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ABSTRACT 
Mangroves are imperative to coastal systems, providing security against extreme weather events 
by acting as natural barriers. These halophytic plants play a crucial role in mitigating global 
warming and act as an invaluable resource for consumption. Despite being resilient, mangroves 
exhibit sensitivity to climatic (e.g., land surface temperature, salinity, etc.) and artificial factors 
(e.g., land use land cover changes). Numerous past studies recorded the relationship between 
mangrove growth & development with the constituents above, but those were mostly restricted 
to visual observation/pattern recognition and single regression analysis. Also, evaluating the 
simultaneous exploration of multiple aspects influencing mangrove evolution was not 
prominent. Therefore, the main objective of this study was to focus on the impact of both salinity 
and land surface temperature on mangrove biomass by the joint venture of remote sensing, 
geographic information system and several machine learning algorithms. The study considered 
appropriate mangrove site selections by preprocessing the acquired satellite images. Also, 
mathematical computations were performed on the raster layers to determine the previously 
mentioned natural aspects. Finally, several types of regression analysis were conducted to 
delineate potential patterns governing mangrove vegetation health under temperature and 
salinity. Mangroves’ relationship with temperature and salinity showed an insignificant 
coefficient of determination. However, the generated response curves postulated that high 
mangrove biomass could be achieved for a specific temperature window (30−33 °C), and 
vegetation health could deteriorate at increasing salinity. Overall, the combined effects of 
surface temperature and salinity on mangrove vegetation were significantly more (i.e., 
maximum coefficient of determination of 0.31) than individual components alone. 

KEYWORDS 
Mangroves, Land surface temperature, Normalised difference vegetation index, Carbon stock, 
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INTRODUCTION 
Mangroves are essential environmental ingredients, ensuring the stability of the coastal area. 

They continue to provide protection against natural and adverse phenomena. They function as 
a vast sink for carbon sequestration and storage, ensuring sustainability. These wetland 
vegetations are also important for socio-economic development. Despite mangroves providing 
shelter and being a source of raw materials for the consumption of humans and other aquatic 
habitats, they have shown vulnerability against some climatic factors and Land Use Land Cover 
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(LULC) changes [1]. Mangroves continue to get threatened by the rapid development of coastal 
areas (e.g., aquaculture, industries, etc.) and direct wastewater discharge into the ocean 
containing fertilisers, heavy metals, microplastics, etc., further contributing to the inertia in 
their growth [2]. Despite mangroves decreasing globally, many developed countries, including 
United Arab Emirates (UAE), are keen to conserve these natural resources by employing 
plantation and public awareness to revitalise their status [3]. 

One study investigated the response of different mangrove species to chilly weather 
temperatures [4]. Results indicated that the damaging effects of winter temperature 
substantially varied per geographic location and mangrove species. Also, foreign mangrove 
species were less tolerant to low temperatures than native mangroves. Another study 
investigated the expansion and contraction of mangroves in the wetland of the Mississippi 
River (Louisiana, USA) [5]. Historical air temperature data (1983−2014) and coastal wetland 
coverage data (1978−2011) were gathered to identify the connection between climate and 
mangrove changes. Mangrove trees’ density was found to be controlled by extreme air 
temperatures below −6.3 to −7.6 °C. Mangroves that were located near oceans were protected 
against low temperatures due to the presence of water and saturated soil. The frequent 
occurrence and intensity of freezing events governed the expansion and contraction of freeze-
sensitive mangroves in coastal areas. Lovelock et al. reviewed the effects of climate change on 
mangrove forests [6]. This study showed that low temperatures can deter mangrove growth 
and influence its metabolic process of photosynthesis and respiration. Another study provided 
a global analysis of mangrove canopy height based on temperature and other factors [7]. 
Multivariate regression analysis showed that the mean temperature of a mangrove forest could 
explain 74% of the latitudinal trends in maximum mangrove canopy height. The model’s 
results were used to evaluate the impact of temperature on the spatial variability of mangroves. 
This finding was consistent with previous studies that have shown mangrove structures (i.e., 
height and biomass) are influenced by temperature. Further analysis revealed that temperature 
had explained 53% of the global mangrove canopy height trend. Another study showed that 
climatic factors are associated with decreasing mangrove species composition and evolution. 
Furthermore, mangroves’ composition can be influenced by winter temperature based on 
regression and ANOVA analyses [8].  

