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ABSTRACT 
Demand response programs have been used to optimize the participation of the demand side. 
Utilizing the demand response programs maximizes social welfare and reduces energy usage. 
Model Predictive Control is a suitable control strategy that manages the energy network, and it 
shows superiority over other predictive controllers. The goal of implementing this controller on 
the demand side is to minimize energy consumption, carbon footprint, and energy cost and 
maximize thermal comfort and social welfare. This review paper aims to highlight this control 
strategy's excellence in handling the demand response optimization problem. The optimization 
methods of the controller are compared. Summarization of techniques used in recent 
publications to solve the Model Predictive Control optimization problem is presented, including 
demand response programs, renewable energy resources, and thermal comfort. This paper sheds 
light on the current research challenges and future research directions for applying model-based 
control techniques to the demand response optimization problem. 

KEYWORDS 
Stochastic MPC, Robust MPC, Energy management, Demand response, Renewable energy. 

INTRODUCTION 
Many countries expressed the need to make their power infrastructure more cost-effective, 

environmentally clean, and sociologically acceptable, thus sustainable. A considerable amount 
of the generated power is currently being lost due to various technical reasons: a) separated 
generation from end usage, b) outdated transmission and distribution lines, c) missing 
demand-responsive technology and policy infrastructures. Also, the load congestion 
bottlenecks in the existing grid raise barriers to integrating renewable forms of energy. The 
situation is exacerbated by increasing load demands and historically declining research and 
development investment by power utilities. Moreover, the dependency on centralized power 
generation is expected to increase emissions and raise electricity tariff prices [1]. Distributed 
resources such as renewable energy sources (RES) and demand response (DR) programs 
reduce transmission congestion, carbon footprint, and electricity price. However, DR’s 
uncertainties increase the complexity of integrating them into the existing power grid. 
Therefore, energy management using the DR programs gained a lot of attention in recent years. 
Energy management can achieve different objectives such as minimizing the cost, reducing 
greenhouse gases, and minimizing the loss of generation, transmission, and distribution 
systems [2, 3]. DR programs can improve flexibility in the power system's operation and 
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facilitate the low carbon transition in electricity production. The main objective of 
demand-side management is to mitigate the power supply’s uncertainty and fluctuation, 
creating electricity demand flexibility. This demand flexibility increases the ability to integrate 
large penetrations of renewable energy. In other words, demand-side management utilizes 
distributed generators, including RES, using DR programs. Also, DR has a very high potential 
to improve power systems’ performance in terms of energy saving, energy cost, emissions, and 
integrated RES. According to Energy Technology Perspectives Clean Energy Technology 
Guide [4], utilizing DR increases distributed generators' participation in the electricity market, 
which encourages installing more RES on the demand side and, as a result reducing transaction 
costs. The global market for DR has received a lot of attention. The wholesale demand 
response capacity in the United States grew to 28 GW and 35 GW from the retailer programs. 
In Italy, a total DR capacity of 280 MW was commissioned, while in Ireland, 415 MW was 
awarded in a four-year-head-action. In Japan, 1 GW was offered through different DR 
programs, such as the Interruptible load DR program and incentive-based DR programs. 

 

 
 

Figure 1. Demand side management classification 
 
As shown in Figure 1, the demand-side management can be classified into a demand 

reduction and DR. The demand reduction achieves using efficient appliances or changing 
consumer behavior. On the other hand, the demand response program can be an 
incentive-based program (dispatchable) or a price-based program (non-dispatchable). With a 
specific contract, the incentive DR programs allow the independent system operator (ISO) to 
reduce customers’ loads. There are different types of incentive DR programs that can be set up 
for the customer. Some of these types are [5-10]: 

1) Direct load control (DLC): this gives the ISO direct control of the customer processes. 
2) Interruptible load: a customer contract with limited sheds. 
3) Emergency program: this allows the customers to respond to the emergency signal. 
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On the other hand, a price-based DR program influences customer consuming behavior by 
applying different tariffs throughout the day. There are different types of price-based DR 
program, some of which are: 

1) Time-of-use rates: a scheduled fixed price. 
2) Real-time pricing (RTP): the end customers have the wholesale price. 
3) Critical peak pricing: a less predetermined variant of time or use.  

 
Utilizing the full potential of DR programs needs a control system that manages the energy 

network. Different control strategies have been applied to manage the demand side, such as 
classical, soft, and hard control strategies [11], [12-14]. Classical control, such as PID, is 
integrated with a predictive algorithm to enhance its ability to manage the building energy 
system. Soft control uses historical data for controlling the system, while the hard controller 
uses a model to determine future modus operandi. A hard controller's ability to foresee the 
upcoming system variability makes it more adaptive to the change. One of the best examples of 
the hard controller that has been used in building energy management is Model Predictive 
Control (MPC). MPC technique can adapt and update the model by using a feedback signal. 
This feature of the MPC allows the system to be rationalized with the new estimation or the 
measurement. As a result, the ongoing interval will be optimized based on estimating the future 
time interval. MPC mitigates future uncertainty by predicting the direction of the future and 
optimize the current decision. Moreover, the fast response of the MPC and the ability to 
incorporate several control operations makes MPC suitable for energy management 
optimization problems.  

Considering the uncertainties of the power systems in energy management optimization 
problems will increase the solution’s optimality. The difficulty of solving a real-time 
optimization problem that considers the uncertainty of the energy management problem can be 
tackled by different optimization techniques. Different review articles have been published on 
control strategies of demand-side energy management problems. In [5], the authors focused on 
the intelligent control system that achieved a building’s comfort level using different control 
strategies such as a fuzzy logic controller and a neural network controller. On the other hand, 
the authors in [15] focused their review on agent-based control and model-based predictive 
control. In [16], the authors reviewed the supervisory and optimal control of the Heating, 
Ventilation, and Air Conditioning (HVAC) system in a building. The review paper in [17] 
focused on MPC’s HVAC system theory and applications. Reference [18] provided different 
building energy management strategies such as MPC, fault detection, stochastic optimization, 
and robust optimization for residential and non-residential buildings. Unlike the 
aforementioned reviews, this present paper mainly focused on the recent journal publications 
that showed the MPC approach’s capability to handle demand response optimization problems 
considering a high uncertainty level. In other words, this paper tries to summarize algorithms 
and techniques that have been used in recent publications to solve MPC optimization problem 
that includes RES, thermal comfort and different type of DR. Based on the uncertainty level, 
the optimization problems can be formulated as deterministic MPC, stochastic MPC, scenario 
approach MPC, or robust MPC. A comparison between different type of MPC formulations 
and MPC optimization methods are conducted. Also, this paper classifies the recent 
publications in demand-side management based on MPC formulations.  

