
 

 

Journal of Sustainable Development of Energy, Water and 
Environment Systems 

 
http://www.sdewes.org/jsdewes 

 
Year 2026, Volume 14, Issue 2, 1140667 

 
 

    1 

 

Jour nal of Sust ainable D evelopment
of Ener gy, Wat er and Environment

System s

ISSN 1848-9257

h�p s://ww w.sd e we s.o rg/jsd ew e s

Original Research Article 

Impact of Electric Vehicle Charging on the Distribution  
Network of Oujda City, Morocco 

Mouad Karmoun*1, Wafae Arfaoui1, Smail Zouggar1, Mohamed Laarbi Elhafyani1, Hassan 
Zahboune1, Taoufik Ouchbel1, Adrian Alarcon Becerra2, Nikola Matak3 

1University Mohammed 1, School of Technology, Laboratory of Electrical Engineering and Maintenance (LEEM). 
BP, 473, 60000 Oujda. Morocco 

2CIRCE Dinamiza Business Park Ranillas Avenue Building 3D, 1er étage 50018, Saragosse España 
3University of Zagreb, Faculty of Mechanical Engineering and Naval  

Architecture, Ivana Lucica 5, 10000 Zagreb, Croatia 
e-mail: mourad.karmoun@ump.ac.ma, arfaouiwafae2@gmail.com, smail.zouggar@ump.ac.ma, 

m.elhafyani@ump.ac.ma, H.zahboune@ump.ac.ma, t.ouchbel@ump.ac.ma, aealarcon@fcirce.es, 
nikola.matak@fsb.unizg.hr 

Cite as: Karmoun, M., Arfaoui, W., Zouggar, S., Zahboune, H., Elhafyani, M. L., Ouchbel, T., Matak, N., Becerra, A. A., Impact 
of Electric Vehicle Charging on the Medium Voltacge Network of Oujda, Morocco, J.sustain. dev. energy water environ. syst., 

14(2), 1140667, 2026, DOI: https://doi.org/10.13044/j.sdewes.d14.0667 

ABSTRACT 
Electric-vehicle charging can erode operating margins in distribution networks, yet impacts are 
often localized rather than system-wide. This study quantifies unmanaged charging effects on the 
Oujda 60/22-kV system using a geo-referenced steady-state power-flow model coupled with a 
stochastic charging generator for cars, motorcycles and buses. The network representation 
comprises 124 substations and 117 branches, and we examine snapshots at 0%, 10% and 30% 
adoption. In thermal terms, the bulk of the network remains comfortably loaded: the share of lines 
operating at ≤70% of their rating is 81% at baseline, 79% at 10% and 78% at 30%. Localized 
constraints intensify modestly with penetration: the share of overloaded lines (>100%) rises from 
6% to 7% and 9%, and the worst-loaded span increases from 151.6% to 157.2% and 168.1%. 
Voltage performance is similarly robust in bulk (median around 0.97 per unit), with a small weak-
bus tail near charging hotspots. All cases converged reliably. The workflow is lightweight and 
reproducible, supporting feeder-level hosting-capacity screening and motivating targeted 
reinforcement or simple smart-charging measures in data-constrained systems. 

KEYWORDS 
Energy transition, Electric vehicle integration, Stochastic modeling, Load profiling, Urban power 
grids, Gridcal. 

INTRODUCTION 
Electric vehicles (EVs) are being integrated into urban power grids, creating both 

opportunities and challenges for system operation. As adoption accelerates driven by 
environmental goals and policy incentives assessing the impacts of EV charging on grid 
performance is critical for reliability and efficiency. According to the International Energy 
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Agency, the global stock of electric cars surpassed 10 million in 2020, a 43% increase over 2019 
despite the COVID-19 downturn [1], and continued growth is expected as transport 
decarbonizes. 

