Journal of Sustainable Development of Energy, Water
and Environment Systems

http://www.sdewes.org/jsdewes

Original Research Article

A Multi-Resolution Approach Based on the Integration of a Nonlinear
Physical Model and Long Short-Term Memory Network for Photovoltaic
Power Modeling and Forecasting

Kpatchaa Tombana BABA®, Eyouléki PALANGA

oS
Cite as: Baba, K. T., Palanga, E.., A Multi-Resolution Approach Based on the Integration of a Nonlinear Physical Model and
Long Short-Term Memory Network for Photovoltaic Power Modeling and Forecasting, J.sustain. dev. energy water environ.
syst., 14(2), 1140677, 2026, DOLI: https://doi.org/10.13044/j.sdewes.d14.0677 \

ABSTRACT

ajor challenge
for the efficient operation of electricity grids that include renewable energy sour§g (aims to improve
ples of photovoltaic
conversion with a recurrent neural network designed for time series ana s g hypothesis is that
Bygnplexity of solar energy
ough correlation analysis and
using standard error metrics,
pnventional approaches. While the
n square error = 338.55 and mean
ficantly reduce these values (long short-

demonstrate a clear improvement in forecasting accurac
physical model considered on its own produces a high
absolute error = 182.08), methods based on artificialg

developed in this study achieves the best overal
error = 1.26). This study contributes to the de

] that photovoltaic (PV) solar energy is one of the most promising
hile[2] highlights recent technological improvements in PV systems.
esses that renewable energy adoption is essential for meeting today’s
allenges, and [4] demonstrates that large-scale PV deployment offers
nomic advantages.

The rapid global growth of solar installations has increased the need for accurate forecasting.
In [5] Z. Garip and al. examined the expanding use of forecasting in solar energy systems,
and [6] shows that forecast accuracy directly impacts energy management. In addition, [7]
proves that improved forecasting methods enhance grid operation. Recent global assessments,
such as [8], confirm unprecedented increases in annual PV capacity additions. Similarly,[9]
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emphasizes that accurate power forecasting is crucial for maintaining grid stability as PV
penetration rises.

However, predicting PV power remains challenging due to environmental variability. It is
identified in [10] that irradiance fluctuations, cloud cover, and temperature as major
uncertainties affecting PV output. Moreover, [3] explains that the physical processes governing
PV production add further complexity.

To structure this research field, several reviews categorize the main forecasting approaches. [4]
provides a classification into physical models, statistical methods, and Al-based or hybrid
models.

Physical models rely on meteorological variables and PV system characteristi
explain in [8] how atmospheric data drive physical simulations, while [1
robustness and theoretical reliability of such models. Still, [5] notes
require intensive calibration and may be computationally demanding
deployment.

Statistical models offer a simpler alternative. K. Kamberi an
SVR-based statistical methods can yield good results un.
conditions shift rapidly.

Machine learning and deep learning approaches

significantly improve prediction accura
in [9]. Long short-term memory (LS

[15].

Nonetheless, deep learni rtain limitations. H. Hafdaoui and al. highlight in
[13] their limited intcay . Garip in [5] reports reduced generalization when
exposed to unfamiliafg gic conditions. To address these issues, hybrid approaches have
emerged. So, [16
increases robustrig adguracy. Moreover, [ 18] confirms that combining physically derived
informatio en strategies improves short-term forecasting.

es Bypically incorporate physically meaningful variables. U. Singh and al.

grating irradiance and temperature estimates into models, while [20] uses
and radiation transposition outputs as additional features. Furthermore, [21]
uch physical features improve generalization under varying atmospheric

Several illustrative hybrid architectures have been proposed. So, [22] introduces a framework
combining satellite imagery, NWP forecasts, and machine learning for intra-day irradiance
prediction.Also, [21] presents a hybrid model merging CEEMDAN signal decomposition with
CNN-LSTM networks to handle non-stationary conditions more effectively. Additionally, [4]
discusses physics-informed neural networks that enforce physical constraints within learning
processes.

More recently, [23] summarizes hybrid irradiance forecasting approaches combining satellite
inputs, NWP models, and Al tools. A complementary study in [24] proposes a SARIMA—
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LSTM hybrid enhanced through STL decomposition using LOESS, demonstrating improved
short-term solar radiation forecasting. In PV power prediction, [ 18], shows that decomposition-
based hybrid models outperform standalone neural networks, especially during transitional
weather periods.

