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ABSTRACT

Electric-vehicle charging can erode operating margins in distribution networks, yet impacts are
often localized rather than system-wide. This study quantifies unmanaged charging effects on the
Oujda 60/22-kV system using a geo-referenced steady-state power-flow model coupled with a
stochastic charging generator for cars, motorcycles and buses. The network representation
comprises 124 substations and 117 branches, and we examine snapshots at 0%, 10% and 30%
adoption. In thermal terms, the bulk of the network remains comfortably loaded: the share of lines
operating at <70% of their rating is 81% at baseline, 79% at 10% and 78% at 30%. Localized
constraints intensify modestly with penetration: the share of overloaded lines (>100%) rises from
6% to 7% and 9%, and the worst-loaded span increases from 151.6% to 157.2% and 168.1%.
Voltage performance is similarly robust in bulk (median around 0.97 per unit), with a small weak-
bus tail near charging hotspots. All cases converged reliably. The workflow is lightweight and
reproducible, supporting feeder-level hosting-capacity screening and motivating targeted
reinforcement or simple smart-charging measures in data-constrained systems.

KEYWORDS
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INTRODUCTION

Electric vehicles (EVs) are being integrated into urban power grids, creating both
opportunities and challenges for system operation. As adoption accelerates driven by
environmental goals and policy incentives assessing the impacts of EV charging on grid
performance is critical for reliability and efficiency. According to the International Energy
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Agency, the global stock of electric cars surpassed 10 million in 2020, a 43% increase over 2019
despite the COVID-19 downturn [1], and continued growth is expected as transport
decarbonizes.

Shifting focus to a regional perspective, Morocco has emerged as a leader in sustainable
development, targeting 96% renewable electricity generation by 2050 through aggressive
investments in solar, wind, and hydropower. This transition is critical for decarbonizing key
sectors, particularly transportation, which accounts for 27% of national greenhouse gas
emissions [2]. Morocco's Nationally Determined Contribution under the Paris Agreement
highlights renewable energy integration and EV adoption as pivotal strategies to meet its
environmental objectives [3]. Moreover, the nation’s ambition to become a manufacturing hub
for EV batteries and components is underscored by plans for a USD 2 billion gigafactory
dedicated to lithium-ion battery production, supporting the annual manufacturing of 300,000 to
500,000 EVs. This strategy builds on Morocco’s robust automotive industry, which currently
produces over 700,000 vehicles per year [4]. However, before such ambitions can be fully
realized, it is necessary to comprehensively analyze the implications of large-scale EV adoption
on the country's power grid infrastructure 5]

Recent Africa-focused evidence is emerging but remains sparse relative to Europe and East
Asia. In Morocco, medium-voltage case studies report that integrating electric-vehicle chargers
in urban feeders (Casablanca) increases evening peaks and aggravates localized undervoltage
and harmonic exposure, underscoring the need for feeder-level siting and coordination [5]. For
Sub-Saharan systems, a South African hosting-capacity study demonstrates that even single-
phase charging can materially constrain low-voltage networks and illustrates a Monte-Carlo
workflow designed for minimal data environments — directly relevant to Oujda’s planning
context [6]. A recent regional review synthesizes deployment barriers (distribution readiness,
charging siting, tariff design) and highlights the importance of lightweight, reproducible methods
for utilities operating with limited telemetry [7]. These findings motivate our geo-referenced,
data-efficient workflow and our focus on feeder-level loading bands and voltage-quality
indicators.

Technically, rising EV adoption reshapes demand patterns on power grids, particularly at the
distribution level, introducing significant operational challenges if charging remains unmanaged.
Uncontrolled EV charging can increase peak loads, risking infrastructure overloads [8]. The
spatial clustering of this demand can cause voltage deviations and power quality issues [9], while
also creating the potential for voltage instability in weak-grid areas or at feeder extremities [10].
Aggregated charging loads may threaten the thermal limits of transformers and cables,
potentially reducing asset lifespan [11]. In broader terms, Sarda et al. [12] review how these
integration challenges impact overall system efficiency, while Sundstrom and Binding [13]
specifically quantify the increase in distribution losses when grid constraints are not actively
managed. Furthermore, the proliferation of high-power fast-charging stations may create
harmonic distortions, further complicating power quality management [14]. These multiple,
interrelated challenges underscore the need for detailed impact studies and effective grid
enhancements.