This paper is organized as follows: Section 2 provides an overview of different MPC 
formulations: deterministic MPC, stochastic MPC, scenario approach MPC, and robust MPC. 
Section 3 reviews the existing literature on the application of MPC in managing the demand 
side, focusing on the demand response. Section 4 concludes the paper and presents future 
research directions.  
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 MODEL PREDICITIVE CONTROL 
 MPC is an optimization-based control technique that aims to drive the closed-loop system 

to an optimal operation set-point while meeting state, input, and output constraints. Using the 
MPC feedback mechanism, the optimization problem inside the moving horizon window is 
solved at each time step. Only the first control action is implemented, and the rest is discarded. 
Therefore, MPC can predict the evolution of the states over the prediction horizon. However, 
modeling a building for MPC is time-consuming since each building has a specific model [19]. 
To prepare a building model for demand response using MPC, white-box, black-box, or 
gray-box model structures have been used in the literature. The white-box modeling is 
developed based on the system's physical process, while the black-box model is developed 
based on measuring the inputs and outputs of the system [20]. Gray-box modeling is a mix of 
white-box and black-box approaches. For example, reference [21] applied the white-box 
approach for modeling, while reference [22] utilized the block-box approach. Gray-box 
modeling is used in [23, 24]. In terms of the simulation tool, researchers use different software 
environments for modeling buildings, such as DYMOLA [25], TRNSYS [26], EnergyPlus 
[27], and ESP-r [28]. A review paper in building modeling techniques can be found in [29]. 
After modeling the building, the optimal control strategy, such as MPC, can be applied. 

Depending on data uncertainty, different optimization methods, such as deterministic, 
stochastic, and robust optimization, have been used to the formulated energy management 
problem. In the deterministic MPC formulation, the uncertainty parameters are assumed to be 
time-independent parameters (perfect prediction). Therefore, the deterministic formulation is 
less complicated, which lowers the computational time of solving the optimization problem. 
However, the perfect prediction assumption of the uncertainties in the deterministic approach 
is not realistic, which may lead to a sub-optimal solution. On the other hand, the stochastic 
approach is more realistic since it considers the uncertainties in the decision-making process. 
Nevertheless, the stochastic approach's computational time is very high due to the complexity 
of the formulation. Since stochastic MPC requires prior knowledge of the underlying 
probability distribution function for the uncertainties, which is hard to find for complex 
processes, robust MPC is an alternative MPC paradigm that can deal with uncertainty without 
knowing the probability distribution. This paradigm can be achieved by deriving a robust 
invariant set of the error system, which is the difference between the real and nominal systems. 
To construct the invariant set, a feedback control law is used (e.g., LQR based control law and 
feedback linearization). The robust MPC can then optimize the process performance online 
while maintaining the close loop state within the stability region. However, deriving a robust 
invariant set can be challenging.  

Several papers have compared deterministic and stochastic optimization methods for 
demand-side energy management problems [30-32]. References [30, 31] applied deterministic 
and stochastic MPC on a single room with an HVAC system, while reference [30] applied 
MPC and weather prediction in integrated room automation by controlling the HVAC system. 
The result of these studies showed that deterministic and stochastic MPC had similar 
performance in terms of energy use. The authors in [33] compare the deterministic and robust 
MPC method in a single room. The result showed the robust MPC outperforms the 
deterministic in case of high uncertainty consideration. Comparison of deterministic, stochastic, 
and robust MPC optimization methods are shown in Table 1 [34-44]. In the following 
subsection, the deterministic MPC schemes will be given. In the second and third subsections, 
stochastic MPC formulations that utilize the uncertainties' probabilistic measures will be 
presented. Finally, another form of MPC, famously known as robust MPC, will be provided. 
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Table 1. Comparison of MPC optimization methods 
 
Optimization 
Methods 

Reference  Complexity  Computational 

Speed 

Accuracy Robustness 

Deterministic 
MPC 

[34, 35] Simple High Low Low 

Stochastic 

MPC 
[36-38] More complexity in 

joint 
chance-constrained 
compared to recourse 
problems 

It leads to a 
considerable size 
expansion of the 
problem and 
eventually increases 
the computational 
burden 

Very good Good 

Scenario 
Approach 
MPC 

[39,40] Choosing 
approximations and 
models is difficult  

It is inversely 
proportional to the 
number of samples 

It depends 
upon the size 
of the 
sampling 

It is very 
good for a 
large 
number of 
samples 

Robust  

MPC 
[41-44] Very complex Slow High  High 

Deterministic model predictive control 
The mathematical formulation of the deterministic MPC for the class of nonlinear 

continuous system is as follows [34]: 
 

 
 

 
 
 
 
 
 
 
 

where u(t) is the decision variable defined over the prediction horizon length N. The control 
objective is to minimize a quadratic function that penalizes the deviations of the predicted 
states and inputs from their corresponding set-points (eq. (1a)). The nominal model of eq. (1b) 
is applied to predict the process of state evolution over the prediction horizon. To mitigate a 
feedback control scheme, the predicted model is initiated at each sampling time tk by the 
measured state from the real system x(tk). The input constraints U and state constraints X are 
enforced over the entire prediction horizon. The above MPC formulation can be applied to 
nonlinear discrete systems by replacing the nominal model of eq. (1b) by the nominal discrete 
system (i.e., x(k+1) = fd (x(k), u(k), 0)) [35]. Up to this point, addressing the external 
disturbances and model uncertainties of the controlled process is not considered within the 
above deterministic MPC formulation. Such uncertainties will be taken into account via 
stochastic MPC paradigms, presented in the following subsection. 