Salinity can potentially influence other environmental parameters governing the growth of 
mangroves [9]. For one study, an estimation of the change in salinity with biomass of a 
stenoecious mangrove species (Heritiera fomes) was conducted by correlating with the dataset 
from 2004 to 2015. Results indicated that biomass for the mangrove species was higher due to 
lower salinity levels and vice versa. Carbon stock in the Sundarbans mangrove forest’s above 
and below ground was assessed by considering different vegetation types and salinity zones 
[10]. Freshwater zones depicted the highest carbon stock (336.09 ± 14.74 Mg C/ha), followed 
by moderate and strong salinity zones. However, salinity enhanced the below-ground carbon 
stock capacity: 57.2% below-ground carbon stock was found in the freshwater zone, whereas 
71.9% below-ground carbon stock was found in a strong salinity zone. Another extensive 
research in the same coastal zone was carried out to evaluate mangrove species distribution 
based on salinity level at the Sundarban forest [11]. Different mangrove species were found in 
different salinity zones across Sundarbans and possessed different tolerance levels to changes 
in salinity. It was concluded that the spatial distribution of the indicator species under the 
research could contribute to the knowledge of mangrove adaptive nature and variations of 
plants obtained in areas with different salinity levels. Another study assessed mangrove species’ 
growth under varying salinity degrees. In high-salinity environments, mangrove seedlings 
exhibited very low survival rates and other physical characteristics. Alternatively, low salinity 
promoted promising growth of the mangrove plants for 4−5 months. However, further growth 
and sustenance were observed when the plants were introduced to low to moderate salinity 
treatment after 15−20 weeks. This research provided an important insight into mangroves’ 
requirement for varying degrees of salinity, achieving their fullest development [12]. 



Raihan, A., Ali, T., et al. 
Spatiotemporal Analysis of the Impacts of Climate Change…  

Year 2023 
Volume 11, Issue 3, 1110460 

 

Journal of Sustainable Development of Energy, Water and Environment Systems 3 

Mangrove expansion can be hindered by the effects of tidal inundation [13]. Rapid 
propagation of mangroves was possible when water level and wind speed were reduced. It was 
concluded that interactions between mangrove growth and external drivers (i.e., tidal waves, 
erosion, etc.) were important to protect the aquatic plant species at such events. Another study 
analysed intertidal wetland areas and mangrove proportions [14]. Numerous intertidal regimes 
at 184 NSW (New South Wales) estuaries were investigated, obtaining different combinations 
of average frequency, duration, and depth of inundation. It was observed that estuary 
proportion, morphology and entrance condition influenced the tidal aspect inside it. 
Concurrently, the specifications mentioned above of estuary governed the proportion of 
mangroves. 

Satellite images can be useful in understanding the factors affecting the mangrove growth 
pattern. A previous study utilised Landsat imageries throughout 1990-2020 to detect the 
changes in Land Use Land Cover (LULC) and mangrove wetlands [15]. Noticeable LULC 
alteration was detected over the period. Primarily, aquaculture increased concerning the 
reduction in agriculture, and this phenomenon was further validated by the Normalised 
Difference Vegetation Index (NDVI) and Normalised Difference Water Index (NDWI). It was 
also stressed that the shift in human preference towards aquaculture negatively affected the 
mangrove ecosystem, and appropriate measures should be taken to preserve mangrove forests. 
A similar study was done on the LULC change with Land Surface Temperature (LST) and 
NDVI using Landsat images and found declination in the sizes of mangrove forests from 2000 
and onwards [16]. Also, the NDVI values for the mangrove areas were reduced. LST has shown 
a negative correlation with NDVI for mangroves, indicating that non-vegetated land increased 
during the study period.  

Maryantika and Lin (2017) used multi-temporal Landsat images to assess land use and 
mangrove distribution for the Sidoarjo district of East Java from 1995−2015 [17]. It was 
observed that cropland and bare land were repurposed as built-up areas. Conversely, mangrove 
and other wetland areas changed to cropland resulting from economic activities. A new 
classification scheme for the northern UAE mangrove forests was used by incorporating 
Random Forest (RF), Kernel Logistic Regression (KLR), Native Bayes Tree (NBT) and Image 
Difference (ID) to make accurate mangrove extent monitoring in comparison to traditional 
classifiers (e.g., maximum likelihood) [3]. Also, RF, KLR, NBT and ID algorithms were 
evaluated based on their performance and an image-to-image change detection technique to 
monitor mangroves in the northern UAE was developed. 