To address these challenges, smart charging algorithms that coordinate charging rates and
times have demonstrated effective peak-demand mitigation and load smoothing [15]. A more
advanced bidirectional operation, Vehicle-to-Grid (V2G), has also been proposed. In V2G,
aggregated EVs modulate charging and can export power to provide peak shaving, feeder-level
voltage support, and ancillary services when coordinated with distribution constraints [16].
Recent studies have explored various aspects of Vehicle-to-Grid (V2G) integration. Sovacool et



al. [17] reviewed the business models and innovation systems required to facilitate V2G
technology adoption. Kumar ef al. [18] provided a comprehensive overview of V2G integration,
emphasizing its potential to power future energy systems. Furthermore, Mastoi et al. [19]
analyzed specific charging-dispatch strategies within distribution networks to optimize grid
flexibility while managing constraints. Deep reinforcement learning has also been applied for
optimal V2G frequency regulation [20]. In this paper, we quantify today’s unidirectional (G2V)
impacts for Oujda; V2G is scoped as future work to test feeder-level benefits in the 60/22 kV
network.

In line with these operational concerns, accurate modeling of EV charging demand emerges
as a critical component for evaluating its implications on the power grid. Various methodologies
have been explored in the literature to address this challenge. Stochastic modeling, such as the
Monte Carlo simulation framework developed by Richardson et al. [21], incorporates
randomness in factors like arrival times, state-of-charge, and charging durations to capture real-
world variability and assess demand scenarios with associated probabilities. Similarly, spatial
distribution plays a significant role, with research by Mu et al. [22] highlighting how clustering
of charging stations in specific areas can strain local networks, exacerbate voltage and loading
issues. Together, these approaches contribute to a comprehensive understanding of EV charging
demand dynamics and their broader impact on the power grid.

To further explore these dynamics, simulation tools play a vital role in assessing the effects of
EV integration on power grids. Among commonly utilized software, GridCal stands out as an
open-source tool supporting power flow calculations, time-series simulations, and hosting
capacity assessments, with its Python compatibility enhancing flexibility for custom studies [23].
OpenDSS, developed by the Electric Power Research Institute (EPRI), provides a comprehensive
framework for modeling electric power distribution systems, enabling advanced analyses such as
harmonic studies and quasistatic time-series simulations [24]. Similarly, MATPOWER, a
MATLAB-based package, is widely adopted in academia for its user-friendly design and its
capability to perform power flow and optimal power flow analyses for both transmission and
distribution networks [25]. These simulation tools collectively empower researchers to construct
detailed power system models, simulate diverse conditions, and devise effective strategies to
address emerging challenges related to EV integration.

Study Scope

We conduct a two-stage, steady-state assessment for Oujda City. In the first stage, a
stochastic EV-charging model generates an 8,760-hour load profile customized to the city's
vehicle fleet and seasonal usage patterns. In the second stage, the annual average power derived
from this profile serves as the steady-state input for an alternating-current power-flow simulation
using GridCal API. Voltage levels and line loading are analyzed under 0%, 10%, and 30% EV
adoption scenarios to provide actionable insights for utility planners.

Key Contributions

This article offers three main contributions: (i) a city-level assessment that spatially allocates
public EV charging to real candidate sites (i.e., gas stations), with load injections mapped to the
nearest buses in a geo-referenced medium-voltage network model; (ii) a data-efficient and
reproducible workflow that generates planner-relevant indicators — such as the proportion of grid
elements within <70%, 70 — 90%, 90 — 100%, and >100% loading bands, as well as the number
of buses operating below 0.95 per unit voltage under unmanaged charging scenarios; (iii) an
evidence-based identification of grid “hotspots” in Oujda at 10% and 30% EV adoption levels,
enabling feeder-level hosting capacity planning in data-constrained environments.