Shifting focus to a regional perspective, Morocco has emerged as a leader in sustainable 
development, targeting 96% renewable electricity generation by 2050 through aggressive 
investments in solar, wind, and hydropower. This transition is critical for decarbonizing key 
sectors, particularly transportation, which accounts for 27% of national greenhouse gas 
emissions [2]. Morocco's Nationally Determined Contribution under the Paris Agreement 
highlights renewable energy integration and EV adoption as pivotal strategies to meet its 
environmental objectives [3]. Moreover, the nation’s ambition to become a manufacturing hub 
for EV batteries and components is underscored by plans for a USD 2 billion gigafactory 
dedicated to lithium-ion battery production, supporting the annual manufacturing of 300,000 to 
500,000 EVs. This strategy builds on Morocco’s robust automotive industry, which currently 
produces over 700,000 vehicles per year [4]. However, before such ambitions can be fully 
realized, it is necessary to comprehensively analyze the implications of large-scale EV adoption 
on the country's power grid infrastructure [5] 

Recent Africa-focused evidence is emerging but remains sparse relative to Europe and East 
Asia. In Morocco, medium-voltage case studies report that integrating electric-vehicle chargers 
in urban feeders (Casablanca) increases evening peaks and aggravates localized undervoltage 
and harmonic exposure, underscoring the need for feeder-level siting and coordination [5]. For 
Sub-Saharan systems, a South African hosting-capacity study demonstrates that even single-
phase charging can materially constrain low-voltage networks and illustrates a Monte-Carlo 
workflow designed for minimal data environments ‒ directly relevant to Oujda’s planning 
context [6]. A recent regional review synthesizes deployment barriers (distribution readiness, 
charging siting, tariff design) and highlights the importance of lightweight, reproducible methods 
for utilities operating with limited telemetry [7]. These findings motivate our geo-referenced, 
data-efficient workflow and our focus on feeder-level loading bands and voltage-quality 
indicators. 

Technically, rising EV adoption reshapes demand patterns on power grids, particularly at the 
distribution level, introducing significant operational challenges if charging remains unmanaged. 
Uncontrolled EV charging can increase peak loads, risking infrastructure overloads [8]. The 
spatial clustering of this demand can cause voltage deviations and power quality issues [9], while 
also creating the potential for voltage instability in weak-grid areas or at feeder extremities [10]. 
Aggregated charging loads may threaten the thermal limits of transformers and cables, 
potentially reducing asset lifespan [11]. In broader terms, Sarda et al. [12] review how these 
integration challenges impact overall system efficiency, while Sundstrom and Binding [13] 
specifically quantify the increase in distribution losses when grid constraints are not actively 
managed. Furthermore, the proliferation of high-power fast-charging stations may create 
harmonic distortions, further complicating power quality management [14]. These multiple, 
interrelated challenges underscore the need for detailed impact studies and effective grid 
enhancements. 

To address these challenges, smart charging algorithms that coordinate charging rates and 
times have demonstrated effective peak-demand mitigation and load smoothing [15]. A more 
advanced bidirectional operation, Vehicle-to-Grid (V2G), has also been proposed. In V2G, 
aggregated EVs modulate charging and can export power to provide peak shaving, feeder-level 
voltage support, and ancillary services when coordinated with distribution constraints [16]. 
Recent studies have explored various aspects of Vehicle-to-Grid (V2G) integration. Sovacool et 
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al. [17] reviewed the business models and innovation systems required to facilitate V2G 
technology adoption. Kumar et al. [18] provided a comprehensive overview of V2G integration, 
emphasizing its potential to power future energy systems. Furthermore, Mastoi et al. [19] 
analyzed specific charging-dispatch strategies within distribution networks to optimize grid 
flexibility while managing constraints. Deep reinforcement learning has also been applied for 
optimal V2G frequency regulation [20]. In this paper, we quantify today’s unidirectional (G2V) 
impacts for Oujda; V2G is scoped as future work to test feeder-level benefits in the 60/22 kV 
network. 

In line with these operational concerns, accurate modeling of EV charging demand emerges 
as a critical component for evaluating its implications on the power grid. Various methodologies 
have been explored in the literature to address this challenge. Stochastic modeling, such as the 
Monte Carlo simulation framework developed by Richardson et al. [21], incorporates 
randomness in factors like arrival times, state-of-charge, and charging durations to capture real-
world variability and assess demand scenarios with associated probabilities. Similarly, spatial 
distribution plays a significant role, with research by Mu et al. [22] highlighting how clustering 
of charging stations in specific areas can strain local networks, exacerbate voltage and loading 
issues. Together, these approaches contribute to a comprehensive understanding of EV charging 
demand dynamics and their broader impact on the power grid. 