GIS and Remote Sensing techniques were used in several other applications. One 
investigation assessed the temporal status of Buyuk Melen Watershed using Landsat images 
collected for 1987, 2001, 2006 and 2010. LULC changes were detected in the study area, along 
with increased water pollution [18]. Another endeavour used Random Forest (RF) algorithm 
to map soil moisture content for irrigation purposes. RF was also pitted against the neural 
network model and turned out superior for this work [19]. A study was conducted on the glacier 
surface of Ampay National Sanctuary using historical Landsat images. Supervised 
classification with normalised snow differential index applied on the satellite images revealed 
that glacier surface decreased yearly with the variations of climatic factors, e.g., increasing 
temperature [20]. Tidal inundation affected mangroves in an unfavourable way [13]. LULC 
classification of mangroves over a specified duration indicated a general fall in mangrove sites 
to be replaced with croplands or other built-up areas [17].  

After numerous literature reviews, it was observed that most previous studies investigated 
the effect(s) of different environmental and anthropogenic parameters influencing mangrove 
vegetation health. Still, their evaluation methods were chiefly based on visual interpretation 
and linear regression. Also, the research mostly considered the effects of the stated parameters 
individually but did not consider their combined influence on mangrove NDVI. The novelties 
of this spatiotemporal investigation lay in the fact that it not only covered the impact of LST 
and salinity on mangrove NDVI separately but also considered their combined influence on 
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mangrove systems by incorporating different levels of analysis arising out of remote sensing 
and GIS. Furthermore, this research attempted to quantitatively correlate LST and salinity with 
mangrove vegetation health (i.e., NDVI) to observe the best relationship in terms of various 
machine learning algorithms (in addition to linear regression) to generate a model to potentially 
predict future changes of mangrove biomass as a response variable against the predictors (i.e., 
LST and salinity). Additionally, this scholarly work attempted to identify special patterns, 
highlighting the relationship between LST−NDVI and salinity−NDVI to look for potential range 
in the explanatory variables that might provide high mangrove biomass under the study area.  

MATERIALS AND METHODS 
To achieve the objectives, the authors describe the location of the mangrove ecosystem in the 

UAE. The section describes satellite image collection, processing and the methodologies for 
developing correlation with different relevant parameters. 

 
Figure 1. UAE mangrove sites 
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Site selection 
There are eleven major mangrove forests in the UAE. Essentially, the UAE mangrove 

ecosystem was broadly divided into two sectors. One resided in Abu Dhabi, and the other in 
Northern UAE. The Abu Dhabi Forest covered 70 km2, with the primary forest being the 
Mangrove National Park which spanned about one-third of the total forest area [21]. The Northern 
UAE mangrove forests were distributed in six areas, including Dubai’s Creek, Khor Fakkan 
mangrove (Gulf of Oman), Ajman’s Creek, Hamriyah’s Creek, Umm Al Quwain and Ras Al 
Khaimah (RAK) Estuaries. The average UAE mangrove trees’ height was about 2.5 m [22]. The 
dominant soils in these areas were porous loamy silt and clay with relatively low permeability. 
These characteristics allow the retaining of seawater within the soil structure [23]. Figure 1 
shows the locations of the UAE mangrove forests.  

Satellite imagery 
Landsat Images were used to study the UAE mangrove forests in 2004, 2010, 2015 and 2020. 

The image acquisition periods were consistent with reducing atmospheric interference effects 
when analysing the relevant parameters to assess mangrove conditions influenced by external 
events. For this study, images were obtained for the summertime (e.g., between June and July) 
with less than 10% cloud cover. Landsat satellite images were primarily chosen because of their 
suitable resolutions and availability of spectral bands to detect and represent topographic changes 
in response to environmental and anthropogenic parameters. Also, these images were freely 
acquired. 

Landsat 7 satellite images were obtained for 2004 and 2010. Finally, Landsat 8 satellite 
covered the periods 2015 and 2020. Landsat 7 had an Enhanced Thematic Mapper (ETM+). 
Landsat 8 carried Operational Land Imager (OLI) and Thermal Infrared Sensors (TIRS) devices. 
Red and Near Infrared (NIR) bands were used for each Landsat satellite to compute NDVI, and a 
thermal band was used to detect LST. Salinity data were obtained by searching relevant literature 
[24] to develop a suitable empirical model with visible and Near Infrared bands’ reflectance 
values. Salinity was represented as electrical conductivity in units of dS/m. 

Radiometric calibration 
Landsat images were radiometrically corrected to eliminate atmospheric interference caused 

by absorption, scattering, etc., of solar radiation by clouds and other airborne particles. The 
correction enabled extracting refined information from the images to perform accurate 
quantitative analysis. This process involved the conversion of raw Digital Numbers (DNs) of 
satellite images to radiance and, ultimately, reflectance. At first, DN values were converted to 
radiance, defined as the energy flux (i.e., irradiant/incident energy) per solid angle, leaving a unit 
surface area in a given direction. 