METHODS

This section describes a portable, city-scale workflow to assess unmanaged EV charging
impacts. A stochastic charging generator is coupled to an alternating-current Newton—Raphson
power-flow solver to produce feeder- and bus-level stress indicators for a single steady-state
scenario.

Study Design and Workflow

The workflow proceeds in six steps (illustrated in Figure 1):

1. Stochastic charging profile generation. A full 8,760-hour, seasonal load profile is
generated for each vehicle class (cars, motorcycles, and buses) as detailed in Stochastic
charging model and assumptions.

2. Average power calculation. From the hourly profile, an annual average charging power
(MW) is computed to represent the steady-state injection.

3. Spatial allocation of charging. Average EV power is partitioned and mapped to the
network at proposed public charging sites (gas stations) and at home/work locations.

4. Network coupling. For each adoption scenario (0%, 10%, 30%), the bus-level average
EV demand is superposed on the base (non-EV) load.

5. Power-flow solution. A single steady-state alternating-current Newton — Raphson solve
provides bus voltages and branch flows.

6. Stress quantification. Thermal-loading bands and voltage-compliance metrics are
computed (definitions in Line-loading definition and stress metrics).

Design priorities are portability (explicit inputs and tolerances), operator relevance (loading

bands and voltage-band compliance), and transparency (tabular artefacts suitable for audit).
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Data and Network Model
The Oujda distribution network is implemented in GridCal from operator spreadsheets
(buses, lines/transformers, loads, and generators) with geospatial attributes and ratings (Table 1).
e Buses: identifier, nominal voltage (kV), latitude/longitude, voltage limits
[Vinin, Vmax]> slack flag.
e Branches (overhead/transformer): series R,X, thermal rating S,,.(MVA),
connectivity (from, to).
e Loads: connection bus, base active Pand reactive Q.

Table 1. Summary of the Oujda medium-voltage network used in the power-flow analysis

Parameter Value Description
Network Model Oujda MV Grid Medium-voltage distribution network
Total Buses 124 Includes substations and load connection points
Total Lines 117 22 kV overhead lines and cables
Nominal Voltage 22 kV Fed from 60 kV and 225 kV substations
System Base Power 400 MVA Base value for per-unit calculations
Total Base Load (P) 177.01 MW Total active power demand (non-EV)
Total Base Load (Q) 141.61 Mvar Total reactive power demand (non-EV)
Transformers Capacity 162.53 MVA Total installed capacity

The model represents the 22 kV network with 91 buses and 102 lines. The total non-EV base
load is 177.01 MW and 141.61 Mvar. All simulations use a 400 MVA base. Units were
harmonized, graph connectivity verified, and per-unit voltage limits set to 0.95 — 1.05. A
complete description of input field names and units is provided in the Appendix.

Spatial Proxy for Public Charging Sites

In the absence of a finalized siting plan, fuel-retail locations (gas stations) are used as
proposed public charging sites. Public-session energy is mapped to the nearest site (great-circle
distance), preserving corridor clustering.

Home and Work Charging Attachment

Home/work charging attaches to the nearest load buses via proximity and basic land-
use/population weights. When polygonal land-use data are coarse or missing, Euclidean
proximity is used as a fallback, yielding bus-level weights for the home/work fractions.

Data Pre-Processing and Validation

Coordinate harmonization (WGS84), connectivity checks, rating/limit defaults (0.95—-1.05 per
unit), and base-load reconciliation to substation meters within 5% (set to your actual value if
different) were performed. Cleaned tables (buses, branches, loads, stations) are versioned and
used as the single source of truth.

Stochastic EV Load Profiling and Assumptions

Hourly EV demand is generated using a Monte Carlo model that specifies fleet composition,
SoC/energy requirements, hour-of-day and seasonal shaping, charger selection, spatial mapping
to buses, and exported artefacts.



Vehicle Classes and Parameters

Three fleets capture Oujda’s transport modes Table 2.

Daily charging probability p.e: cars 0.20, motorcycles 0.90, buses 0.50. Location split
(Wh, Wy, wp): home 0.20, work 0.20, public 0.60. Available charger powers: home 3.7 kW;

public 22/50/120 kW (brand-dependent mix). EV demand is modelled at unity power factor
unless stated otherwise.