To further explore these dynamics, simulation tools play a vital role in assessing the effects of 
EV integration on power grids. Among commonly utilized software, GridCal stands out as an 
open-source tool supporting power flow calculations, time-series simulations, and hosting 
capacity assessments, with its Python compatibility enhancing flexibility for custom studies [23]. 
OpenDSS, developed by the Electric Power Research Institute (EPRI), provides a comprehensive 
framework for modeling electric power distribution systems, enabling advanced analyses such as 
harmonic studies and quasistatic time-series simulations [24]. Similarly, MATPOWER, a 
MATLAB-based package, is widely adopted in academia for its user-friendly design and its 
capability to perform power flow and optimal power flow analyses for both transmission and 
distribution networks [25]. These simulation tools collectively empower researchers to construct 
detailed power system models, simulate diverse conditions, and devise effective strategies to 
address emerging challenges related to EV integration. 
Study Scope 

We conduct a two-stage, steady-state assessment for Oujda City. In the first stage, a 
stochastic EV-charging model generates an 8,760-hour load profile customized to the city's 
vehicle fleet and seasonal usage patterns. In the second stage, the annual average power derived 
from this profile serves as the steady-state input for an alternating-current power-flow simulation 
using GridCal API. Voltage levels and line loading are analyzed under 0%, 10%, and 30% EV 
adoption scenarios to provide actionable insights for utility planners. 
Key Contributions 

This article offers three main contributions: (i) a city-level assessment that spatially allocates 
public EV charging to real candidate sites (i.e., gas stations), with load injections mapped to the 
nearest buses in a geo-referenced medium-voltage network model; (ii) a data-efficient and 
reproducible workflow that generates planner-relevant indicators ‒ such as the proportion of grid 
elements within ≤70%, 70 ‒ 90%, 90 ‒ 100%, and >100% loading bands, as well as the number 
of buses operating below 0.95 per unit voltage under unmanaged charging scenarios; (iii) an 
evidence-based identification of grid “hotspots” in Oujda at 10% and 30% EV adoption levels, 
enabling feeder-level hosting capacity planning in data-constrained environments. 
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METHODS 
This section describes a portable, city-scale workflow to assess unmanaged EV charging 

impacts. A stochastic charging generator is coupled to an alternating-current Newton–Raphson 
power-flow solver to produce feeder- and bus-level stress indicators for a single steady-state 
scenario. 

Study Design and Workflow 
The workflow proceeds in six steps (illustrated in Figure 1): 
1. Stochastic charging profile generation. A full 8,760-hour, seasonal load profile is 

generated for each vehicle class (cars, motorcycles, and buses) as detailed in Stochastic 
charging model and assumptions. 

2. Average power calculation. From the hourly profile, an annual average charging power 
(MW) is computed to represent the steady-state injection. 

3. Spatial allocation of charging. Average EV power is partitioned and mapped to the 
network at proposed public charging sites (gas stations) and at home/work locations. 

4. Network coupling. For each adoption scenario (0%, 10%, 30%), the bus-level average 
EV demand is superposed on the base (non-EV) load. 

5. Power-flow solution. A single steady-state alternating-current Newton ‒ Raphson solve 
provides bus voltages and branch flows. 

6. Stress quantification. Thermal-loading bands and voltage-compliance metrics are 
computed (definitions in Line-loading definition and stress metrics). 

Design priorities are portability (explicit inputs and tolerances), operator relevance (loading 
bands and voltage-band compliance), and transparency (tabular artefacts suitable for audit). 

 

Figure 1.Overview of the approach 
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Data and Network Model 
The Oujda distribution network is implemented in GridCal from operator spreadsheets 

(buses, lines/transformers, loads, and generators) with geospatial attributes and ratings (Table 1). 
• Buses: identifier, nominal voltage (kV), latitude/longitude, voltage limits 

[𝑉𝑉min,𝑉𝑉max], slack flag. 
• Branches (overhead/transformer): series 𝑅𝑅,𝑋𝑋, thermal rating 𝑆𝑆rate(MVA), 

connectivity (from, to). 
• Loads: connection bus, base active 𝑃𝑃and reactive 𝑄𝑄. 