Stochastic model predictive control 
A stochastic MPC algorithm can be developed using stochastic programming that can be 

reformulated as an optimal control problem considering the system's uncertainties. To 

 
min

𝑢𝑢 (𝑡𝑡)∈𝑆𝑆(∆)
� [𝑥𝑥� (𝜏𝜏)𝑇𝑇𝑄𝑄𝑥𝑥�(𝜏𝜏) + 𝑢𝑢(𝜏𝜏)𝑇𝑇𝑅𝑅𝑢𝑢(𝜏𝜏)]𝑑𝑑𝜏𝜏

𝑡𝑡𝑘𝑘+𝑁𝑁

𝑡𝑡𝑘𝑘

 
 

(1a) 

   
 𝑠𝑠. 𝑡𝑡  𝑥𝑥�(𝑡𝑡) = 𝑓𝑓(𝑥𝑥�(𝑡𝑡),𝑢𝑢(𝑡𝑡))̇  (1b) 
 𝑢𝑢(𝑡𝑡) ∈ 𝑈𝑈,∀ 𝑡𝑡 ∈ [𝑡𝑡𝑘𝑘, 𝑡𝑡𝑘𝑘+𝑁𝑁] (1c) 
 𝑥𝑥�(𝑡𝑡𝑘𝑘) = 𝑥𝑥(𝑡𝑡𝑘𝑘) (1d) 
 𝑥𝑥(𝑡𝑡) ∈ 𝑋𝑋,∀ 𝑡𝑡 ∈ [𝑡𝑡𝑘𝑘, 𝑡𝑡𝑘𝑘+𝑁𝑁] (1e) 
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understand how stochastic programming optimization problem is structured as an optimal 
control problem, the following stochastic discrete-time system is considered [36]: 

 
𝑥𝑥𝑡𝑡+1 = 𝑓𝑓(𝑥𝑥𝑡𝑡,𝑢𝑢𝑡𝑡 ,𝑤𝑤𝑡𝑡) (2) 

  
𝑦𝑦𝑡𝑡 = ℎ(𝑥𝑥𝑡𝑡,𝑢𝑢𝑡𝑡 , 𝑣𝑣𝑡𝑡) (3) 

 
where t ∈ N, x, and u are the state and input vectors, respectively. The disturbance vector w and 
v can represent a wide range of uncertainties with known probability distributions. The term f is 
the function that describes the system dynamics, while h is the function that describes the 
outputs. For full state-feedback control, the N-stage feedback control policy for stochastic 
MPC can be defined as follows: 

 
𝜋𝜋: = [𝜋𝜋0(. ),𝜋𝜋1(. ), …𝜋𝜋𝑁𝑁−1(. )] (4) 

 
where π(.) is the Borel-measurable function for all i= 0...N-1. The stochastic discrete-time 
system can be formulated as a finite moving-horizon optimal control problem. By applying the 
MPC feedback mechanism, the value function of the resulting stochastic optimal control is 
commonly defined as follows: 

𝑉𝑉𝑁𝑁: = 𝐸𝐸𝑥𝑥𝑡𝑡[�𝐽𝐽𝑐𝑐

𝑁𝑁−1

𝑖𝑖=0

(𝑥𝑥�𝑖𝑖,𝑢𝑢𝑖𝑖) + 𝐽𝐽𝑓𝑓(𝑥𝑥�𝑁𝑁)] (5) 

  
where Jc and Jf are the stage cost function and the final cost function, respectively. Given the 
initial states, the term \tilde xi represents the predicted states at the time i. The objective 
function (eq. (5)) is usually subjected to chance constraints. Using the conditional probability 
Prxt, the joint chance constraint over the prediction horizon formulation as follows [45, 46]: 

 
𝑃𝑃𝑃𝑃𝑥𝑥𝑡𝑡[𝑔𝑔𝑖𝑖(𝑦𝑦�𝑖𝑖) ≤ 0,∀ 𝑗𝑗 = 1, … , 𝑠𝑠] ≥ 𝛽𝛽,∀𝑖𝑖 = 1, … ,𝑁𝑁 (6) 

 
where gi is the Borel-measurable function, 𝑦𝑦𝚤𝚤 � is the predicted outputs at time i. s represents the 
number of inequality constraints, and the probability lower bound is represented by β. By using 
value function (eq. (5)) with joint chance constraints (eq. (6)), the stochastic optimal control 
problem for the stochastic discrete-time system (2-3) can be formulated as follows [39, 40]: 
 

𝑉𝑉𝑁𝑁o: = min
𝜋𝜋
𝑉𝑉𝑁𝑁 (𝑥𝑥𝑡𝑡,𝜋𝜋) (7) 

Subject to: 
 

 

𝑥𝑥𝑖𝑖+1 = 𝑓𝑓(𝑥𝑥𝑖𝑖,𝑢𝑢𝑖𝑖 ,𝑤𝑤𝑖𝑖)                                                 ∀𝑖𝑖 ∈ 𝑍𝑍[0,N−1]  
𝑦𝑦𝑖𝑖 = ℎ(𝑥𝑥𝑖𝑖 ,𝑢𝑢𝑖𝑖, 𝑣𝑣𝑖𝑖)                                                      ∀𝑖𝑖 ∈ 𝑍𝑍[0,𝑁𝑁]  
𝑃𝑃𝑃𝑃𝑥𝑥𝑡𝑡[𝑔𝑔𝑖𝑖(𝑦𝑦�𝑖𝑖) ≤ 0,∀ 𝑗𝑗 = 1, … , 𝑠𝑠] ≥ 𝛽𝛽                      ∀𝑖𝑖 ∈ 𝑍𝑍[1,𝑁𝑁]  
𝑤𝑤𝑖𝑖 ~ 𝑃𝑃𝑖𝑖                                                                      ∀𝑖𝑖 ∈ 𝑍𝑍[0,𝑁𝑁−1]  
𝑥𝑥�0 = 𝑥𝑥𝑡𝑡                                                                        ∀𝑖𝑖 ∈ 𝑍𝑍[0,𝑁𝑁−1]  