Table 2. Vehicles characteristic

Battery capacity

Vehicle Type Quantity Daily Distance [km] Efficiency [kKWh/km]

[kWh]
Cars 56 [%] 30 44 0.20
Motorcycles 26 [%] 30 1.56 0.05
Buses 18 [%] 210 324 1.50

This fleet mix was chosen specifically to reflect the unique transportation landscape of
Oujda, where motorcycles and public buses represent a significant portion of urban mobility. A
'car-only' model, as seen in many European or US-based studies [26], would fail to capture this
local reality, and our multi-vehicle approach provides a more realistic composite load profile.

Daily energy requirement and SOC
Daily energy per vehicle Edaily,:

Edaily, = D, X1, [kWh/day] (1

where Dy represents the daily distance traveled (for instance, in Morocco Dcar = 30 [km] )
[27] and #v denotes the vehicle’s energy efficiency, parameters derived from regional driving
surveys and manufacturer specifications. Furthermore, the Python code simulates the state-of-
charge SOC dynamics for each vehicle, determining the charging requirement based on battery
capacity (Cy) and predefined thresholds. For example, a car with C.,, = 44[ KWh] that needs to
recharge from 30% to 80% SOC would require an energy input calculated as:

Echarge = C, X (target_SOC — initial_SOC) (2)

To introduce realism, stochasticity is incorporated via probabilistic charging behavior,
modeled as [28]:

ChargeToday  ~ Bernoulli(p,,) 3)

Hour-of-day shaping
Addressing temporal variability, the simulation further incorporates two essential
mechanisms. First, it applies time-of-use weighting by assigning hourly charging probabilities



P(h) based on normalized weights wy, which capture peak and off-peak charging preferences (for
instance, higher weights for overnight residential charging):

P(h) = =t — @

i=1"i
Evening-dominant kernel (urban after-work arrivals): 18-23 — 8; 0608 — 2; other
hours — 1. (This corrects the earlier inversion and matches the observed evening peak.)

Seasonality

Monthly multipliers ag adjust EV energy for HVAC and thermal-management overheads
(eq. (5)). Values are bounded in [0.95, 1.10] (temperate—hot climates). Table 3 lists the
factors used.

Eseasonal — E‘cllaily % s (5)

Table 3.Monthly seasonality factors o_s

Month Jan Feb Mar Apr May Jun Jul Aug Sep  Oct Nov Dec

o factor 1.10 1.00 1.00 1.00 0.95 1.05 1.10 1.10  1.00 1.00 1.05 1.10

Nominal values: winter 1.05; shoulder (Mar — May; Oct — Nov) 1.00; summer 0.95.

Charger Assignment and Power Limits

At the selected node, a charger type is drawn (home 3.7 kW; public 22/50/120 kW). Session
power is bounded by the charger rating, and cumulative session energy is capped to deliver
s Echarge- Hourly resolution (At = 1 h)is used; the final hour may be partial:

0 < Py(t) < P Z Pi(h) At < ag EMree(At = 1 ) ©)

charger’

hEsession

Session duration equals the smallest integer hours satisfying energy delivery; partial final-
hour energy is allowed.

Spatial Allocation to Buses
If a session occurs, location ¢ € {home, work, public}is drawn with probabilities
(Wh, Wy, Wp). Public sessions map to the nearest station and then to its serving bus; home/work

map to the nearest load bus (proximity/land-use weights). Summation over sessions mapped to
bus b yields hourly EV demand Lgvy (¢, b).



Monte-Carlo Sampling and Artefacts
Each scenario is simulated for 8,760 h. A single run draws {D;}, daily charging decisions,
locations, and start times; optional uncertainty uses multiple seeds to summarize median and 5—

95% bands. For each scenario/seed, exported artefacts include: (i) Lgy(t, b); (ii) bus-level net
loads; and (iii) station/session summaries (counts, energy, mean session length).

Load Profile Generation

A full-year, seasonal Monte Carlo simulation produces the high-resolution electric-vehicle
load Lgy (t, b)for each scenario; this file is the primary artefact of the demand model.