Table 1. Summary of the Oujda medium-voltage network used in the power-flow analysis 

Parameter Value Description 

Network Model Oujda MV Grid Medium-voltage distribution network 
Total Buses 124 Includes substations and load connection points 
Total Lines 117 22 kV overhead lines and cables 
Nominal Voltage 22 kV Fed from 60 kV and 225 kV substations 
System Base Power 400 MVA Base value for per-unit calculations 
Total Base Load (P) 177.01 MW Total active power demand (non-EV) 
Total Base Load (Q) 141.61 Mvar Total reactive power demand (non-EV) 
Transformers Capacity 162.53 MVA Total installed capacity  

 
The model represents the 22 kV network with 91 buses and 102 lines. The total non-EV base 

load is 177.01 MW and 141.61 Mvar. All simulations use a 400 MVA base. Units were 
harmonized, graph connectivity verified, and per-unit voltage limits set to 0.95 – 1.05. A 
complete description of input field names and units is provided in the Appendix. 

Spatial Proxy for Public Charging Sites 
In the absence of a finalized siting plan, fuel-retail locations (gas stations) are used as 

proposed public charging sites. Public-session energy is mapped to the nearest site (great-circle 
distance), preserving corridor clustering. 

Home and Work Charging Attachment 
Home/work charging attaches to the nearest load buses via proximity and basic land-

use/population weights. When polygonal land-use data are coarse or missing, Euclidean 
proximity is used as a fallback, yielding bus-level weights for the home/work fractions. 

Data Pre-Processing and Validation 
Coordinate harmonization (WGS84), connectivity checks, rating/limit defaults (0.95–1.05 per 

unit), and base-load reconciliation to substation meters within ±5% (set to your actual value if 
different) were performed. Cleaned tables (buses, branches, loads, stations) are versioned and 
used as the single source of truth. 

Stochastic EV Load Profiling and Assumptions 
Hourly EV demand is generated using a Monte Carlo model that specifies fleet composition, 

SoC/energy requirements, hour-of-day and seasonal shaping, charger selection, spatial mapping 
to buses, and exported artefacts. 
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Vehicle Classes and Parameters 
Three fleets capture Oujda’s transport modes Table 2. 
Daily charging probability 𝑝𝑝chg: cars 0.20, motorcycles 0.90, buses 0.50. Location split 

(𝑤𝑤h,𝑤𝑤w,𝑤𝑤p): home 0.20, work 0.20, public 0.60. Available charger powers: home 3.7 kW; 
public 22/50/120 kW (brand-dependent mix). EV demand is modelled at unity power factor 
unless stated otherwise. 

Table 2. Vehicles characteristic 

Vehicle Type Quantity Daily Distance [km] Battery capacity 
[kWh] Efficiency [kWh/km] 

Cars 56 [%] 30 44 0.20 
Motorcycles 26 [%] 30 1.56 0.05 

Buses 18 [%] 210 324 1.50 
 
This fleet mix was chosen specifically to reflect the unique transportation landscape of 

Oujda, where motorcycles and public buses represent a significant portion of urban mobility. A 
'car-only' model, as seen in many European or US-based studies [26], would fail to capture this 
local reality, and our multi-vehicle approach provides a more realistic composite load profile. 

Daily energy requirement and SOC 
Daily energy per vehicle 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸v: 
 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑣𝑣 = 𝐷𝐷𝑣𝑣 × 𝜂𝜂𝑣𝑣  [𝑘𝑘𝑘𝑘ℎ 𝑑𝑑𝑑𝑑𝑑𝑑⁄ ] (1) 

 
where Dv represents the daily distance traveled (for instance, in Morocco Dcar = 30 [km] ) 

[27] and ηv denotes the vehicle’s energy efficiency, parameters derived from regional driving 
surveys and manufacturer specifications. Furthermore, the Python code simulates the state-of-
charge SOC dynamics for each vehicle, determining the charging requirement based on battery 
capacity (Cv) and predefined thresholds. For example, a car with 𝐶𝐶car = 44[ kWh] that needs to 
recharge from 30% to 80% SOC would require an energy input calculated as: 
 

𝐸𝐸𝐸𝐸ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 𝐶𝐶v × (𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡_𝑆𝑆𝑆𝑆𝑆𝑆 − 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖_𝑆𝑆𝑆𝑆𝑆𝑆) (2) 

 
To introduce realism, stochasticity is incorporated via probabilistic charging behavior, 

modeled as [28]: 
 

ChargeToday𝑣𝑣 ∼ Bernoulli(𝑝𝑝𝑣𝑣) (3) 

Hour-of-day shaping 
Addressing temporal variability, the simulation further incorporates two essential 

mechanisms. First, it applies time-of-use weighting by assigning hourly charging probabilities 
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P(h) based on normalized weights 𝑤𝑤h which capture peak and off-peak charging preferences (for 
instance, higher weights for overnight residential charging): 

 

𝑃𝑃(ℎ) =
𝑤𝑤ℎ

∑ 𝑤𝑤𝑖𝑖
24
𝑖𝑖=1

 (4) 

 
Evening-dominant kernel (urban after-work arrivals): 18–23 → 8; 06–08 → 2; other 

hours → 1. (This corrects the earlier inversion and matches the observed evening peak.) 