 
where Vo

N is the function that represents the optimal value under the feedback control policy 
π(0). The optimal control sequence is implemented in a receding-horizon fashion (i.e., the first 
element of the optimal sequence π* is only applied between two consecutive time instants). 
Stochastic MPC is an optimal control scheme that aims to balance the trade-offs between 
fulfilling the overall control objectives and ensuring the satisfaction of the probabilistic 
constraints resulted from the uncertainty [36-38]. 
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Scenario approach model predictive control 
The scenario approach can be used to reformulate the stochastic optimization programming 

problem into a deterministic equivalent problem. To illustrate, a two-stage stochastic linear 
programming is used as an example. In two-stage stochastic programming with recourse, the 
decision-maker can take corrective actions (recourse decisions) after realizing the uncertainty 
over sequence stages. A general formulation for a two-stage stochastic linear programming 
with linear constraints is given by [47]: 

 
𝑚𝑚𝑖𝑖𝑚𝑚 𝑓𝑓(𝑥𝑥) + 𝐸𝐸[𝑄𝑄(𝑥𝑥,𝜔𝜔)] (8) 

Subject to  
 

 

𝐴𝐴𝑥𝑥 = 𝑏𝑏,       𝑥𝑥 ∈ 𝑋𝑋 (9) 
 
where Q(x,ω) is the second stage optimal objective value 
 

 

𝑄𝑄(𝑥𝑥,𝜔𝜔) = 𝑚𝑚𝑖𝑖𝑚𝑚𝑔𝑔(𝑥𝑥, 𝑦𝑦,𝜔𝜔) 
 

(10) 

𝑊𝑊𝜔𝜔𝑦𝑦𝜔𝜔 + 𝑇𝑇𝜔𝜔𝑥𝑥 = ℎ𝜔𝜔 ,            𝑦𝑦𝜔𝜔 ∈ 𝑌𝑌 
 

(11) 

where ω is the probability distribution of the uncertain data for the second-stage, x represents 
the first-stage decision variable, and y represents the decision variable of the second-stage with 
the recourse action cost.  Eω is the optimal objective value expectation of the second-stage 
decision variable. Q (x, ω) represents the recourse action cost. Wω represents the compensation 
of the system's variation of the Tx ≤ hω. To overcome the difficulty of obtaining the random 
variable's probability distribution function, the continuous probability distribution can be 
approximated using a finite scenario set (s) with their probabilities (πs). As a result, the 
two-stage stochastic programming problem can be reformulated as a deterministic equivalent 
problem as follows: 

 
𝑚𝑚𝑖𝑖𝑚𝑚 𝑓𝑓(𝑥𝑥) + �𝜋𝜋𝑠𝑠𝑞𝑞𝑠𝑠𝑇𝑇𝑦𝑦𝑠𝑠

𝑆𝑆∈𝑆𝑆

 (12) 

Subject to   
𝐴𝐴𝑥𝑥 = 𝑏𝑏 (13) 

  
𝑊𝑊𝜔𝜔𝑦𝑦𝜔𝜔 + 𝑇𝑇𝜔𝜔𝑥𝑥 = ℎ𝜔𝜔 ,            𝑦𝑦𝜔𝜔 ∈ 𝑌𝑌 (14) 

 
To apply the MPC algorithm, the deterministic optimization problem can be formulated as 

an optimal control problem. To have an accurate solution to the optimization problem, a large 
number of scenarios have to be generated to represent the system's uncertainties.  However, 
including a high number of scenarios raises the computational time or causes an intractable 
problem. Different approaches have been used to overcome this issue [48]. One way to reduce 
the computational time is to apply scenario reduction techniques [49, 50], which reduces the 
number of scenarios. As a result, the computational time is reduced, whereas the solution 
accuracy is compromised. Another way to circumvent the issue of a high number of scenarios 
is by using an online MPC algorithm [51-53]. 

Robust model predictive control 
The decision in the robust optimization can be a one-stage decision that has to be taken 

before the uncertainty is realized, and no corrective action can be taken after the realization of 
the uncertainty. The robust optimization can also be formulated as multiple stages, where the 
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decision can be taken depending on the flow of the uncertainty realization. It is worth noting 
that it is challenging to incorporate the dynamic of the uncertainty in the robust optimization 
[54]. The general robust optimization formulation is [55]:  

 
𝑚𝑚𝑖𝑖𝑚𝑚 𝑓𝑓o(𝑥𝑥),    𝑆𝑆. 𝑡𝑡.  𝑓𝑓𝑖𝑖 (𝑥𝑥,𝑢𝑢𝑖𝑖) ≤ 0  , 𝑖𝑖 = 1,2, . . .𝑚𝑚 (15) 

where f0(𝑥𝑥) is the objective to be optimized, and fi (𝑥𝑥, 𝑢𝑢i) is the system constraints. f0 and fi are 
Rn →R functions. x is a vector of decision variables, and 𝑢𝑢i is the parameter uncertainties of the 
uncertainty set (Ui). m is the number of uncertain parameters. A comprehensive survey of 
robust optimization can be found in [56]. The robust optimization problem can be formulated 
as a robust MPC optimization problem, iteratively over a finite-moving horizon window. In 
other words, given the initial state, the state-feedback control law is used to minimize the 
worst-case scenario subjected to control input and output constraints [57]. The summary of the 
formulations of MPC optimization methods is shown in Table 2. 