 
𝐿𝐿𝜆𝜆 = 𝑀𝑀𝐿𝐿 × 𝑄𝑄𝑐𝑐𝑐𝑐𝑐𝑐 + 𝐴𝐴𝐿𝐿  (1) 

 
Where: 𝐿𝐿𝜆𝜆  − spectral radiance at the sensor’s aperture [ W

m2sterμm
], 𝑀𝑀𝐿𝐿  − band-specific 

multiplicative rescaling factor from Landsat image metadata file, 𝐴𝐴𝐿𝐿  − band-specific additive 
rescaling factor from Landsat metadata file, 𝑄𝑄𝑐𝑐𝑐𝑐𝑐𝑐  − quantised and calibrated standard product 
pixel value (DN). 

Then, spectral radiance was converted into Top of Atmosphere (TOA) reflectance: 
 

𝜌𝜌𝑝𝑝 =
𝜋𝜋 × 𝐿𝐿𝜆𝜆 × 𝑑𝑑2

𝐸𝐸𝐸𝐸𝐸𝐸𝑁𝑁𝜆𝜆 × 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑠𝑠
  (2) 
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Where: 𝜌𝜌𝑝𝑝 − TOA reflectance (ratio of the reflected solar energy to incident solar energy), 𝐿𝐿𝜆𝜆 − 
spectral radiance at the sensor’s aperture [ W

m2sterμm
], 𝑑𝑑 − Earth-Sun distance in astronomical units 

(provided in the image metadata file), 𝐸𝐸𝐸𝐸𝐸𝐸𝑁𝑁𝜆𝜆 − mean solar exo-atmospheric irradiance [ W
m2μm

], 
𝜃𝜃𝑠𝑠 − solar zenith angle, i.e., the angle between the sun’s rays and the vertical direction [25]. 

Landsat images band stack and mosaic operations 
After the preprocessing, Landsat images for each considered year were band stacked in the 

order of the band numbers so that different band combinations could be applied to the colour gun 
of the software to effectively visualise and further analyse different features found in the image 
along with making the images vibrant (Figure 2). 

 

 
 

Figure 2. Radiometrically corrected Landsat 8 multi-band raster image of 159 path and 043 row 

Detailed particulars of the images used for the study are provided in Table 1. All the images 
were reprojected into a common Projected Coordinate System (PCS), WGS 1984 UTM Zone 40N. 
The images mentioned below cover the entirety of the UAE. Then, the band stacks for a specific 
year were mosaicked to form a whole image showcasing UAE mangroves in Figure 3. 

 
Table 1. Landsat image acquisition particulars 

No. Satellite name Acquisition year Image path and 
row 

1 Landsat 7 ETM+ 2004, 2010 159043, 160042, 
160043, 161043 2 Landsat 8 OLI & TIRS 2015, 2020 

 

Normalised Difference Vegetation Index computation 
NDVI is one of the spectral indices commonly used to signify the health and extent of 

mangrove vegetation. It is derived from the ratio of several bands found from Landsat satellite(s). 
NIR and Red bands compute NDVI [26]: 
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𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =
𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑁𝑁𝑅𝑅𝑑𝑑
𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑁𝑁𝑅𝑅𝑑𝑑

  (3) 

 
For Landsat 5 and Land Sate 7 satellite images, bands 3 and 4 were considered visible Red 

and NIR. For Landsat 8, bands 4 and 5 were Red and NIR respectively. 

 

Figure 3. Mosaic raster bands for UAE in 2020 

Land surface temperature computation 
Thermal band 6 for Landsat 5 and 7 & 10 TIRS 1 for Landsat 8 had at-sensor spectral 

radiances, which were first converted to effective at-sensor brightness temperatures using the 
formula: 

 

𝑇𝑇 =
K2

𝑙𝑙𝑙𝑙 �K1
𝐿𝐿𝜆𝜆

+ 1�
  (4) 

 
Where: 𝑇𝑇 − effective at-sensor brightness temperature, K2 − calibration constant equal to 2 K, 
K1 − calibration constant equal to 1 W

m2sterμm
, 𝐿𝐿𝜆𝜆 − spectral radiance at the sensor’s aperture 

[ W
m2sterμm

]. 
The spectral radiance represents energy flux (measured in watts) per unit solid angle (1 

steradian), leaving a unit surface area (1 m2) per unit wavelength (1 μm). 
Then, the brightness temperature (i.e., the surface temperature in kelvin) was converted into 

degrees Celsius [26]. 
 