Despite these advances, many hybrid architectures remain loosely coupled. In [25], it is noted
that physical and Al models often operate in parallel rather than being deeply integrated.
Consequently,[12] calls for unified frameworks embedding physical principles directly into
neural network learning mechanisms.

findings reported in [27].

The rest of the paper is organized as follows: Section II presen
describes implementation and results, and Section IV conclu

MATERIALS AND METHODS

The data used come from sensors that ly urements[2] at regular one-minute
intervals, table 1.

[able 1. Dafaset overview
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0 0.
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999999 999999
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9999
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For clarity and consistency, Table 2 shows how each alphabetical column label (A—P) was
converted to its corresponding variable name

Table 2. Column label mapping

A measured on

B ac_current 427
C ac_power 423
D ac_voltage 426
E ambient temp 428§
F

G

H

I

J

K

L

M %m ule

N

The dataset ¢@nta columns collected over a period of more than three years,
including in Jjlon o ient temperature, panel temperature, irradiation, current intensity
and voltage fas well%ag da@ related to the batteries and the inverter.

An explofatory data analysis (EDA) was conducted to assess data quality[3], identify missing
ora 0 detect trends and seasonal patterns, and better understand the relationships
be relevant to photovoltaic power generation [3] figure 1.

%
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Correlation Heatmap

ac_current_ 427 1.0
ac_power__423
ac_voltage 426 - 0.8
ambient_temp_ 428 -
das_battery voltage 434 -0.6
das_temp_ 433 -
dc_pos_current__425 _0.4
dc_pos voltage 424 -
dc_power__422
- 0.2

inverter temp_ 432 -
module temp 1 429
module_temp_2_ 430
module temp 3 431
poa_irradiance_ 421

| | |
~ m W W = M wm F ™~ o~ D -
NN N N M MmN NN M N Mmom
N D R D NN
T T = N N = N = R P . ©
C‘”mgmg%m‘”g|lm|u
¢ = o g m §g ¥ m = o o o c
E o x££ B =2 8 c 2 o 8 g g g @
3910|O|3°Q-|q_)mw'c
U|U>I‘E>|£Ul>l|5uwlum
g8 oo N3 g ud L o E
© a8 g o & v 5 3 35 4
E £ I = 5 © 5 8
T o .g% E o 2 o E
) E E E
7]
[1%]
-

Figure 1. HeatMap
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The proposed app @ integratc®two complementary components for photovoltaic power
prediction[12].

The first compo
governing p, \ feCts, which provides an initial theoretical estimation of the output

The secon ondht is a Long Short-Term Memory (LSTM) neural network designed to refine
arning the residual discrepancies between the measured and physically

alues [6].

ycal model is implemented as a function f(G,V,T) encapsulated within a Lambda

layer allows arbitrary computations—here, the physical power estimation—to be

seamlessly included in the computational graph of the neural network.

This function computes the theoretical photovoltaic power output as a function of irradiance

(G), module voltage (V), and cell temperature (T), representing the deterministic part of the
system behavior.

P=GXVX[1 = BX(T —Tgef)] (D
where:

G is the irradiance (incident solar power),
T is the module temperature,
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V is the electrical voltage,

[ is the temperature coefficient of the panel efficiency, with this coefficient varying between
0.004 and 0.006 (8 = 0.005),

Trey is the reference temperature of the panel ( Tger = 25°C)

Subsequently, the LSTM network models the remaining nonlinearities and temporal
dependencies not captured by the physical formulation, thereby adjusting and improving the
overall prediction accuracy.

It is important to highlight that LSTM networks are a category of recurrent neural networks
specifically designed to learn and retain long-term dependencies in historical data.[4] These
models, first introduced by Hochreiter and Schmid Huber, have since been refi and are
widely used by many researchers[5]. They are organized into LSTM units, andN\gacg#p unit
integrates a memory cell and three gates (input gate, forget gate, and output g ulate
the flow of information through the network [6].

fe = U(Wf-[ht—1,xt] + by) Q (2)
iy = U(Wi-[ht—l,xt] + by) (3)
Ce = tanh(W,.[he—1 x,] + b 4)
Ct = [iOC_1 +1OC; (5)
0; = O-(Vl/()-[ht—l,xt] + bo) (6)
hy = o0,Otanh(C,) (7

where:

ft 1s the forget gate.

i; 1s the input gate.