Seasonality 
Monthly multipliers 𝛼𝛼s adjust EV energy for HVAC and thermal-management overheads  

(eq. (5)). Values are bounded in [0.95, 1.10] (temperate–hot climates). Table 3 lists the 
factors used. 

 

𝐸𝐸seasonal = 𝐸𝐸v
daily × 𝛼𝛼s  (5) 

 

Table 3.Monthly seasonality factors α_s 

Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

α factor 1.10 1.00 1.00 1.00 0.95 1.05 1.10 1.10 1.00 1.00 1.05 1.10 

Nominal values: winter 1.05; shoulder (Mar – May; Oct – Nov) 1.00; summer 0.95. 

Charger Assignment and Power Limits 
At the selected node, a charger type is drawn (home 3.7 kW; public 22/50/120 kW). Session 

power is bounded by the charger rating, and cumulative session energy is capped to deliver 
𝛼𝛼s𝐸𝐸charge. Hourly resolution (Δ𝑡𝑡 = 1 h)is used; the final hour may be partial: 
 

0 ≤ 𝑃𝑃𝑖𝑖(𝑡𝑡) ≤ 𝑃𝑃charger
𝑚𝑚𝑚𝑚𝑚𝑚 , � 𝑃𝑃𝑖𝑖(ℎ) Δ𝑡𝑡

ℎ∈session

≤ 𝛼𝛼𝑠𝑠 𝐸𝐸charge(𝛥𝛥𝑡𝑡 = 1 h) (6) 

 
Session duration equals the smallest integer hours satisfying energy delivery; partial final-

hour energy is allowed. 

Spatial Allocation to Buses 
If a session occurs, location ℓ ∈ {home, work, public} is drawn with probabilities 

(𝑤𝑤h,𝑤𝑤w,𝑤𝑤p). Public sessions map to the nearest station and then to its serving bus; home/work 
map to the nearest load bus (proximity/land-use weights). Summation over sessions mapped to 
bus b yields hourly EV demand 𝐿𝐿EV(𝑡𝑡, 𝑏𝑏). 



Karmoun, M., Arfaoui, W., et al. 
Impact of Electric-Vehicle Charging on the Medium-Voltage…  

Year 2026 
Volume 14, Issue 2, 1140667 

 
 

Journal of Sustainable Development of Energy, Water and Environment Systems 8 

 

Monte-Carlo Sampling and Artefacts 
Each scenario is simulated for 8,760 h. A single run draws {𝐷𝐷𝑖𝑖}, daily charging decisions, 

locations, and start times; optional uncertainty uses multiple seeds to summarize median and 5–
95% bands. For each scenario/seed, exported artefacts include: (i) 𝐿𝐿EV(𝑡𝑡, 𝑏𝑏); (ii) bus-level net 
loads; and (iii) station/session summaries (counts, energy, mean session length). 

Load Profile Generation 
A full-year, seasonal Monte Carlo simulation produces the high-resolution electric-vehicle 

load 𝐿𝐿EV(𝑡𝑡, 𝑏𝑏)for each scenario; this file is the primary artefact of the demand model. 

Penetration Scenarios 
Three adoption levels are assessed: 0% (no EV), 10%, and 30%.To ensure policy relevance, 

the 10% and 30% penetration scenarios were grounded in national-level adoption forecasts for 
Morocco. Projections from a 2019 technical report on sustainable mobility by Morocco's Energy 
Federation [29] outline several adoption pathways. Our scenarios are derived from these 
national-level forecasts, representing conservative and ambitious bounds. 

Net Nodal Demand for Steady-State Analysis 
This study uses a single steady-state snapshot for the grid impact assessment. To create the 

input for this grid model, we first calculate the annual average EV power 𝐿𝐿EV,avg(𝑏𝑏) for each bus 
from the 8760-hour load profile generated by Model 1. 