For Landsat 8, LST was computed using multiple steps and formulas. It was obtained using 

band 10 (Thermal Infrared) with 100 m spatial resolution. The top of atmospheric spectral 
radiance was computed from band 10, followed by the radiance conversion to at-sensor 
temperature. After that, the NDVI method was applied for emissivity correction. Finally, LST 
was computed from land surface emissivity [27]. For Landsat 7, the thermal band (i.e., band 
6) was found in both low and high gain. The high gain thermal band was used because it was 
suitable for computing LST for vegetation. Also, for Landsat 8, thermal band 10 was used for 
LST to avoid large calibration uncertainty in thermal band 11. 

Sample locations were chosen within the AOIs covering the mangrove sites in Figure 1 as 
zones. Each zone consisted of 9 pixels with 30 m by 30 m pixel size, resulting in 90 m by 90 
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m zone size respectively. A total of 30 zones for the 11 mangrove forests were finalised. These 
sectors were selected so that each zone covered its representative mangrove biomass and was 
in proximity to the coastal line so that any localised variation of LST and Salinity would impact 
the mangrove biomass condition covered by that zone. Zonal statistics of the yearly variations 
of the parameters could be referred to and documented to examine potential trends.  

Salinity determination 
Salinity throughout the mangrove areas (i.e., 30 zones) was obtained as electrical 

conductivity by referring to an empirical model proposed by Asfaw et al. (2018) with a 
coefficient of determination equalling 0.78. The model used the salinity index (SI) [24]. The 
formulas for soil salinity computation are provided below.  

 
𝐸𝐸𝑁𝑁 = √𝑁𝑁𝐸𝐸𝑁𝑁 + 𝑁𝑁𝑁𝑁𝑁𝑁  (5) 

 
𝐸𝐸𝑆𝑆𝑙𝑙𝑆𝑆𝑙𝑙𝑆𝑆𝑆𝑆𝑆𝑆 = −0.705575 + 7.5189111 × 𝐸𝐸𝑁𝑁   (6) 

 

Predictors-response analysis using machine learning 
After gathering data on NDVI, LST and Salinity extracted from the predefined mangrove 

zones for the four years, they were first transferred to an Excel sheet for the sequential 
organization. Then, all the data were imported using MATLAB’s regression learning package 
to start a new session. Under the features, NDVI for a particular year was selected as a response 
variable, and LST & Salinity for that year were chosen as predictors. Before the actual model 
training, a validation scheme was selected by default to understand the predictive accuracy of 
the viable model and avoid over-fitting. Once all the options were set up, the available data 
were run for three combinations (NDVI-LST, NDVI-Salinity and NDVI-LST-Salinity). In 
addition to the basic linear regression function, the MATLAB package simulated the data for 
other machine learning algorithms such as regression trees, Support Vector Machines (SVMs), 
Gaussian Process Regression (GPR) and an Ensemble of Trees (details provided in Table 2) 
by considering all their variations (19 in total).  

 
Table 2. List of all the employed machine learning algorithms 

No. Machine learning algorithms  Sub-categories 

1 Linear Regression Models 

Linear  
Interaction Linear  

Robust Linear  
Stepwise Linear 

2 Regression Trees 
Fine Tree 

Medium Tree  
Coarse Tree 

3 Support Vector Machines (SVM) 

Linear  
Quadratic  

Cubic  
Fine Gaussian  

Medium Gaussian  
Coarse Gaussian  

4 Gaussian Process Regression (GPR) 

Rational Quadratic 
Squared Exponential 

Matern 5/2  
Exponential 

5 Ensemble of Trees Boosted Trees  
Bagged Trees 
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Linear regression models are statistical measures to formulate a relation between two or 
more variables by incorporating a linear equation into the collected data. Regression trees are 
decision trees that predict continuous value based on one or more input variables. Support 
Vector Machines are used for both classification and regression analysis. They achieve this by 
segregating acquired data into different classes or groups. Gaussian Process Regression is a 
probabilistic machine learning algorithm that uses the Gaussian process to model the 
relationship between dependent and independent variables. Ensemble of Trees combines 
decision trees to form prediction models suitable for analyzing structured data to generate 
meaningful information.  

The incorporation of different machine learning algorithms was done because the supposed 
intricate relationship between mangrove biomass might not fully relate linearly with land 
surface temperature and coastal salinity, and other feasible associations could exist. After 
running and completing all the instruction sets simultaneously, the best output was chosen for 
each of the three relationship types based on the lowest RMSE and highest R2. Then, response 
plots were visualised to observe the models for potential patterns regarding the arrangements 
of true data points and the resulting predictive trends with the variations of the dependent and 
independent features. The finalised models could be further optimised for better predictions by 
implementing feature ranking algorithms. But it was left out because the order of importance 
for the predictors could not be settled by exploring the existing scholarly works. Therefore, 
when a combined assessment was conducted, equal importance was given to both LST and 
Salinity when assessing mangrove NDVI. Also, an option was available for exporting the 
feasible models and functions for future fine-tuning by incorporating the representatives with 
additional data. Figure 4 denotes the chronological procedures for conducting the 
investigation. 