 
Table 2. Formulations of MPC optimization methods 

 
Optimization 
Methods 

Objective Function Constraints 

Deterministic 
MPC 𝐦𝐦𝐦𝐦𝐦𝐦

𝒖𝒖 (𝒕𝒕)∈𝑺𝑺(∆)
� [𝒙𝒙� (𝝉𝝉)𝑻𝑻𝑸𝑸𝒙𝒙�(𝝉𝝉)

𝒕𝒕𝒌𝒌+𝑵𝑵

𝒕𝒕𝒌𝒌
+ 𝒖𝒖(𝝉𝝉)𝑻𝑻𝑹𝑹𝒖𝒖(𝝉𝝉)]𝒅𝒅𝝉𝝉 

  𝑥𝑥�(𝑡𝑡) = 𝑓𝑓(𝑥𝑥�(𝑡𝑡),𝑢𝑢(𝑡𝑡))̇  
𝑢𝑢(𝑡𝑡) ∈ 𝑈𝑈,∀ 𝑡𝑡 ∈ [𝑡𝑡𝑘𝑘 , 𝑡𝑡𝑘𝑘+𝑁𝑁] 

𝑥𝑥�(𝑡𝑡𝑘𝑘) = 𝑥𝑥(𝑡𝑡𝑘𝑘) 

𝒙𝒙(𝒕𝒕) ∈ 𝑿𝑿,∀ 𝒕𝒕 ∈ [𝒕𝒕𝒌𝒌, 𝒕𝒕𝒌𝒌+𝑵𝑵] 

Stochastic MPC 𝑽𝑽𝑵𝑵𝐨𝐨 : = 𝐦𝐦𝐦𝐦𝐦𝐦
𝝅𝝅

𝑽𝑽𝑵𝑵 (𝒙𝒙𝒕𝒕,𝝅𝝅) 𝑥𝑥𝑖𝑖+1 = 𝑓𝑓(𝑥𝑥𝑖𝑖 ,𝑢𝑢𝑖𝑖 ,𝑤𝑤𝑖𝑖)                                                 ∀𝑖𝑖 ∈ 𝑍𝑍[0,𝑁𝑁−1] 
𝑦𝑦𝑖𝑖 = ℎ(𝑥𝑥𝑖𝑖 ,𝑢𝑢𝑖𝑖 , 𝑣𝑣𝑖𝑖)                                                      ∀𝑖𝑖 ∈ 𝑍𝑍[0,𝑁𝑁] 
𝑃𝑃𝑃𝑃𝑥𝑥𝑡𝑡[𝑔𝑔𝑖𝑖(𝑦𝑦�𝑖𝑖) ≤ 0,∀ 𝑗𝑗 = 1, … , 𝑠𝑠] ≥ 𝛽𝛽                      ∀𝑖𝑖 ∈ 𝑍𝑍[1,𝑁𝑁] 
𝑤𝑤𝑖𝑖  ~ 𝑃𝑃𝑖𝑖                                                                       ∀𝑖𝑖 ∈ 𝑍𝑍[0,𝑁𝑁−1] 

𝒙𝒙�𝟎𝟎 = 𝒙𝒙𝒕𝒕                                                                       ∀𝒊𝒊
∈ 𝒁𝒁[𝟎𝟎,𝑵𝑵−𝟏𝟏] 

Robust MPC 𝒎𝒎𝒊𝒊𝒎𝒎𝒇𝒇𝒐𝒐(𝒙𝒙), 𝒇𝒇𝒊𝒊(𝒙𝒙,𝒖𝒖𝒊𝒊) ≤ 𝟎𝟎  , 𝒊𝒊 = 𝟏𝟏,𝟐𝟐, . . .𝒎𝒎 

 

DEMAND SIDE MANAGEMENT VIA MODEL PREDICTIVE CONTROL  
Buildings account for 40% of our worldwide energy consumption [58, 59]. Therefore, the 

need for controlling building energy consumption has received much attention. Many 
researchers investigate the potential of reducing electricity bills and greenhouse gases by 
optimizing energy usage in a building [60, 61]. According to [62], up to 35% of energy could 
be saved by selecting an optimal temperature set-point. Also, using the internet of energy 
technology is substantial for managing the energy network in a building. Internet of energy 
facilitates monitoring and controlling the flow of information between sources and loads. 
Taking advantage of the internet of energy technology, the fast ability to feed the control 
system with updated information helps the controller algorithm make an optimal decision 
[63-65]. As a result of this technology, many researchers applied the MPC technique on 
building energy management systems and showed that the MPC has better performance over 
other controllers in terms of transient and steady-state responses. Also, the MPC approach 
provides the ability to account for multivariable control action, which can be applied to 
optimize generation and demand response. MPC is considered one of the best control strategies 
for optimizing the energy flow within a building due to its inherent advantages, such as 
anticipatory control actions, handling uncertainty, and the time-varying system. MPC 
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techniques can incorporate energy conservation strategies and disturbance rejection in its 
algorithm [17, 66]. However, there are several challenges when MPC is implemented, such as 
control design and building modeling. The decision to use the MPC strategy for a building 
mainly depends on its cost and performance [67].  

In general, the controller's goal in a building energy management system can be categorized 
as follows. 1) minimize the operational cost, 2) maximize the utilization of RES, 3) achieve 
thermal comfort level by using a minimal amount of energy. 4) minimize the peak load or 
reschedule it. To achieve the control goal using MPC strategies, an optimal control 
optimization problem has to be formulated to minimize an objective function considering 
several constraints. The objective is usually to minimize the energy cost, but multi-objectives 
can minimize the cost and guarantee thermal comfort. Also, time-dependent constraints can be 
used for different comfort levels. Constraints can also be constructed to limit some of the 
parameters. Various Constraints can be considered in the MPC, such as equipment, energy 
match, economic, environmental, and political constraints.  

 

 
Figure 2. Smart home energy management 

 
Figure 2 illustrates the basic methodology of MPC for a building. The design parameters 

and predicted disturbances are the inputs to the MPC. Considering these inputs, the MPC 
optimizer minimizes the objective function is subjected to the constraints and the dynamic of 
the building model. Using the feed mechanism, the MPC controller applied only the first step 
of the solution and discarded the rest. In each time step, the MPC is updated with the current 
states. Based on the DR program, the MPC controller can manage the different types of loads to 
minimize energy costs. For example, the storage loads and the shiftable loads can be feed 
during the off-peak hours, where the electricity price is low. 