Penetration Scenarios

Three adoption levels are assessed: 0% (no EV), 10%, and 30%.To ensure policy relevance,
the 10% and 30% penetration scenarios were grounded in national-level adoption forecasts for
Morocco. Projections from a 2019 technical report on sustainable mobility by Morocco's Energy
Federation [29] outline several adoption pathways. Our scenarios are derived from these
national-level forecasts, representing conservative and ambitious bounds.

Net Nodal Demand for Steady-State Analysis

This study uses a single steady-state snapshot for the grid impact assessment. To create the
input for this grid model, we first calculate the annual average EV power Ly avg(b) for each bus
from the 8760-hour load profile generated by Model 1.

The total load for each bus Liyia1(b) is then calculated by superposing this annual average EV
power onto the base network load Ly s (b):

Liotai(b) = Lpgse(b) + Lev,ave (b) (7

Power-Flow Solution

A single steady-state power flow is solved for each scenario using GridCal and the net nodal
demands above:

e Algorithm: alternating-current Newton—Raphson

Tolerance: 1 X 10~ ®per unit; maximum iterations: 25

Slack bus: primary supply node at the 225/60/22 kV interface

Load models: base loads as P-Q; EV charging at unity power factor
Operating limits: bus voltages checked against 0.95-1.05 per unit;
branches/transformers flagged above 100% of S,

Line-Loading Definition
Line/transformer loading uses apparent power (active Pj,.and reactive Qy;,.) normalized by

the nameplate rating S, [30], [31]:
, (3)
P, lizne + leine

Loading [%] = ——— x 100

rate



Stress Metrics for Steady-State Analysis

This subsection defines the indicators computed from each single steady-state snapshot (0%,
10%, 30%) and how they are used to compare performance across adoption levels.
o Voltage quality
o Record bus voltages (per unit) on all energized buses.
o Report the minimum bus voltage in the network.
o Count buses below the 0.95 per unit planning limit (and optionally below 0.90 per
unit).
e Thermal Loading
o Record line and transformer loading as a percentage of nameplate rating.
o Report the maximum element loading in the network.
o Tabulate shares of elements within the bands: <70%, 70 — 90%, 90 — 100%, and
>100% (overloaded).
e Substation electric-vehicle energy shares
o Aggregate electric-vehicle (EV) average charging power to the supplying primary
substation.
o Report the spatial distribution of this EV load to identify substations that receive the
largest shares (“hotspots™).

RESULTS

This section presents the first-week unmanaged charging behavior at two adoption levels.
Figure 2a, Figure 2b, Figure 2¢ and Figure 2d illustrate disaggregation by location and
system aggregation for 10% and 30% EV penetration. Location-specific views (Figure 2a,
Figure 2¢) show that public sites generate the largest intermittent spikes, while home and work
sessions are smaller but frequent. System-level views (Figure 2b, Figure 2d) reveal a
pronounced evening shoulder (~18:00 — 23:00) and a smaller mid-day shoulder. Between 10%
and 30% adoption, the evening peak increases more than proportionally, reflecting nonlinear
growth driven by coincident starts at public sites.

Snapshot Power-Flow Convergence

Solver performance for the steady-state snapshots is reported here. Using annual-average
charging injections, a single alternating-current Newton — Raphson solve was executed for each
scenario (0%, 10%, 30%) with a mismatch tolerance of 1x1076. All cases converged cleanly, with
final residuals well below tolerance: 0%: 9.11x10™ p.u.; 10%: 3.36x10°° p.u.; 30%: 9.58x10"
p.u. Computation time was negligible.

Charging Distribution Across Substations

Figure 3 displays the EV-only average charging power (excluding base load) mapped to the
nearest primary substation for 10% and 30% adoption. The distribution is non-uniform: several
corridors absorb disproportionate shares. The increase from 10% to 30% is not proportional
across substations, as proposed public charging sites (gas stations) act as spatial proxies,
concentrating sessions where site density is higher.
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Figure 3. Average Load Distribution Across EV Charging Stations at
Different Utilization Levels (10%, 30%)

Network-Wide Loading Patterns

Figure 4a — 4c¢ presents branch loading across the network for 0%, 10%, and 30% scenarios,
using the study bands: <70% (green), 70 — 90% (yellow), 90 — 100% (orange), and >100% (red).
As adoption rises, yellow/orange/red segments expand along corridors with multiple proposed
sites, indicating spatial clustering of stress. For illustration, Line Autohall — Oujda — Omran3
increases from ~73% (baseline) to ~86% (10%) and ~96% (30%).