 
 

Figure 4. Flow chart for the sequential methods 

RESULTS AND DISCUSSIONS 
For all the predefined locations from where NDVI, LST and Salinity values were extracted 

by employing tabular zonal statistics operation in ArcGIS Pro 3.0, the resulting variables were 

Landsat 
image collection 

Salinity data 
computation from 
empirical model 

Pre-
processing  

LST 
computation 

NDVI 
computation 

Predictor-response 
analysis (regression) 
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introduced to several machine learning algorithms, including linear regression, regression 
trees, SVM, GPR and the ensemble of trees (Table 2) to find out the highest correlations 
amongst them in terms of lowest RMSE for each year. The process was repeated for four years 
to cover 2000−2020, validate the relationships further, and assess their consistency. Therefore, 
the uniqueness of this study is to avail several regression processes to find out the best match 
between NDVI, LST and Salinity for the mangrove ecosystems from the prediction trends. Also, 
response plots indicating true and predicted mangrove vegetation health for given LST and 
Salinity were visually observed to reveal interesting patterns. 

Vegetation vs. land surface temperature 
Out of all the suitable regression models between LST and NDVI, Support Vector Machine 

(SVM) with a Medium Gaussian kernel demonstrated the best relationship between the two 
parameters for 2010 with a minimum RMSE value of 0.0368 and maximum R2 value of 0.330 
(Table 3). Other attempted regressions, for 2004 and 2020, generated unsatisfactory outcomes 
with no correlation between mangrove biomass with land surface temperature variation. 
 

Table 3. Most suitable models to relate NDVI with LST for each year 

No. Year Regression model RMSE R2 
1 2004 Support Vector Machine (SVM Cubic) 0.099 0.060 
2 2010 SVM (Medium Gaussian) 0.067 0.330 
3 2015 SVM (Medium Gaussian) 0.076 0.300 
4 2020 Ensemble (Bagged Trees) 0.111 0.010 

 
From Figures 5 to 8, it was found that the true data points were mostly scattered with no 

definitive pattern to assess the predictability. By considering yearly predicted mangrove NDVI 
variations against the LST, predicted mangrove biomass grew from 2004 by around 0.10 to 0.15, 
indicating improved health for mangrove plants residing in the chosen zones. It seemed 
mangroves flourished at a specific temperature range, and extreme temperatures could negatively 
affect vegetation health. For 2004 (Figure 5), predicted points showed an increase in NDVI from 
0.13 to a maximum of 0.20, occurring with an increase in temperature from 30 to 33 °C. 
Progressing from that upper limit for LST meant less mangrove biomass. 

 

 
 

Figure 5. Normalised Difference Vegetation Index (NDVI) as a function of Land Surface 
Temperature (LST) for 2004 
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For 2010, observed data points highlighting mangrove biomass response to surface 
temperature were vastly scattered to delineate any noticeable pattern. The disorganization of 
predictions also supported it. However, upon careful observations, it could be discerned that 
mangrove NDVI tended to exhibit a reasonable value of around 0.27 at temperatures between 
33.5−34.5 °C. Mangrove biomass again exhibited fluctuations in NDVI between 35.5−36 °C 
(Figure 6). 

 

 
 

Figure 6. NDVI vs. LST 2010 

For 2015 (Figure 7), increased LST led to decreased predicted mangrove biomass between 
30−31 °C. From 31.5 °C onwards, there was an upshift in mangrove NDVI from 0.22 to a 
maximum of around 0.33 from approximately 31.5 to 32.5 °C. 

 

 
 

Figure 7. NDVI vs. LST 2015 



Raihan, A., Ali, T., et al. 
Spatiotemporal Analysis of the Impacts of Climate Change…  

Year 2023 
Volume 11, Issue 3, 1110460 

 

Journal of Sustainable Development of Energy, Water and Environment Systems 12 

NDVI vs. LST response plots for 2020 did not provide any visually explainable trend. Still, a 
wide range of mangrove vegetation health was predicted between 31−34 °C as a cluster. Also, 
neither observed nor predicted vegetation was found in the temperature range from 34.3 to 35.5 °C 
due to the lack of their influence (Figure 8). 