The total load for each bus 𝐿𝐿total(𝑏𝑏) is then calculated by superposing this annual average EV 
power onto the base network load 𝐿𝐿base(𝑏𝑏): 

 

𝐿𝐿𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑏𝑏) = 𝐿𝐿𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑏𝑏) + 𝐿𝐿𝑒𝑒𝑒𝑒,𝑎𝑎𝑎𝑎𝑎𝑎(𝑏𝑏) (7) 

Power-Flow Solution 

A single steady-state power flow is solved for each scenario using GridCal and the net nodal 
demands above: 

• Algorithm: alternating-current Newton–Raphson 
• Tolerance: 1 × 10−6per unit; maximum iterations: 25 
• Slack bus: primary supply node at the 225/60/22 kV interface 
• Load models: base loads as P–Q; EV charging at unity power factor 
• Operating limits: bus voltages checked against 0.95–1.05 per unit; 

branches/transformers flagged above 100% of 𝑆𝑆rate 

Line-Loading Definition 
Line/transformer loading uses apparent power (active 𝑃𝑃lineand reactive 𝑄𝑄line) normalized by 

the nameplate rating 𝑆𝑆rate, [30], [31]: 
 

Loading [%] =
�𝑃𝑃line

2 + 𝑄𝑄line
2

𝑆𝑆rate
× 100 

(8) 
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Stress Metrics for Steady-State Analysis 
This subsection defines the indicators computed from each single steady-state snapshot (0%, 

10%, 30%) and how they are used to compare performance across adoption levels. 
• Voltage quality 

o Record bus voltages (per unit) on all energized buses. 
o Report the minimum bus voltage in the network. 
o Count buses below the 0.95 per unit planning limit (and optionally below 0.90 per 

unit). 
• Thermal Loading 

o Record line and transformer loading as a percentage of nameplate rating. 
o Report the maximum element loading in the network. 
o Tabulate shares of elements within the bands: ≤70%, 70 – 90%, 90 – 100%, and 

>100% (overloaded). 
• Substation electric-vehicle energy shares 

o Aggregate electric-vehicle (EV) average charging power to the supplying primary 
substation. 

o Report the spatial distribution of this EV load to identify substations that receive the 
largest shares (“hotspots”). 

RESULTS 
This section presents the first-week unmanaged charging behavior at two adoption levels. 

Figure 2a, Figure 2b, Figure 2c and Figure 2d illustrate disaggregation by location and 
system aggregation for 10% and 30% EV penetration. Location-specific views (Figure 2a, 
Figure 2c) show that public sites generate the largest intermittent spikes, while home and work 
sessions are smaller but frequent. System-level views (Figure 2b, Figure 2d) reveal a 
pronounced evening shoulder (~18:00 ‒ 23:00) and a smaller mid-day shoulder. Between 10% 
and 30% adoption, the evening peak increases more than proportionally, reflecting nonlinear 
growth driven by coincident starts at public sites. 

Snapshot Power-Flow Convergence 
Solver performance for the steady-state snapshots is reported here. Using annual-average 

charging injections, a single alternating-current Newton ‒ Raphson solve was executed for each 
scenario (0%, 10%, 30%) with a mismatch tolerance of 1×10-6. All cases converged cleanly, with 
final residuals well below tolerance: 0%: 9.11×10-¹¹ p.u.; 10%: 3.36×10-6 p.u.; 30%: 9.58×10-¹¹ 
p.u. Computation time was negligible. 

Charging Distribution Across Substations 
Figure 3 displays the EV-only average charging power (excluding base load) mapped to the 

nearest primary substation for 10% and 30% adoption. The distribution is non-uniform: several 
corridors absorb disproportionate shares. The increase from 10% to 30% is not proportional 
across substations, as proposed public charging sites (gas stations) act as spatial proxies, 
concentrating sessions where site density is higher. 
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Figure 2. (a) Charging power by location—10% adoption (Home, Work, Public); (b) Total system EV-
charging power—10% adoption; (c) Charging power by location—30% adoption (Home, Work, Public); 

(d) Total system EV-charging power—30% adoption 

 
 



Karmoun, M., Arfaoui, W., et al. 
Impact of Electric-Vehicle Charging on the Medium-Voltage…  

Year 2026 
Volume 14, Issue 2, 1140667 

 
 