Thermal headroom remains concentrated in the <70% band, but a discernible tail moves into
higher bands as EV adoption increases, thermal stress intensifies modestly across the network. At
baseline (0% EV), 78.6% of lines operate at <70% of their thermal rating, 9.4% fall within the 70
-90% band, 3.4% within 90 — 100%, and 6% exceed 100%. At 10% EV penetration, these shares
shift to 76.9%, 10.3%, 5.4%, and 7%, respectively. At 30% EV, the distribution becomes 75.2%,
10.4%, 6.3%, and 9%. The largest increases occur on feeders serving corridors with multiple
proposed public-charging sites, consistent with the spatial clustering illustrated in Figure 4 and
quantified in Figure 5.

This subsection summarizes voltage quality at energized buses. Figure 6. eports per-bus
voltage drop (1 — V)for the 0%, 10%, and 30% snapshots. The distribution is concentrated at
small drops: 94 of 103 buses (=91%) exhibit <3% drop in all scenarios, while a narrow,
persistent tail of 7/103 lies >10%, co-located with charging hotspots. In per-unit terms, the
system bulk is stable (median voltage = 0.974 p.u. across scenarios). Relative to planning
thresholds, about 9 buses fall below 0.95 p.u., and none fall below 0.90 p.u.; these counts change
little with adoption.
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(0%, 10%, and 30%) is depicted as: Figure 4a (a); Figure 4b (b); and Figure 4c (c)

Journal of Sustainable Development of Energy, Water and Environment Systems



Karmoun, M., Arfaoui, W.,, et al. Year 2026
Impact of Electric-Vehicle Charging on the Medium-Voltage... Volume 14, Issue 2, 1140667

200

150

I Ref scenario
[ 10 % scenario
7130 % scenario

8
8

£
F
___‘__;

[ T T g
! L] TT L =t
LI S raTEn Ay i, T ed
_13:::, b gé%éﬁ;,ﬁ?v'?:ﬁﬁgg d% 't ki 4608 53 Eég I
E g:“ a5 e oy, Eda x‘f‘:‘
Load of each line
Figure 5. Loading Percentage Across Different Lines at Various
Utilization Levels (0[%], 10[%], 30[%])
0.25 —
02—
5 I Ref scenario
B [ 10 % scenario
130 % scenario
0.05
0
JOF “u‘i(cgl * IIII g
= w?mg‘fi‘;w mﬂwmﬁg&f;’wggngﬁgv — =

£ gl /
& %{a! T FEOUTew =
o i 30, "’mgw-wgmma<

w.

Load of each line

Figure 6. Voltage Drop Profiles Across Substations under Varying EV Penetration

DISCUSSION

The results show a clear pattern: broad system headroom with localized, pre-existing stress
that is amplified by EV adoption. The finding that the grid is "robust in bulk" (81% of lines
<70% loaded) but has a "weak tail" (6% overloads, 9 undervoltage buses) is a key, nuanced
outcome. This confirms that unmanaged charging does not push the entire system to collapse, but
rather intensifies stress at known bottlenecks. This is a direct result of the non-proportional,
spatial clustering of EV load (Figure 3).
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This operating picture argues against system-wide reinforcement. With ~80% of branches
lightly loaded, uniform upgrades would be low-yield. Instead, targeted levers are justified: (i)
Selective reinforcement at the handful of "hotspot" feeders; (ii) Siting guidance for public
chargers to avoid already-stressed corridors; and (iii) Simple operational measures (e.g., power
caps), which are an important first step for mitigation.

This study deliberately used a steady-state assessment for its screening value: it is fast,
reproducible, and transparent for planners in data-scarce systems. This "Limitations" section
addresses all remaining analytical points:

e The analysis uses snapshots and does not capture worst-hour coincidence peaks, which

are likely higher. Results are a conservative baseline.

e We did not simulate coordinated charging or bidirectional (V2G) support, which are both

key areas for future work.

e Spatial and behavioral data are proxies, as local Moroccan telemetry is not yet available.

e Harmonics and non-unity power factors are excluded.