 

 
 

Figure 8. NDVI vs. LST 2020 

Vegetation vs. Salinity 
Table 4 shows that for all the years considered, there was a negligible correlation between 

Salinity and mangrove biomass. But amongst all the regression models, SVM (linear) established 
a small correlation between Salinity and NDVI with a minimum RMSE of 0.071 and an R2 value 
of 0.180. For all other cases, severely low R2 values coupled with significantly larger RMSEs 
rendered them invalid at explaining a general trend. 

 
Table 4. Most suitable models to relate NDVI with Salinity for each year 

No. Year Regression Model RMSE R2 
1 2004 Tree (Medium) 0.10732 0.02 
2 2010 SVM (Linear) 0.070589 0.18 
3 2015 Tree (Medium) 0.083912 0.05 
4 2020 SVM (Fine Gaussian) 0.11021 0.03 

 
 
Like with NDVI−LST variations, response curves for NDVI−Salinity (Figures 9 to 12) did 

not project a particular pattern in the distribution of true values. However, Figure 10 shows a 
steady fall in predicted mangrove NDVI with increasing Salinity observed for 2010. Also, at lower 
Salinity values, there seemed to be some high true NDVI values for mangrove sites for all the 
chosen years. Unfortunately, no valid predictions could be made to propose a trend in the 
relationship between Salinity and the corresponding mangrove biomass for 2004 (Figure 9), 2015 
(Figure 11), and 2020 (Figure 12) solely based on the coefficient of determination and root 
mean square error. However, closer inspection to identify patterns in the behaviour of predicted 
mangrove biomass in response to changing Salinity revealed that for 2004, mangrove biomass 
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varied between 0.15 and 0.18 for a Salinity range between 0.2 and 0.7. Beyond the threshold of 
0.7, no mangrove vegetation health status was confirmed in Figure 9. 

 

 
 

Figure 9. Normalised Difference Vegetation Index (NDVI) as a function of Salinity for 2004 

As discussed earlier, there seemed to be a noticeable relationship between coastal salinity 
and mangrove vegetation health. SVM (linear) predicted that a proportional decrease in NDVI 
accompanied the increase in Salinity. Furthermore, this pattern was obvious for a Salinity range 
from 0.4 to 1.2. Beyond this range, mangrove biomass was absent in Figure 10. 

 

 
 

Figure 10. NDVI vs. Salinity 2010 
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2015 divulged a not-so-distinctive order to model NDVI-Salinity variation compared to 
2010 (Figure 10). Still, there seemed to be average predictive mangrove vegetation with NDVI 
of about 0.28 as a response to the Salinity range from 0.4 to 0.7. A further increase in Salinity 
from 0.75 to 0.98 rendered a slight decrease in mangrove vegetation with an NDVI of around 
0.24 (decreased by 0.04) in Figure 11. 

 

 
Figure 11. NDVI vs. Salinity 2015 

When considering 2020, a diverse range of predicted mangrove vegetation health was 
observed as a cluster between Salinity values of 0.2 and 0.75. The maximum predicted NDVI 
for the cluster was found to be around 0.45, and a minimum NDVI value was seen to be at 0.24, 
with an average of around 0.33. Coastal salinity for the selected sites did not exceed 0.75 in 
most cases to yield any value for the mangrove biomass beyond that threshold in Figure 12. 

 

 
 

Figure 12. NDVI vs. Salinity 2020 
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Vegetation assessment by combining temperature and Salinity 
Table 5 demonstrates the combined effects of LST and Salinity on mangrove NDVI. For all 

the years considered, it seems there was a relatively more significant combined influence by the 
predictors on the response variable than their contribution to altering NDVI dependency on them. 
Gaussian Process Regression (Squared Exponential) showed the best possible correlation between 
NDVI and LST, and Salinity for 2020. SVM (Quadratic) came in second best. However, the Tree 
(Coarse) model failed to generate any such relationship for multi-regression analysis.  
 

Table 5: Most suitable models to determine NDVI against the combined influence of LST and 
Salinity 

No. Year Regression Model RMSE R2 
1 2004 SVM (Medium Gaussian) 0.010 0.100 
2 2010 Tree (Coarse) 0.080 0.000 
3 2015 SVM (Quadratic) 0.076 0.280 

