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ABSTRACT 
In the current context of energy transition, accurately forecasting solar power production is a major challenge 

for the efficient operation of electricity grids that include renewable energy sources. This work aims to improve 
prediction performance by combining a nonlinear physical model based on the principles of photovoltaic 
conversion with a recurrent neural network designed for time series analysis. The underlying hypothesis is that 
integrating physical knowledge with data-driven learning can better capture the complexity of solar energy 
patterns. The proposed method involves careful selection of input variables through correlation analysis and 
embedding the physical model within a deep learning structure. Results, evaluated using standard error metrics, 
demonstrate a clear improvement in forecasting accuracy compared to conventional approaches. While the 
physical model considered on its own produces a high error level (root mean square error = 338.55 and mean 
absolute error = 182.08), methods based on artificial intelligence significantly reduce these values (long short-
term memory network: root mean square error = 3.29; recurrent neural network: 2.87). The hybrid method 
developed in this study achieves the best overall performance (root mean square error = 2.83 and mean absolute 
error = 1.26). This study contributes to the development of more reliable prediction systems capable of anticipating 
fluctuations in solar power generation due to changing environmental conditions. 

KEYWORDS 
Photovoltaic power prediction, Solar power prediction, Hybrid modeling approach, LSTM neural 
networks, Nonlinear physical models, Time series forecasting. 

INTRODUCTION 

In a world undergoing an energy transition, the integration of renewable energies has become 
a priority. It is shown in [1]  that photovoltaic (PV) solar energy is one of the most promising 
renewable sources, while[2] highlights recent technological improvements in PV systems. 
Furthermore,[3]  stresses that renewable energy adoption is essential for meeting today’s 
environmental challenges, and [4] demonstrates that large-scale PV deployment offers 
significant economic advantages. 

The rapid global growth of solar installations has increased the need for accurate forecasting. 
In [5] Z. Garip and al.  examined  the expanding use of forecasting in solar energy systems, 
and [6] shows that forecast accuracy directly impacts energy management. In addition, [7] 
proves that improved forecasting methods enhance grid operation. Recent global assessments, 
such as [8], confirm unprecedented increases in annual PV capacity additions. Similarly,[9] 
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emphasizes that accurate power forecasting is crucial for maintaining grid stability as PV 
penetration rises. 

However, predicting PV power remains challenging due to environmental variability. It is 
identified in [10] that  irradiance fluctuations, cloud cover, and temperature as major 
uncertainties affecting PV output. Moreover, [3] explains that the physical processes governing 
PV production add further complexity. 

To structure this research field, several reviews categorize the main forecasting approaches. [4] 
provides a classification into physical models, statistical methods, and AI-based or hybrid 
models. 

Physical models rely on meteorological variables and PV system characteristics. Y. Zhi and al. 
explain in [8] how atmospheric data drive physical simulations, while [11] evaluates the 
robustness and theoretical reliability of such models. Still, [5] notes that physical models 
require intensive calibration and may be computationally demanding, which limits their 
deployment. 

Statistical models offer a simpler alternative. K. Kamberi and al. show in [3]  that ARMA and 
SVR-based statistical methods can yield good results under stable weather but degrade when 
conditions shift rapidly. 

Machine learning and deep learning approaches have shown stronger predictive capabilities. 
[7] presents early advances in ML-based solar forecasting, while [12] discusses contributions 
from deep learning architectures. In addition, [13] demonstrates that neural networks 
significantly improve prediction accuracy under diverse conditions, confirming observations 
in [9]. Long short-term memory (LSTM) networks, described in [14], are especially effective 
for time series because they capture long-term dependencies, a finding further supported by 
[15]. 

Nonetheless, deep learning models face certain limitations. H. Hafdaoui and al. highlight in 
[13]  their limited interpretability, and Z. Garip in [5] reports reduced generalization when 
exposed to unfamiliar atmospheric conditions. To address these issues, hybrid approaches have 
emerged. So, [16] and [17] show that integrating physical knowledge into ML architectures 
increases robustness and accuracy. Moreover, [18] confirms that combining physically derived 
information with data-driven strategies improves short-term forecasting. 

Hybrid approaches typically incorporate physically meaningful variables. U. Singh and al. 
propose in [19]  integrating irradiance and temperature estimates into models, while [20] uses 
clear-sky indices and radiation transposition outputs as additional features. Furthermore, [21] 
shows that such physical features improve generalization under varying atmospheric 
conditions. 

Several illustrative hybrid architectures have been proposed. So, [22] introduces a framework 
combining satellite imagery, NWP forecasts, and machine learning for intra-day irradiance 
prediction.Also, [21] presents a hybrid model merging CEEMDAN signal decomposition with 
CNN–LSTM networks to handle non-stationary conditions more effectively. Additionally, [4] 
discusses physics-informed neural networks that enforce physical constraints within learning 
processes. 