Even with these limits, the qualitative picture is robust: medians stay stable while the same
corridors dominate the "weak tail." For research, the natural extension is a time-series analysis to
test the mitigation and V2G strategies on the specific hotspots identified in this paper.

CONCLUSIONS

We evaluated unmanaged electric-vehicle charging impacts on a medium-voltage distribution
network representative of Oujda using a reproducible, geo-referenced steady-state workflow.
Despite rising adoption, network-wide headroom remains substantial — with 81%, 79%, and 78%
of lines at <70% of rating across the 0%, 10%, 30% scenarios — and voltage quality is robust in
bulk (=91% of buses within <3% drop; median = 0.974 p.u.; no bus below 0.90 p.u.). Stress
manifests as a localized tail: the share of overloaded lines (>100%) grows modestly (6% — 7%
— 9%), and a stable set of 7/103 buses exhibits >10% drop near public-charging hotspots.

These results argue for targeted interventions rather than uniform upgrades. Practical next
steps for planners include: (i) selective reinforcement at a handful of hotspot feeders; (ii) siting
guidance for public chargers to avoid already-stressed corridors; and (iii) simple operational
measures during the evening shoulder (e.g., caps or staggered starts at fast chargers).

Future work should extend this baseline by quantitatively testing mitigation — coordinated
charging policies, evening demand caps, and, where feasible, bidirectional vehicle-to-grid — and
by coupling distributed solar and storage to absorb mid-day energy and reduce evening
coincidence. A fuller time-series analysis with thermal time constants and feeder-level
measurements would strengthen validation, but the present snapshots already provide actionable
screening for hosting capacity in data-constrained settings.
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NOMENCLATURE

Cy battery capacity of the
vehicle

Dy daily distance traveled by the
vehicle

Evt energy consumption of the
vehicle at time ¢

Pcharging charging power of the
vehicle

P(h) hourly charging probability

Pline active power flowing
through a transmission line

Oline reactive power flowing
through a transmission line

SoC state of charge of the battery

SOCfinal final state of charge of the
battery

SOCinitial initial state of charge of the
battery

Wh normalized weight for home
charging share

Wy normalized weight for
workplace charging share

Wp normalized weight for public
charging share

Greek Letters

Ois seasonal adjustment factor
for energy demand

Ny energy efficiency of the

vehicle

Subscripts and Superscripts

[KWh]

[-]

[kWh /km]

max maximum value

min minimum value

A% refers to a specific vehicle

t refers to a specific time step
Abbreviations

EV Electric Vehicle

GridCal Grid Calculation Software

PV Photovoltaic

API Application Programming Interface
IEA International Energy Agency

NDC Nationally Determined Contribution

TOU

Time of Use
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APPENDIX

Table A1l. Bus parameters

Parameter Description

name Unique identifier for the bus (e.g., substation name)
Viom Nominal operating voltage (kV)
Vnin Minimum voltage limit (p.u.)
Vinax Maximum voltage limit (p.u.)
longitude Geospatial coordinate for mapping
latitude Geospatial coordinate for mapping
Table A2. Branch parameters
Parameter Description
name Unique identifier for the line
bus_from Name of the sending-end bus
bus_to Name of the receiving-end bus
R Line resistance (p.u. or Ohms)
X Line reactance (p.u. or Ohms)
B Line susceptance (p.u. or S)
length Physical length of the line (km)
Parameter Description
name Unique identifier for the load
bus Name of the bus the load is connected to
P Base active power demand (MW)

Q

Base reactive power demand (Mvar)
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Table A3. Transformer types

C(ali)\e;zl;y Count (Units) Total Capacity (MVA)
50 1 0.05
100 5 0.50
160 15 2.40
200 2 0.40
250 21 5.25
315 12 3.78
400 41 18.00
500 6 3.00
630 10 9.45
800 4 3.20
1000 2 2.00

40,000 (40 4 160.00
MVA)
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