Journal of Sustainable Development of Energy, Water and Environment Systems 11 

 

 

Figure 3. Average Load Distribution Across EV Charging Stations at  
Different Utilization Levels (10%, 30%) 

Network-Wide Loading Patterns 
Figure 4a – 4c presents branch loading across the network for 0%, 10%, and 30% scenarios, 

using the study bands: ≤70% (green), 70 ‒ 90% (yellow), 90 ‒ 100% (orange), and >100% (red). 
As adoption rises, yellow/orange/red segments expand along corridors with multiple proposed 
sites, indicating spatial clustering of stress. For illustration, Line_Autohall ‒ Oujda ‒  Omran3 
increases from ~73% (baseline) to ~86% (10%) and ~96% (30%). 

Thermal headroom remains concentrated in the ≤70% band, but a discernible tail moves into 
higher bands as EV adoption increases, thermal stress intensifies modestly across the network. At 
baseline (0% EV), 78.6% of lines operate at ≤70% of their thermal rating, 9.4% fall within the 70 
‒ 90% band, 3.4% within 90 ‒ 100%, and 6% exceed 100%. At 10% EV penetration, these shares 
shift to 76.9%, 10.3%, 5.4%, and 7%, respectively. At 30% EV, the distribution becomes 75.2%, 
10.4%, 6.3%, and 9%. The largest increases occur on feeders serving corridors with multiple 
proposed public-charging sites, consistent with the spatial clustering illustrated in Figure 4 and 
quantified in Figure 5. 

This subsection summarizes voltage quality at energized buses. Figure 6. eports per-bus 
voltage drop (1 − 𝑉𝑉)for the 0%, 10%, and 30% snapshots. The distribution is concentrated at 
small drops: 94 of 103 buses (≈91%) exhibit ≤3% drop in all scenarios, while a narrow, 
persistent tail of 7/103 lies >10%, co-located with charging hotspots. In per-unit terms, the 
system bulk is stable (median voltage ≈ 0.974 p.u. across scenarios). Relative to planning 
thresholds, about 9 buses fall below 0.95 p.u., and none fall below 0.90 p.u.; these counts change 
little with adoption. 
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Figure 4.Comparative Visualization of Urban Grid Loading under Different EV Penetration Scenarios 
(0%, 10%, and 30%) is depicted as: Figure 4a (a); Figure 4b (b); and Figure 4c (c) 



Karmoun, M., Arfaoui, W., et al. 
Impact of Electric-Vehicle Charging on the Medium-Voltage…  

Year 2026 
Volume 14, Issue 2, 1140667 

 
 

Journal of Sustainable Development of Energy, Water and Environment Systems 13 

 

 
Figure 5. Loading Percentage Across Different Lines at Various  

Utilization Levels (0[%], 10[%], 30[%]) 
 

 

Figure 6. Voltage Drop Profiles Across Substations under Varying EV Penetration 

DISCUSSION 
The results show a clear pattern: broad system headroom with localized, pre-existing stress 

that is amplified by EV adoption. The finding that the grid is "robust in bulk" (81% of lines 
<70% loaded) but has a "weak tail" (6% overloads, 9 undervoltage buses) is a key, nuanced 
outcome. This confirms that unmanaged charging does not push the entire system to collapse, but 
rather intensifies stress at known bottlenecks. This is a direct result of the non-proportional, 
spatial clustering of EV load (Figure 3). 
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This operating picture argues against system-wide reinforcement. With ~80% of branches 
lightly loaded, uniform upgrades would be low-yield. Instead, targeted levers are justified: (i) 
Selective reinforcement at the handful of "hotspot" feeders; (ii) Siting guidance for public 
chargers to avoid already-stressed corridors; and (iii) Simple operational measures (e.g., power 
caps), which are an important first step for mitigation. 

This study deliberately used a steady-state assessment for its screening value: it is fast, 
reproducible, and transparent for planners in data-scarce systems. This "Limitations" section 
addresses all remaining analytical points: 

• The analysis uses snapshots and does not capture worst-hour coincidence peaks, which 
are likely higher. Results are a conservative baseline. 

• We did not simulate coordinated charging or bidirectional (V2G) support, which are both 
key areas for future work. 