More recently, [23] summarizes hybrid irradiance forecasting approaches combining satellite 
inputs, NWP models, and AI tools. A complementary study in [24] proposes a SARIMA–



Baba, K. T., Palanga, E.  

A Multi-Resolution Approach Based on the Integration of a…  
Year 2026 

Volume 14, Issue 2, 1140677 
 
 

Journal of Sustainable Development of Energy, Water and Environment Systems 3 

 

LSTM hybrid enhanced through STL decomposition using LOESS, demonstrating improved 
short-term solar radiation forecasting. In PV power prediction, [18], shows that decomposition-
based hybrid models outperform standalone neural networks, especially during transitional 
weather periods. 

Despite these advances, many hybrid architectures remain loosely coupled. In [25], it is noted 
that physical and AI models often operate in parallel rather than being deeply integrated. 
Consequently,[12] calls for unified frameworks embedding physical principles directly into 
neural network learning mechanisms. 

To address this gap, the present work proposes a tightly integrated hybrid method combining 
a nonlinear physical model with an LSTM neural network. This idea aligns with insights from 
[26], which demonstrates that fusing physical forecasts with data-driven learning enhances 
both interpretability and accuracy. Building on this foundation, our approach aims to improve 
short-term PV power prediction under variable environmental conditions, consistent with 
findings reported in [27]. 

The rest of the paper is organized as follows: Section II presents the methodology, Section III 
describes implementation and results, and Section IV concludes the study. 

 

MATERIALS AND METHODS 
 
The data used come from sensors that record daily measurements[2] at regular one-minute 

intervals, table 1.  
 

Table 1. Dataset overview 
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 For clarity and consistency, Table 2 shows how each alphabetical column label (A–P) was 

converted to its corresponding variable name 
 
 
 

 
Table 2. Column label mapping 

A measured_on 
B ac_current__427 
C ac_power__423 
D ac_voltage__426 
E ambient_temp__428 
F das_battery_voltage__434 
G das_temp__433 

H dc_pos_current__425 

I dc_pos_voltage__424 

J dc_power__422 

K inverter_temp__432 

L module_temp_1__429 

M module_temp_2__430 

N module_temp_3__431 

O poa_irradiance__421 

P system_id 

 

The dataset contains 15 data columns collected over a period of more than three years, 
including information on ambient temperature, panel temperature, irradiation, current intensity 
and voltage, as well as data related to the batteries and the inverter.  

An exploratory data analysis (EDA) was conducted to assess data quality[3], identify missing 
or anomalous values, detect trends and seasonal patterns, and better understand the relationships 
between variables relevant to photovoltaic power generation [3] figure 1. 
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Figure 1. HeatMap 

 

 
 
The proposed approach integrates two complementary components for photovoltaic power 

prediction[12]. 
The first component is a nonlinear physical model, (1)  derived from the fundamental equations 
governing photovoltaic effects, which provides an initial theoretical estimation of the output 
power[13]. 
The second component is a Long Short-Term Memory (LSTM) neural network designed to refine 
this estimation by learning the residual discrepancies between the measured and physically 
estimated power values [6]. 

The physical model is implemented as a function f(G,V,T) encapsulated within a Lambda 
layer : This layer allows arbitrary computations—here, the physical power estimation—to be 
seamlessly included in the computational graph of the neural network. 
This function computes the theoretical photovoltaic power output as a function of irradiance 
(G), module voltage (V), and cell temperature (T), representing the deterministic part of the 
system behavior. 

 
𝑃𝑃 = 𝐺𝐺 × 𝑉𝑉 × [1 −  𝛽𝛽 × (𝑇𝑇 − 𝑇𝑇𝑅𝑅𝑅𝑅𝑅𝑅)]                                                                   (1) 

 
where: 
    𝐺𝐺 is the irradiance (incident solar power), 
    𝑇𝑇 is the module temperature, 
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    𝑉𝑉 is the electrical voltage, 
    𝛽𝛽 is the temperature coefficient of the panel efficiency, with this coefficient varying between 
0.004 and 0.006   (𝛽𝛽 =  0.005 ), 
    𝑇𝑇𝑅𝑅𝑅𝑅𝑅𝑅  is the reference temperature of the panel ( 𝑇𝑇𝑅𝑅𝑅𝑅𝑅𝑅  =  25°𝐶𝐶 ) 
 
Subsequently, the LSTM network models the remaining nonlinearities and temporal 
dependencies not captured by the physical formulation, thereby adjusting and improving the 
overall prediction accuracy. 
It is important to highlight that LSTM networks are a category of recurrent neural networks 
specifically designed to learn and retain long-term dependencies in historical data.[4] These 
models, first introduced by Hochreiter and Schmid Huber, have since been refined and are 
widely used by many researchers[5]. They are organized into LSTM units, and each unit 
integrates a memory cell and three gates (input gate, forget gate, and output gate) that regulate 
the flow of information through the network [6]. 
 