C, is the new cell inforgftion’
C¢ 1s the memory ¢

0; 1s the output g
h; is the hidd.

1 model and the output of the neural network are added together

The output ofjthe pi
in the ADobt n a final prediction [4]. The idea is that the output of the physical

model giges\an approXmation of power based on physical laws, while the LSTM recurrent
netw% isfprediction by modeling more subtle relationships in the data [7] figure 2.
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Physical Model
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Figure 2. Model architecture v

valN selection was performed based on a
visual correlation analysis using a If€atthap[SWThiS graphical representation allowed us to
observe the linear relationships bag#weQq all thg variables in the database and the target variable,
namely the alternating current i@gwer, ower 423.

To improve the algorithm's perforntan

highest absolute correlation coefficients with the
d as the most relevant for model training:

Sirradiance__421: plane-of-array (POA) irradiance, indicating the amount of

r radiation received.

° odule_temp 3 431, module_temp 2 430, module_temp_1_ 429:
temperatures measured at different points on the photovoltaic modules.

e dc_pos_voltage 424: positive DC voltage.

e inverter_temp__ 432: internal temperature of the inverter.
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The Base 1 dataset was then split, with 80% allocated for training and 20% reserved for
testing [22].

RESULTS

To evaluate prediction performance, two standard metrics were employed: the Root Mean
Squared Error (RMSE) and the Mean Absolute Error (MAE)[9].

Root Mean Squared Error

is the square root of the average of the squared differences between the p
the actual values y; [8]:

1 ~
MSE = - 3ii(yi — 90)* %Q

RMSE = [LSL,(3i - 92 )

where:
yi is the actual value,
Vi is the predicted value,
n is the total number of d ongts.
This metric is sensitiveq ors@nd retains the same units as the original data, which
facilitates interpretatio

1 (10)

y; is the actual value,
Vi is the predicted value,
n is the total number of data points.

The Table 3 presents the results obtained for four models used to predict AC power output,
evaluated using RMSE and MAE.
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Table 3. Models comparison

Model RMSE MAE
Model 1: Physical Model 338.55 182.08
Model 2: Al Model (LSTM) 3.29 1.51
Model 3: Al Model (RNN) 2.87 133
Model 4: Proposed Hybrid Approach 2.83 126

DISCUSSION

The results presented in Table 3 reveal significant differeng
various modeling approaches. Model 1, based on a classict

physical model. The RNN model (RMSE
LSTM model (RMSE = 3.29; MAE
sequential structures present in time g@Pigs da

y due to a better adaptation to the

odel§), which integrates a physical model with an

ance with an RMSE of 2.83 and an MAE of
ely Al-based models highlights the relevance of
ral network learning capabilities.[12]

The proposed Hybrid App
LSTM neural network, yield
1.26. This slight impro
combining theoretical g

icle presents a novel hybrid approach for predicting photovoltaic power, integrating
a nonlinear physical model with an LSTM neural network. This multi-resolution strategy
effectively combines the theoretical rigor and interpretability of physical models with the
adaptability and learning capacity of neural networks, enabling the capture of complex,
nonlinear, and temporal dynamics inherent in photovoltaic systems.

Experimental results, assessed using RMSE and MAE metrics, clearly demonstrate that the
proposed hybrid model outperforms both conventional physical models and standalone Al
models. The substantial reduction in prediction errors highlights the practical effectiveness of
this integrative approach, particularly under conditions of high environmental variability and
fluctuating solar irradiance.



The study underscores the practical potential of hybrid modeling for smarter and more
resilient energy management systems, providing a framework that can enhance decision-
making in operational photovoltaic installations. Furthermore, the methodology offers a
generalizable approach that could be adapted to other forms of renewable energy generation,
broadening its applicability.

For future work, it would be particularly valuable to explore approaches that enable hybrid
models to predict photovoltaic power on new installations without relying on historical
operational data for training the LSTM component. Developing such a capability would
significantly increase the practical utility of hybrid models, allowing rapid deployment and
accurate prediction in emerging photovoltaic sites or for systems with limited historical
records.
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