• Spatial and behavioral data are proxies, as local Moroccan telemetry is not yet available. 
• Harmonics and non-unity power factors are excluded. 
Even with these limits, the qualitative picture is robust: medians stay stable while the same 

corridors dominate the "weak tail." For research, the natural extension is a time-series analysis to 
test the mitigation and V2G strategies on the specific hotspots identified in this paper. 

CONCLUSIONS 

We evaluated unmanaged electric-vehicle charging impacts on a medium-voltage distribution 
network representative of Oujda using a reproducible, geo-referenced steady-state workflow. 
Despite rising adoption, network-wide headroom remains substantial ‒ with 81%, 79%, and 78% 
of lines at ≤70% of rating across the 0%, 10%, 30% scenarios ‒ and voltage quality is robust in 
bulk (≈91% of buses within ≤3% drop; median ≈ 0.974 p.u.; no bus below 0.90 p.u.). Stress 
manifests as a localized tail: the share of overloaded lines (>100%) grows modestly (6% → 7% 
→ 9%), and a stable set of 7/103 buses exhibits >10% drop near public-charging hotspots. 

These results argue for targeted interventions rather than uniform upgrades. Practical next 
steps for planners include: (i) selective reinforcement at a handful of hotspot feeders; (ii) siting 
guidance for public chargers to avoid already-stressed corridors; and (iii) simple operational 
measures during the evening shoulder (e.g., caps or staggered starts at fast chargers). 

Future work should extend this baseline by quantitatively testing mitigation ‒ coordinated 
charging policies, evening demand caps, and, where feasible, bidirectional vehicle-to-grid ‒ and 
by coupling distributed solar and storage to absorb mid-day energy and reduce evening 
coincidence. A fuller time-series analysis with thermal time constants and feeder-level 
measurements would strengthen validation, but the present snapshots already provide actionable 
screening for hosting capacity in data-constrained settings. 
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NOMENCLATURE 

Cv battery capacity of the 
vehicle  [kWh] 

Dv daily distance traveled by the 
vehicle  [km] 

Ev,t energy consumption of the 
vehicle at time t  [kWh] 

Pcharging charging power of the 
vehicle  [kW] 

P(h) hourly charging probability [-] 
Pline active power flowing 

through a transmission line  [kW] 

Qline reactive power flowing 
through a transmission line  [kVar] 

SOC state of charge of the battery [%] 
SOCfinal final state of charge of the 

battery  [%] 

SOCinitial initial state of charge of the 
battery  [%] 

wh normalized weight for home 
charging share [-] 

𝑤𝑤w normalized weight for 
workplace charging share [-] 

𝑤𝑤p normalized weight for public 
charging share [-] 

Greek Letters 
αs seasonal adjustment factor 

for energy demand [-] 

ηv energy efficiency of the 
vehicle  [kWh/km] 

Subscripts and Superscripts 
max maximum value 
min minimum value 
v refers to a specific vehicle 
t refers to a specific time step 

Abbreviations 
EV Electric Vehicle 
GridCal Grid Calculation Software 
PV Photovoltaic 
API Application Programming Interface 
IEA International Energy Agency 
NDC Nationally Determined Contribution 
TOU Time of Use 
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APPENDIX 

Table A1. Bus parameters 

Parameter Description 
name Unique identifier for the bus (e.g., substation name) 
Vnom Nominal operating voltage (kV) 
Vmin Minimum voltage limit (p.u.) 
Vmax Maximum voltage limit (p.u.) 

longitude Geospatial coordinate for mapping 
latitude Geospatial coordinate for mapping 

 

Table A2. Branch parameters 

Parameter Description 
name Unique identifier for the line 

bus_from Name of the sending-end bus 
bus_to Name of the receiving-end bus 

R Line resistance (p.u. or Ohms) 
X Line reactance (p.u. or Ohms) 
B Line susceptance (p.u. or S) 

length Physical length of the line (km) 
Parameter Description 

name Unique identifier for the load 
bus Name of the bus the load is connected to 
P Base active power demand (MW) 
Q Base reactive power demand (Mvar) 
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Table A3. Transformer types 

Capacity 
(kVA) Count (Units) Total Capacity (MVA) 

50 1 0.05 
100 5 0.50 
160 15 2.40 
200 2 0.40 
250 21 5.25 
315 12 3.78 
400 41 18.00 
500 6 3.00 
630 10 9.45 
800 4 3.20 
1000 2 2.00 

40,000 (40 
MVA) 

4 160.00 
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