As previously discussed, the MPC formulation can be categorized into deterministic MPC, 
stochastic MPC, scenario approach MPC, and robust MPC. The main difference in these 
formulations is how the system's uncertainties are considered on the optimization problem. 
Researchers used all these formulations to develop an MPC algorithm that can manage the 
building's energy system. Regardless of the MPC formulation, the MPC algorithm's 
implementation can be centralized, decentralized, distributed [68, 69]. Table 3 summarizes 
the techniques and evaluation of recent publications' contributions to utilizing RES, thermal 
comfort, cost reductions, shaving, shifting, or shaping load peaks for buildings' energy 
consumption, and characteristics of the demand response [30, 32, 70-107]. 
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Table 3. MPC formulations for demand-side energy management 
 

Formulation Ref Techniques Utilized 
RES 

Thermal 
Comfort 

Reduce 
Cost 

Load 
Peak DR 

Deterministic 
MPC [70] EMPC No No Yes Shaving 

26% TOU 

[71] Mixed-Integer Nonlinear 
Programming, EMPC PV Yes Yes Shifting Price-Based. 

[72] Artificial Neural Networks 
Dynamic Programming Wind Yes Yes Shaping Control Load 

[73] MINLP 
Branch &Bound Algorithm No Yes Yes Shaving Auxiliary 

Services 
[74] Cluster Analysis PV Yes Yes Yes DLC 
[75] Proposed Algorithm PV Yes Yes Shaving 

%23 
Ancillary 
Services 

[76] Mixed-Integer Linear 
Programming PV No 7% Shaving TOU 

[77] Linear State-Space Model, 
Discretized Wind No Yes Shaving Dispatchable 

[78] Quadratic Program No Yes Yes Shaving No 

[79] Exponentially Weighted 
Moving Average Algorithm Yes Yes Yes Shifting DCL 

[80] 
 

Linear Quadratic Method 
Monte Carlo No Yes Energy 

Saving 43% Shaving No 
[81] 

 
Linear Quadratic Method 

Monte Carlo No Yes Energy 
Saving 43% Shaving No 

[82] Mixed-Integer 
Programming 

Solar 
Thermal Yes Yes Shifting Price-Based 

[83] Cooperative Optimization, 
EMPC No Yes 15% Shifting No 

[84] Discrete Quadratic 
Programming No No Yes Shifting Incentive-Based 

[85] Adaptive Approach Wind, 
PV 

 

Yes 46% Shaving TOU 
Stochastic 
MPC [30] Probabilistic Constraints 

Factorial Simulation No Yes Yes No No 

[32] Discrete Algorithm 
Sampling Algorithm No Yes Yes Shaving No 

[86] Monte Carlo 
Probabilistic Constraints PV Yes Yes Shafting DCL 

[87] Monte Carlo 
Probabilistic Constraint No Yes Yes No No 

[88] Probabilistic 
Time-Varying Constraint No Yes Yes Shaving Incentive-Based 

[89] Two-Stage Optimization 
Discrete No No 7.5% Shifting Price-Based 

[90] Quadratic Programming No No Yes No No 
Scenario 
Approach 
MPC 

[91] Discrete, Markov Chain, 
Monte Carlo Wind No 12% Shifting DCL 

[92] Probabilistic Monte Carlo Solar Yes 20% Ramp 
Shaving 50% RTP 

[93] Probabilistic 
Gaussian Distribution No Yes Yes Shifting RTP 

[94] Mixed-Integer Linear 
Programming Solar Yes 25% No Price-based 

[95] EMPC 
Stochastic State Space No Yes Yes Shifting TOU 

[96] EMPC 
Probabilistic, Scenario No No 9-32% Shaving RTP 

[97] Sequential Linear 
Programming, EMPC 

Wind, PV 
Solar 

 
Yes 21%-75% Shifting Price-Based 

[98] Probabilistic Search No Yes Energy 
Savings 35% Shaving Incentive-Based 

[99] Neural Network 
Predictive Control 

Wind 
PV No Yes Shaving Reliability 

Robust [100] Fuzzy Model No Yes Yes Yes No 
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MPC [101] Quadratic Programming No Yes Yes Shaving Incentive-Based 
 [102] Mixed-Integer Linear 

Programming No Yes yes Shifting  
TOU 

 [103] EMPC, Decomposition 
Control Variables PV No No yes  

No 

 [104] EMPC, Min-max Worst 
Case Approach PV No Yes Yes Price-Based 

 [105] Adaptive Robust MPC No Yes Energy 
Savings 20% 

Shaving 
Shifting 

Real-time- 
Based 

 [106] Robust Constraints 
Satisfaction No Yes yes Shifting  

No 

 [107] Linear Matrix Inequalities No Yes Yes 
 Shifting Price-Based 

Deterministic model predictive control in demand response  
The uncertainty parameters usually come from solar irradiation, occupancy, RES, and 

weather forecast in the energy management optimization problem. These uncertainty 
parameters are assumed to be time-independent parameters in the deterministic MPC approach. 
A vast body of literature applied deterministic MPC to manage energy networks in a building 
[70-79]. Table 3 shows the techniques and controller objectives for each reference that 
applied the deterministic MPC approach. 

A group of publications [70, 73, 77] used the hot water system in a building as an energy 
storage system. Based on the DR, the authors in [70] used an EMPC controller that optimized 
hot water system consumption by determining the optimal set-point of water temperature. 
Reference [77] proposed an MPC controller scheme that aggregated electric water heaters and 
provided the ISO with ancillary services. Also, the authors in [73] proposed an MPC controller 
scheme that aggregated thermostatically controlled appliances and provided them to the ISO as 
ancillary services. 

 A few publications [71, 72, 74, 75, 79] have directly dealt with the issue of the generation 
intermittency of renewable energy by using DR programs. References [79] and [74] used the 
DLC program to balance the renewable generation fluctuation by applying distributed and 
centralized MPC algorithms. The authors in [79] control the HVAC and the water level to 
shape the load while [74] controls the thermostat set-points for air conditioners. Reference [75] 
developed an MPC framework that optimizes the interaction between renewable generation 
and the battery storage system while maintaining the comfort level and reducing peak load. The 
authors in [72] proposed an MPC strategy to reduce the fluctuation of wind energy by 
regulating grid consumption and on-site energy generation and controlling the elastic loads. By 
modeling the building's behavior and weather forecasting, [71] proposed an EMPC controller 
that can match demand with fluctuations in supply. 

