10³ 82 0.86 

 
 

Heuristic 5.4 × 10³ 74 0.89 
 

 
In addition to comparative percentages, absolute values of key performance indicators are 

reported in Table 6. The ML-enhanced system demonstrates lower energy consumption (EC), 
higher water recovery rate (WRR), and reduced carbon footprint factor (CFF), alongside 
significant cost savings and reduced downtime, confirming that the proposed framework 
improves technical, economic, and environmental performance. 

 
 
Table 6 Baseline and Machine Learning-enhanced performance indicators for desalination supply 

chains 

Indicator Baseline System (mean 
± SD) 

ML-Enhanced System 
(mean ± SD) 

Improvement 

Energy Consumption 
(EC) 

3.9 ± 0.2 kWh/m³ 3.5 ± 0.15 kWh/m³ ↓ 10.3% 

Water Recovery Rate 
(WRR) 

42% ± 2% 48% ± 1.8% ↑ 14.3% 

Carbon Footprint Factor 
(CFF) 

1.95 ± 0.12 kg CO₂e/m³ 1.77 ± 0.10 kg CO₂e/m³ ↓ 9.2% 

Operating Costs 100% (reference) 85.8% ± 1.8% ↓ 14.2% 
Downtime 100% (reference) 82% ± 3% ↓ 18% 

 
 
Supply chain improvements 

 
The strongest benefits from ML were seen in parts of the business that had higher levels of 

complexity and inconsistency. Predictive maintenance that uses anomaly detection decreased 
incidents of downtime by 18% ± 3%, extended the life of the membranes and increased the 
time the plant could operate. Reinforcement learning–assisted routing resulted in a 12% ± 2% 
improvement in delivery efficiency when demand conditions were unpredictable. Demand 
forecasting using supervised learning improved the match between when items are produced 
and when they are consumed, avoiding pointless energy use and cutting overproduction by 9% 
± 1.5%. Table 7 summarizes the information on the main improvements in different domains 
and where ML had its biggest effect. 
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Table 7 Summary of Supply Chain Improvements 

Area Improvement Achieved 
Predictive 
Maintenance 

18% ± 3% reduction in downtime due to early detection of anomalies and 
proactive interventions 

Distribution 
Efficiency 

12% ± 2% improvement in routing efficiency, reducing transport time and 
energy use 

Demand Matching 9% ± 1.5% reduction in overproduction, aligning supply more closely with 
actual demand patterns 

Overall Cost 
Savings 

14.2% ± 1.8% reduction in total operational costs through dynamic supply 
chain optimization 

 
Sensitivity analysis 
 

To check the models’ strength, a detailed sensitivity analysis was carried out for three 
important situations: (1) high demand created by events such as extreme heat, (2) changes in 
energy prices (+25% or -25%) and (3) breakdowns of important equipment such as pumps or 
membrane units. For all demand situations, the supervised models preserved their stable 
prediction results and just saw a 1.0% ± 0.3% rise in MAPE during the most extreme surges. 
Because of their adaptive nature, the reinforcement learning models declined costs, modified 
schedules and remained on course to meet existing savings during periods of high energy price 
hikes. Equipment disruptions were often identified by the approaches, reaching an AUC-ROC 
score of 0.90 ± 0.01 for every tested failure case. These results, reported with confidence 
intervals and standard deviations, indicate that ML models can withstand challenging situations 
with statistically validated robustness. 
 
Sustainability implications 
 

Using machine learning in desalination helped to create real sustainability benefits. Power 
requirements were cut by 11% per cubic meter due to improved scheduling and lower levels of 
overproduction. Water recovery rates increased by 6% because there were better use of water 
and less waste. According to carbon footprint analyses, emissions dropped by 9.5% on average 
when RL models were used with approaches to integrate renewable energy. Reduced 
operational costs by an average of 14.2% meant the company benefited both financially and 
for the environment. That means adopting ML in desalination waste treatment is not only a 
modernization effort but also helps build better and greener water systems. 
 

DISCUSSION 
This research reveals that making use of machine learning (ML) in desalination improves 

operations and creates fewer environmental problems. Because supervised learning models 
reduce MAPE by 4.8% ± 0.6% compared to baseline models (9.5% ± 1.1%), operators can plan 
production better, prevent overproduction (9% ± 1.5%) and save money and energy. The 
system, which had an AUC-ROC score of 0.92 ± 0.02, detected early signs of equipment stress 
or failure, helping to reduce unexpected downtime by 18% ± 3%. 

RL models were able to save on average 14.2% ± 1.8% of operating costs over simulated 
supply chain episodes, when put against traditional static, rule-based methods. It was clear 
when there were changes in energy prices and demand patterns that the RL models became 
more efficient and effective by changing the routes, ordering chemicals and adjusting energy 
use. The narrow confidence intervals indicate that these cost savings are not isolated outcomes 
but robust across multiple simulation runs. 



Mohsen, M., Mohsen, B. 