𝑓𝑓𝑡𝑡  =  𝜎𝜎(𝑊𝑊𝑓𝑓 . �ℎ𝑡𝑡−1 ,𝑥𝑥𝑡𝑡�  + 𝑏𝑏𝑓𝑓)                                                                                             (2) 
𝑖𝑖𝑡𝑡  =  𝜎𝜎(𝑊𝑊𝑖𝑖. �ℎ𝑡𝑡−1 ,𝑥𝑥𝑡𝑡�  +  𝑏𝑏𝑖𝑖)                                                                                              (3) 
𝐶̃𝐶𝑡𝑡 =  𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝑊𝑊𝑐𝑐. �ℎ𝑡𝑡−1 ,𝑥𝑥𝑡𝑡�  +  𝑏𝑏𝑐𝑐)                                                                                        (4) 
𝐶𝐶𝑡𝑡  =  𝑓𝑓𝑡𝑡⨀𝐶𝐶𝑡𝑡−1 + 𝑖𝑖𝑡𝑡⨀𝐶̃𝐶𝑡𝑡                                                                                                     (5) 
𝑜𝑜𝑖𝑖  =  𝜎𝜎(𝑊𝑊𝑜𝑜. �ℎ𝑡𝑡−1 ,𝑥𝑥𝑡𝑡�  + 𝑏𝑏𝑜𝑜)                                                                                             (6) 
ℎ𝑡𝑡   =  𝒐𝒐𝒕𝒕⨀𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕(𝑪𝑪𝒕𝒕)                                                                                                         (7) 

 
 
where: 
 
        𝑓𝑓𝑡𝑡 is the forget gate. 
        𝑖𝑖𝑡𝑡 is the input gate. 
        𝐶̃𝐶𝑡𝑡 is the new cell information. 
        𝐶𝐶𝑡𝑡 is the memory cell. 
        𝑜𝑜𝑡𝑡 is the output gate. 
        ℎ𝑡𝑡 is the hidden state. 
     
 
The output of the physical model and the output of the neural network are added together 

in the ADD layer to obtain a final prediction [4]. The idea is that the output of the physical 
model gives an approximation of power based on physical laws, while the LSTM recurrent 
network refines this prediction by modeling more subtle relationships in the data [7] figure 2. 
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Figure 2. Model architecture 

 

 
 
To improve the algorithm's performance, variable selection was performed based on a 

visual correlation analysis using a heatmap[8]. This graphical representation allowed us to 
observe the linear relationships between all the variables in the database and the target variable, 
namely the alternating current power ac_power__423. 

 
By identifying the variables with the highest absolute correlation coefficients with the 

target, nine (9) variables were selected as the most relevant for model training: 
 

• dc_power__422: direct current (DC) power, measured at the output of the 
photovoltaic modules. 

• dc_pos_current__425: positive DC current from the panels. 
• ac_current__427: alternating current injected into the grid, directly related to the 

target variable. 
• poa_irradiance__421: plane-of-array (POA) irradiance, indicating the amount of 

solar radiation received. 
• module_temp_3__431, module_temp_2__430, module_temp_1__429: 

temperatures measured at different points on the photovoltaic modules. 
• dc_pos_voltage__424: positive DC voltage. 
• inverter_temp__432: internal temperature of the inverter. 
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The Base 1 dataset was then split, with 80% allocated for training and 20% reserved for 
testing [22]. 

 
 
 

RESULTS 
 
To evaluate prediction performance, two standard metrics were employed: the Root Mean 

Squared Error (RMSE) and the Mean Absolute Error (MAE)[9]. 
 
Root Mean Squared Error  
 
RMSE is a widely used metric for assessing the performance of regression models [7]. It 

is the square root of the average of the squared differences between the predicted values 𝐲𝐲�𝐢𝐢 and 
the actual values 𝐲𝐲𝐢𝐢 [8]:  

 
𝑀𝑀𝑀𝑀𝑀𝑀 =  1

𝑛𝑛
∑ (𝐲𝐲𝐢𝐢  −  𝐲𝐲�𝐢𝐢)2𝑛𝑛
𝑖𝑖=1                                                                                              (8) 

 
 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  �1
𝑛𝑛
∑ (𝐲𝐲𝐢𝐢  −  𝐲𝐲�𝐢𝐢)2𝑛𝑛
𝑖𝑖=1                                                                                         (9) 

 
 
where: 
    𝐲𝐲𝐢𝐢 is the actual value, 
    𝐲𝐲�𝐢𝐢 is the predicted value, 
    𝐧𝐧 is the total number of data points. 
 