In [76], MPC based on a deep reinforcement learning method was used to utilize 
dispatchable loads and storage resources in a DR program. A prototype was installed to 
demonstrate the performance of their control method using the internet of things devices. In 
[78], a machine learning technique for MPC was applied to minimize energy usage and 
guarantee the end-user comfort level. Using machine learning reduced the hardware and 
software complexity of the controller and, as a result, the implementation cost. Experiments 
were conducted in [80, 81] to show the MPC performance's superiority to minimize energy 
consumption while maintaining comfort. Reference [82] proposed a nonlinear model 
predictive controller that optimizes the energy usage and comfort level based on a linear 
thermal model, which reduces the problem complexity, resulting in reducing the computational 
time.  
Stochastic model predictive control in demand response 

In building energy management, researchers have used stochastic MPC formulation to 
include uncertainties such as occupancy, ambient temperature, solar radiation, and renewable 
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energy generation. Table 3 shows the techniques and controller objectives for each reference 
that applied the stochastic MPC approach. In contrast with the deterministic approach, the 
stochastic MPC considers the uncertainty in the decision-making process. To include 
uncertainties in the DR optimization problem, chance-constrained is usually used in a 
stochastic MPC algorithm. For instance, reference [86] proposed a chance-constrained MPC to 
take into account the uncertainties of ambient temperature and PV generation. The developed 
model optimizes the scheduling of the controllable appliances based on energy cost, thermal 
comfort, and PV system. Chance constraints can be transformed into deterministic using a 
sample-based method and discrete convolution integrals, as shown in [32]. This reference 
considers the uncertainties of occupancy loads and weather and used stochastic MPC to control 
small-scale HVAC systems while guaranteeing the occupancy's comfort level. However, using 
chance constraints on a large system sometimes leads to computational intractability issues. To 
overcome this problem, the authors in [87] developed a closed-loop disturbance feedback 
formulation to reduce the conservatism of the problem. This reference used Monte-Carlo 
simulations to validate the chance-constrained solution. The stochastic algorithm was capable 
of considering the weather forecast and ensure temperature preferences and DR requests. The 
authors in [30] and [88] focused on including weather prediction uncertainty in the stochastic 
MPC to increase energy efficiency and maintain the thermal comfort level. The authors 
compared the predictive controller and rule-based controller with a stochastic MPC controller, 
which outperforms both controllers. A recent publication [89] compared deterministic and 
stochastic MPC of HVAC plants and showed that the deterministic solution fails to capture 
uncertainties, resulting in economic penalties. On the other hand, the stochastic MPC approach 
was more prepared to handle the uncertainties, leading to cost savings.  
Scenario approach model predictive control in demand response 

Stochastic MPC based on chance constraints is difficult to be solved. Therefore, some 
researchers use a scenario approach to reformulate the stochastic MPC optimal problem to a 
deterministic equivalent problem. Table 3 shows the techniques and controller objectives for 
each reference that applied the scenario approach MPC. The system's uncertainty can be 
captured using a sampling method based on the probability distribution function [108].  

The Monte-Carlo technique is commonly used to sample a probability distribution 
randomly. Applying the Monte-Carlo technique, reference [91] used energy storage as a DR to 
shave the load and reduce wind generation fluctuation. In this reference, the wind generation 
and customer behavior uncertainties were considered in the scenario-based MPC to maximize 
social welfare. 

Another approach to include the uncertainty in MPC algorithms is using the Markov chain 
modeling framework. For instance, the wind power uncertainty was modeled in [91] using the 
Markov chain Monte-Carlo method.  

The high penetration of renewable resources increases the probabilistic variations of power 
generation. These probabilistic variations can be handled using energy storage systems and DR 
programs. However, some of the DR programs may increase the system's uncertainty due to the 
customer's behavior. Therefore, the online MPC approach can be more adaptable to the 
probabilistic variations of the model and enhance the solution's accuracy [91, 92, 99].  

A real-time optimization framework MPC can utilize thermal mass storage and energy 
storage systems to control power flow between the grid, a PV system, and a commercial 
building [92]. Reference [99] developed a real-time MPC algorithm based on a neural network 
technique that manages the energy system in a zero-energy building.  

Considering the uncertainties of the model, such as solar irradiation, occupancy, renewable 
energy resources, and weather forecast, the energy management stochastic optimization 
problems are formulated to minimize the operational cost of integrating renewable energy 
resources, DR, and controllable, and storage devices Figure 2 [93-98]. The authors in [93] 
took advantage of a commercial building's flexible operation and proposed an MPC strategy 
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that considered real-time pricing and thermal comfort level. To increase the model's accuracy, 
the authors consider the uncertainty of cooling demands in their stochastic optimization 
problem. In [92], the authors applied MPC to optimize the HVAC system and the storage 
devices considering thermal comfort constraints and external temperature uncertainty. 
Reference [95] investigated the EMPC strategy's ability to utilize a high penetration of 
renewable energy in the system to reduce the operational cost and maintain the system's 
reliability. On the other hand, reference [96] applied EMPC on supermarket refrigeration 
systems, which enable it to be used as ancillary services. In [95], the authors used sequential 
linear programming to achieve an EMPC strategy that reduces computational time and 
minimizes the energy cost significantly. In contrast, the authors in [98] used cloud parallel 
computation to consider the full complexity simulation in the proposed MPC algorithm.  
Robust model predictive control in demand response 

The robust optimization deals with the range or region of a deterministic uncertainty while 
taking into account the worst-case scenario over the predetermined deterministic uncertainty 
set. Since robust optimization does not need probability distribution, it is preferable when the 
probability distribution is difficult to obtain from uncertain data. The robust optimization 
approach uses an uncertainty set that covers all the possible outcomes of the uncertain 
parameters. Thus, the optimality and feasibility of a solution are guaranteed within any 
realizations of the uncertainty set. Therefore, the uncertainty set must be carefully constructed 
to guarantee computational tractability. The objective is to find the optimal solution 
considering the worst-case scenario; hence, there is no need to include a large number of 
scenarios, like in the case of stochastic programming. Considering the worst-case scenario 
increases the reliability of solutions but leads to very costly (conservative) solutions. 
Therefore, by adding a constraint to the uncertainty set, a trade-off between the cost and 
reliability can be optimized [109, 110].  