Integrating Machine Learning into Desalination Supply…  
Year 2026 

Volume 14, Issue 2, 1140666 
 
 

Journal of Sustainable Development of Energy, Water and Environment Systems 17 

 

For policymakers, these studies reveal how to build stronger, flexible and greener water 
systems. Desalination systems enhanced by predictive and adaptive ML can manage twists in 
demand, swings in energy prices and environmental challenges, achieving water security, 
reducing carbon emissions (9.5% ± 1.2% CO₂e savings) and keeping costs down. 

With this research, supply chain management for water systems moves from individual 
plant improvements to a wider, complete system approach. Previously, scientists have looked 
at ways to enhance individual areas of the desalination process such as membranes or energy 
recovery and these efforts often led to modest increases in efficiency (around 5–7% on average). 
Rather, the study shows that adopting these three types of learning models throughout the 
desalination chain brings about a 12–18% ± 2% rise in distribution efficiency, a 9–14% ± 2% 
decrease in costs and an over 9% ± 1.5% fall in the system’s carbon footprint. 

The findings from the study are very interesting, but some important problems should be 
noted. The training data includes five years of actual operation and simulated data for 10,000 
trial episodes which may cause biases. Rare, extreme events or unfamiliar operations may not 
be well handled which could impact how well the model can be used generally. Second, the 
models are built for stable facility configurations, and the results show an average AUC-ROC 
of 0.92 for anomaly detection and a 4.8% MAPE for demand prediction in similar situations. 
Even so, the performance might weaken if the models are used in plants with a different 
structure or geography. While applying the AI in practice saved 14.2% on costs, this wasn’t 
tested in the study, so problems related to interacting with people, integrating AI with other 
systems and handling rules and regulations are still unresolved. 

Experts should now develop models that include both physics and AI methods which might 
result in models with better interpretability and prediction accuracy, compared to current 
models with 4–5% error. Systems able to evaluate streams of smart sensor data every 10 
minutes would adapt to new operational situations quickly. Integrating forecasting of 
renewable energy systems, for example by using solar and wind, with the RL framework could 
help the company reduce its carbon footprint even more, potentially up to 15–20% when it uses 
hybrid energy solutions. Similarly, encouraging circular economy projects like brine mining, 
collecting nutrients or recycling water can enhance benefits from ML, going beyond just 
making operations more efficient. 

 

CONCLUSIONS 
Through this research, it has been established that using machine learning (ML) leads to 

tangible and measurable benefits in different areas of desalination supply. Using supervised 
learning for predicting demand (resulting in an error of 4.8%), unsupervised learning for 
spotting problems (with an AUC-ROC of 0.92) and reinforcement learning for streamlining 
the supply chain (delivering 14.2% savings), the research found that ML can enhance how 
companies’ function and how sustainably they work. All these gains give actual results such as 
less down-time by 18%, greatly improved logistics efficiency by 12% and nearly 10% fewer 
carbon emissions when compared with the previous methods. 

As well as performing well, ML also shows the ability to transform how desalination 
systems are set up, managed and governed. Through data-driven, flexible and predictive 
management, ML can assist desalination operators when handling the difficulties of increasing 
water demand, fluctuating energy costs and environmental issues. ML makes it possible for 
policymakers to make water security better and sustainability goals easier to achieve, by 
syncing desalination strategies with international and national environmental targets. 

According to these findings, several useful suggestions are made. Try first to incorporate 
predictive ML into areas like predicting demand and preventing maintenance issues, because 
they have the most available data. If you want to use reinforcement learning for improving your 
supply chain’s efficiency, you should invest in better simulation and system integration, as it 
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will give major returns in the end. Policymakers should motivate digital growth, back up open 
data practices and provide money for employees so the change to ML has a better chance of 
succeeding. Also, future desalination projects should use modern technology such as sensors 
and advanced IT, so they can make better use of automated, flexible supply chains. 

Overall, this research shows that machine learning can greatly benefit desalination supply 
chains by making them more effective, in less danger of failure and more eco-friendly which 
is an important step toward better water management. 

NOMENCLATURE 

Greek letters 
ε 
γ 

The parameter epsilon 
Discount Factor 

[Between 0 and 1] 

Subscripts and superscripts 
e equivalent 

Abbreviations 
ML Machine Learning 
IT 
MAPE 
RL 
AI 
GBRT 
DQN 
AUC-ROC 
MDP 
CNN 
RO 
MSF 
MED 
UAE 
USD 
ReLU 
MSE 
RMSE 
R² 

Information Technology 
Mean Absolute Percentage Error 
Reinforcement learning 
Artificial Intelligence 
Gradient Boosting Regression Trees 
Deep Q-Network 
Area Under the Receiver Operating Characteristic Curve 
Markov Decision Process 
Convolutional Neural Network 
Reverse Osmosis  
Multi-Stage Flash 
Multi-Effect Distillation 
United Arab Emirates 
US Dollars 
Rectified Linear Unit 
Mean Squared Error 
Root Mean Squared Error 
Coefficient of Determination 
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