This metric is sensitive to large errors and retains the same units as the original data, which 

facilitates interpretation[10]. 
 
Mean Absolute Error  
 
The MAE measures the average absolute difference between actual values 𝐲𝐲𝐢𝐢  and predicted 

values  𝐲𝐲�𝐢𝐢 , [11]regardless of the direction of the error [28]. 
 
𝑀𝑀𝑀𝑀𝑀𝑀  =   1

𝑛𝑛
∑ | 𝐲𝐲𝐢𝐢  −  𝐲𝐲�𝐢𝐢|𝑛𝑛
𝑖𝑖=1                                                                                          (10) 

 
 
where: 
    𝐲𝐲𝐢𝐢 is the actual value, 
    𝐲𝐲�𝐢𝐢 is the predicted value, 
    𝐧𝐧 is the total number of data points. 
 
 
The Table 3 presents the results obtained for four models used to predict AC power output, 

evaluated using RMSE and MAE. 
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Table 3. Models comparison 

Model RMSE MAE 
Model 1: Physical Model 338.55 182.08 

Model 2: AI Model (LSTM) 3.29 1.51 

Model 3: AI Model (RNN) 2.87 1.33 

Model 4: Proposed Hybrid Approach 2.83 1.26 
 
 
 
 
 

DISCUSSION 
 
The results presented in Table 3 reveal significant differences in performance among the 

various modeling approaches. Model 1, based on a classical physical modeling technique, 
shows very high error values (𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑 =  𝟑𝟑𝟑𝟑𝟑𝟑.𝟓𝟓𝟓𝟓 and 𝐌𝐌𝐌𝐌𝐌𝐌 =  𝟏𝟏𝟏𝟏𝟏𝟏.𝟎𝟎𝟎𝟎), highlighting its 
inadequacy for accurate predictions in variable environments. 

 
In contrast, Models 2 and 3, built on artificial intelligence architectures (LSTM and RNN), 

demonstrate significant improvements, with errors reduced by over 99% compared to the 
physical model. The RNN model (𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹 =  𝟐𝟐.𝟖𝟖𝟖𝟖;  𝑴𝑴𝑴𝑴𝑴𝑴 =  𝟏𝟏.𝟑𝟑𝟑𝟑) slightly outperforms the 
LSTM model (𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑 =  𝟑𝟑.𝟐𝟐𝟐𝟐;  𝐌𝐌𝐌𝐌𝐌𝐌 =  𝟏𝟏.𝟓𝟓𝟓𝟓), possibly due to a better adaptation to the 
sequential structures present in time series data. 

 
The proposed Hybrid Approach (Model 4), which integrates a physical model with an 

LSTM neural network, yields the best performance with an RMSE of 𝟐𝟐.𝟖𝟖𝟖𝟖 and an MAE of 
𝟏𝟏.𝟐𝟐𝟐𝟐. This slight improvement over purely AI-based models highlights the relevance of 
combining theoretical modeling with neural network learning capabilities.[12] 

 
In summary, these results underscore the superiority of artificial intelligence-based 

methods—particularly the effectiveness of integrating a physical model within a deep learning 
pipeline.[13] The proposed approach stands out for its accuracy, robustness, and adaptability 
in photovoltaic power forecasting contexts. 

 

CONCLUSION 
 
This article presents a novel hybrid approach for predicting photovoltaic power, integrating 

a nonlinear physical model with an LSTM neural network. This multi-resolution strategy 
effectively combines the theoretical rigor and interpretability of physical models with the 
adaptability and learning capacity of neural networks, enabling the capture of complex, 
nonlinear, and temporal dynamics inherent in photovoltaic systems. 

Experimental results, assessed using RMSE and MAE metrics, clearly demonstrate that the 
proposed hybrid model outperforms both conventional physical models and standalone AI 
models. The substantial reduction in prediction errors highlights the practical effectiveness of 
this integrative approach, particularly under conditions of high environmental variability and 
fluctuating solar irradiance. 
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The study underscores the practical potential of hybrid modeling for smarter and more 
resilient energy management systems, providing a framework that can enhance decision-
making in operational photovoltaic installations. Furthermore, the methodology offers a 
generalizable approach that could be adapted to other forms of renewable energy generation, 
broadening its applicability. 

For future work, it would be particularly valuable to explore approaches that enable hybrid 
models to predict photovoltaic power on new installations without relying on historical 
operational data for training the LSTM component. Developing such a capability would 
significantly increase the practical utility of hybrid models, allowing rapid deployment and 
accurate prediction in emerging photovoltaic sites or for systems with limited historical 
records. 
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