4 2020 Gaussian Process Regression 
(Squared Exponential) 0.094 0.310 

 
A joint assessment of the results suggests that mangrove vegetation health flourished at a 

certain temperature window (i.e., between 30−33 °C). For 2004, between these optimal 
temperature ranges, mangrove biomass increased from 0.13 to 0.20. In another instance, the LST 
increase from 29 to 30 °C resulted in the fall of mangrove vegetation health from 0.28 to 0.20. 
However, between 31.5−32.5 °C, mangrove biomass again showed improvement, increasing 
NDVI from 0.24 to 0.33. It further confirmed the optimal temperature range in the mangrove 
systems for their sustenance. Previous research works only assessed the response of mangroves 
under extreme temperatures [5, 6, 28], but this finding added a new perspective on mangroves, 
showing development between certain LST values. As for the mangroves’ predictive response to 
the change in Salinity, vegetation health seemed to deteriorate in response to the increase in 
Salinity, and this pattern was noteworthy between 2010 and 2015. This finding was also validated 
by previous studies [9]. Also, compared to 2010, the decrease in mangrove NDVI was less 
prominent in 2015, exhibiting mangroves’ adaptive nature to increased Salinity. In the end, 
considering both LST and Salinity to impact mangrove vegetation garnered more influence than 
the individual factors alone, as indicated by an overall high R2 value (e.g., 0.31). 

The limitation of this research was due to the not being able to find out satisfactory R2 and 
RMSE values by employing different machine learning algorithms when considering NDVI-LST 
(Table 3), NDVI-Salinity (Table 4) & the combined effects of LST and Salinity on mangrove 
biomass (Table 5). It largely contributed to the amount and the quality of data employed. More 
data points might have led to increased accuracy, but it would have required many computations 
along with time. Also, some models performed better than the rest because of the assumptions 
they made in predicting the response variable against the observed values by using the 
corresponding explanatory variables. When the supplied information aligned with the assumption 
made by a specific mathematical instruction, a viable model was only generated at that instance. 
As raw data might not be suitable for direct machine learning assessment, the models could be 
further refined by preprocessing the collected data. 

Furthermore, identifying the combined effects of some other parameters along with LST and 
Salinity (e.g., sea-level rise, tidal inundation, LULC, etc.) on mangrove NDVI would greatly 
improve the prediction. Additionally, the temperature range proposed for this study is suitable for 
UAE. Future works by considering mangroves located in different regions worldwide could unveil 
different LST ranges. 
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CONCLUSIONS 
In this study, climate change impacts on mangroves were examined. It was done considering 

LST as the main climate factor along with the salinity of the coastal water at the mangrove forest 
locations. Mangrove forest change was represented using the NDVI layers, which were extracted 
from Landsat imagery along with LST at the forests’ locations and salinity of coastal water. 
Analysis was carried out to determine the impact of each factor on mangroves and then the 
combined effect of LST and Salinity on mangroves. The best-fit model, which combines the 
impact of LST and Salinity on mangroves, was obtained using Gaussian Process Regression 
(Squared Exponential) with an R2 value of 31.1% and an RMSE of 0.094. 

To improve the modelling process in our ongoing efforts to study the impact of these factors 
on mangroves, higher-resolution satellite imagery will be obtained for recent years. Also, 
empirical equations for Salinity will be established, which would be particularly catered towards 
mangrove forests found in the UAE by conducting field visits and taking Salinity measurements 
at selected locations based on their associations with the existing mangrove forest. Timing will be 
maintained to ensure that satellite image data are available during field surveys. 
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NOMENCLATURE 

 
band-specific additive rescaling factor 
from Landsat metadata file 

 

 earth-sun distance in astronomical units   

 mean solar exo-atmospheric irradiances  [
W

m2μm
] 

 calibration constant 1 [
W

m2sterμm
] 

 calibration constant 2  [K] 
  LST   Land Surface Temperature  [K] 

 spectral radiance at sensor’s aperture  [
W

m2sterμm
] 

 
band-specific multiplicative rescaling 
factor from Landsat image metadata file 

 

  NDVI   Normalised Difference Vegetation Index  

 
quantised and calibrated standard product 
pixel value  

 

Salinity soil salinity parameter according to eq. (6)  
 effective at-sensor brightness temperature [K] 

Greek letters  

 Solar zenith angle in degrees 

 TOA reflectance  

Abbreviations  
ANOVA Analysis of Variance  
DN Digital Number  
ETM Enhanced Thematic Mapper  
GIS Geographic Information System  
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GPR Gaussian Process Regression  
ID Image Difference  
KLR Kernel Logistic Regression  
LULC Land Use/Land Cover  
MATLAB Matrix Laboratory  
NBT Native Bayes Tree  
NIR Near Infrared  
NSW New South Wales  
OLI Operational Land Imager  
RF Random Forest  
RMSE Root Mean Square Error  
SI Salinity Index  
SVM Support Vector Machine  
TIRS Thermal Infrared Sensor  
TOA Top of Atmosphere  
UAE United Arab Emirates  
USA United States of America  
UTM Universal Transverse Mercator  
WGS World Geodetic System  
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