Due to the conservative solution and the implementation complexity of robust MPC 
optimization [111], a few researchers have applied robust MPC to the DSM optimization 
problem. Table 3 shows the techniques and controller objectives for each reference that 
applied the robust MPC. The authors in [101] formulated a min-max robust optimization 
problem taking into an account comfort level, controllable load, and electricity price. 
Considering the uncertainties of load predictions and ambient temperature, authors in [100] 
applied a fuzzy interval model to define the uncertainty bounds in the robust MPC formulation. 
The authors in [102] formulate a robust MPC optimization problem that optimizes multiple 
energy forms considering source-network-load flexibilities. In [103, 104], the authors propose 
a robust MPC that guarantees an optimal energy dispatch in a smart micro-grid considering 
bounded demand uncertainty. An adaptive robust MPC is presented in [105] to perform online 
estimation of uncertain parameters of the building, while the adaptive robust MPC proposed in 
[106] relies on recursive set membership identification to updated the close-loop operation in 
each time step. Robustness analysis to state estimation for a hybrid ground coupled heat pump 
system is applied in [107] using robust MPC. The result shows that robust method did not 
improve the state estimation for the investigated system. 

CONCLUSION AND FUTURE DIRECTIONS 
A smart grid advances two-way communication between the generation and end-users. 

This advancement of smart grid communication technologies allows consumers to participate 
in the electricity market through DR programs. Various DR programs have been used to 
optimize the participation of the demand-side. Utilizing the full potential of DR programs 
needs a control system that manages the energy network. Different methods of controlling 
techniques have been applied to manage the demand response in the literature. This paper 
provides a review of different MPC formulations, which are deterministic MPC, stochastic 
MPC, scenario approach MPC, and robust MPC. The deterministic MPC approach has the 
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lowest computational time and most straightforward formulation comparing to other 
approaches. However, the perfect prediction assumption for the uncertainties may lead to a 
sub-optimal solution. The stochastic MPC approach considers the uncertainties in the 
decision-making process, resulting in a more realistic solution. The significant challenges of 
the stochastic approach are computing time and obtaining the probability distribution of the 
random variables. On the other hand, robust MPC deals with uncertainty without knowing the 
probability distribution by constructing an uncertainty set, which leads to a robust solution. 
However, the robust MPC solution is very costly since it considers the worst-case scenario. 

The demand-side management optimization problems are subject to various uncertainties, 
including weather forecast, solar irradiation, occupant thermal comfort level, and electricity 
price. The high penetration of renewable distributed generation, such as wind and solar, has 
added additional uncertainties in the demand side due to the renewable energy sources 
fluctuations. However, these fluctuations can be mitigated by using an energy storage system. 
Smart grid capabilities also facilitate the utilization of the demand response programs to handle 
the demand side's uncertainties. Utilizing DR programs can increase power system reliability, 
reduce energy consumption, and minimize operational costs. To this end, an MPC strategy 
considers design parameters and predicted disturbances to come up with optimal control 
actions that maximize social welfare. Since the computing power has been improving, recent 
publications focus on including the uncertainties of the system in the MPC formulation. The 
main research challenge is how to optimize the energy flow and cost, considering the 
variability of the renewable energy, weather forecast, solar irradiation, thermal comfort, DR 
programs, and emission constraints. Most of the researchers applied the stochastic approach 
and considered some of these constraints. A few researchers used robust MPC since it 
generates a conservative solution. 

The objective of implementing MPC on the demand side is to minimize energy 
consumption, carbon footprint, and energy cost; and maximize thermal comfort and social 
well-fare. However, several challenges can face researchers when considering the MPC in the 
demand response optimization problem. These challenges can be summarized as follows: 

• Modeling a building for MPC implementation. 
• Considering all kinds of uncertainties, such as weather prediction, RES, DR 

programs, and occupancy, in one model. 
• Reducing the computational time to solve the optimization problem. 
• Affordability and availability of the communication infrastructure to collect system 

measurements. 
• Handling big data that is collected from the system. 
 

These challenges cause an observable discrepancy in the simulation results in the 
publications. A comprehensive model that considers all these challenges is needed. Taking 
advantage of smart grid technologies and cloud computing, artificial intelligence, and machine 
learning combined with MPC strategy has the potential to overcome these challenges and 
provide a cost-effective solution and ensure the security and reliability of the power system. 

NOMENCLATURE 

Abbreviations 
DCL Direct Control Load 
DR Demand Response 
DSM Demand Side Management 
EMPC Economic Model Predictive Control 
ESS Energy Storage System 
HVAC Heating, Ventilation, and Air Conditioning 
ISO Independent System Operator 
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MILP Mixed-Integer Linear Programming 
MINLP      Mixed-Integer Nonlinear Programming 
MPC Model Predictive Control 
R&D Research and Development 
RES Renewable Energy Sources 
RTP Real-Time Pricing 
TOU Time of Use 

 Variables 
u(t) Decision variable for the class of nonlinear 

continuous system 
𝑥𝑥�(𝑡𝑡) State variable for the class of nonlinear continuous 

system 
xt State vectors for the stochastic discrete-time system 

ut Input vectors for the stochastic discrete-time system 

w  Disturbance vector can represent a wide range of 
uncertainties with known probability distributions for 
the stochastic discrete-time system 

v Disturbance vector can represent a wide range of 
uncertainties with known probability distributions for 
the stochastic discrete-time system 

x First-stage decision for the two-stage stochastic 
linear programming 

y Second-stage decision for the two-stage stochastic 
linear programming 

ω Probability distribution of the uncertain data for the 
second-stage 

𝑥𝑥 Vector of decision variables for the robust 
optimization formulation 

𝑢𝑢i Parameter uncertainties of the uncertainty set for the 
robust optimization formulation 
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