

Journal of Sustainable Development of Energy, Water and Environment Systems

http://www.sdewes.org/jsdewes

Year 2026, Volume 14, Issue 2, 1130653

Original Research Article

Predicting Environment, Social, and Governance Scores Using Firms' Financial Indicators: A Machine Learning Regression Approach

M. Alsayyad*1,2, S.M. Fadel³

¹Department of Mathematics, Bahrain Polytechnic, PO Box 33349, Isa Town, Kingdom of Bahrain.

e-mail: mariam.alsayyad@polytechnic.bh

²American University of Bahrain, Building 1350 Road 4225, Riffa 942, Kingdom of Bahrain.

e-mail: mohamed.fadhel@polytechnic.bh

Cite as: Alsayyad, M., Fadel, S. M., Predicting ESG Scores Using Firms' Financial Indicators: A Machine Learning Regression Approach, J.sustain. dev. energy water environ. syst., 1130653, DOI: https://doi.org/10.13044/j.sdewes.d13.0653

ABSTRACT

The oil and gas industry plays a pivotal role in the global energy and financial markets. With increasing concerns surrounding Environmental, Social, and Governance scores, their impact on this sector has become a growing area of focus. This study aims to forecast Environment, Social, and Governance scores in the oil and gas sector using extensive datasets comprising publicly available financial and Environment, Social, and Governance indicators of firms. The research analyzed data from 497 companies within the industry over a 12-year period. A total of 10 machine learning algorithms were utilized to predict Environmental, Social, and Governance scores, including decision trees, ensemble methods (boosting, bagging, and voting), XGBoost, LightGBM, random forest, extreme random trees, linear regression, robust linear regression, and elastic net. The analysis incorporated a one-year lag in Environment, Social, and Governance scores and employed panel data regression techniques in machine learning. The findings demonstrated a high predictive performance, with the best R² value reaching 0.922. These results provide a practical framework for investors and decision-makers to evaluate a firm's Environment, Social, and Governance performance, facilitating more informed and sustainable investment decisions within the oil and gas sector.

KEYWORDS

Sustainability, Machine Learning, ESG Score Prediction, Firm Financial Performance, Data Analysis, ESG Investments, Cil and Gas Industry.

INTRODUCTION

Environmental, Social, and Governance (ESG) serves as a corporate evaluation metric that assesses companies non-financial performance. It encompasses key concerns such as corporate governance, climate change, social inequality, workplace conditions, and broader sustainability challenges facing society [1]. Additionally, ESG factors shape how companies engage in environmental innovation, uphold human rights, manage resources efficiently, adhere to social ethics, and fulfill their product responsibilities [2]. As a result, businesses worldwide are increasingly integrating ESG considerations into their managerial decision-making processes [1]. The oil and gas industry plays a vital role in the global energy and financial markets. It remains one of the most developed and transparent energy sectors [3] and continues to be a primary energy source worldwide [4]. However, compared to sectors such as finance, insurance,

-

³Department of Finance, Bahrain Polytechnic, PO Box 33349, Isa Town, Kingdom of Bahrain

^{*} Corresponding author

and retail, this industry faces significant environmental and social challenges due to the nature of its operations. Consequently, investors, governments, environmental advocates, and the general public closely monitor the oil and gas sector, given its considerable ecological impact. In response to mounting stakeholder pressure, companies within this industry have implemented more sustainable policies and regulations, aiming to transition toward a more environmentally responsible energy model [4]. ESG performance is becoming a crucial factor in investment decisions. As corporate governance and environmental concerns gain prominence, investors are increasingly considering ESG metrics as key non-financial indicators[5]. The benefits of ESG investment are evident, as prioritizing ESG initiatives can improve corporate behavior and enhance access to external financial resources [6].

Environmental, Social, and Governance -Finance Analysis Utilizing Machine Learning

Researchers have employed machine learning (ML) algorithms alongside firms financial indicators to analyze ESG performance. [7] integrated annual financial indicators with natural language data in their study, utilizing models such as XGBoost, CatBoost, a Keras sequential model, the K-Nearest Neighbors (KNN) classifier, and a simple linear regressor to predict firms' annual ESG ratings. The research conducted by [8] introduced a model for ESG score prediction by training heterogeneous ensemble models, incorporating neural networks and the random forest algorithm. [9] not only examined the impact of financial indicators on ESG scores but also included governance factors to provide a more comprehensive assessment. Their study, which encompassed over 30 industries in Taiwan, including the oil, electricity, and gas sectors, tested four ML models: support vector machines (SVM), random forest, extreme learning machine (ELM), and extreme gradient boosting. Meanwhile, [10] initially implemented three standalone machine learning models, categorical gradient-boosted trees, feedforward neural networks, and gradient-boosted trees. They later proposed two ensemble models: a neural network ensemble and a heterogeneous ensemble combining all three individual models. Their findings revealed that the heterogeneous ensemble achieved the most accurate ESG predictions, as it leveraged the strengths of each individual model to uncover unique correlations between input variables and ESG scores. [3] investigated the external environmental factors and internal corporate attributes influencing ESG performance. They applied the Lasso method for data screening and employed ML models such as SVM, KNN, neural networks, and random forests to predict firms' ESG performance. Their study confirmed that both internal and external factors play a crucial role in enhancing corporate ESG performance. Furthermore, [11] and [12] incorporated social and governance datasets along with unstructured news and social media content, including Twitter data, to improve ESG score prediction. To analyze this unstructured text, they utilized natural language processing (NLP), which allowed the models to differentiate between pillar-specific input data and intermediate data representations. Their results highlighted the effectiveness of NLP in capturing the full scope of ESG-related data.

Fundamental Ratios

Existing literature has explored the use of firms' financial indicators in predicting ESG scores. In the study by [7], various financial metrics were analyzed, including ROA, ROE, net income, total assets, price-to-free cash flow ratio, long-term debt, price-to-sales ratio, debt-to-equity ratio, quick ratio, earnings per share, current ratio, price-to-book ratio, price-to-earnings ratio, EBITDA, return on investment, revenue, total liabilities, employee turnover rate, and the independence of the chair and CEO roles. Additionally, [13] included the sales growth rate in their examination. [6] incorporated control variables such as the asset-liability ratio, Tobin's Q, operating cash flow, and firm size. Building on this, [14] added total return and dividend yield to the analysis, while [4] also considered a company's market value to investigate its relationship with ESG performance within the oil and gas industry.

Environmental, Social, and Governance-Score Relevance in the Oil and Gas Industry

According to [4], due to the considerable environmental impact of the oil and gas sector, ESG (Environmental, Social, and Governance) scores have gained increased relevance. Their study investigates how ESG strategies influence various financial variables with the objective of building a comprehensive model of a firm's financial system. Specifically, it assesses the potential effects of each ESG pillar on a company's market value. The research utilizes ESG metrics along with financial and economic data obtained from Refinitiv Eikon DataStream. To evaluate operational and financial performance, the study employs Return on Assets (ROA) and Return on Equity (ROE), respectively. The researchers used partial least squares structural equation modelling (PLS-SEM) to develop a new global ESG score and analyze its influence on firms' financial performance. Their findings indicate that ESG practices have a positive effect on financial performance within the oil and gas industry.

In a related study, [6] examined how sustainability performance affects the Chinese crude oil market using a panel regression approach. One of their key findings is that crude oil futures prices significantly influence ESG performance, suggesting that price fluctuations can encourage companies to improve their ESG ratings.

On the reverse analysis of ESG-finance relationship in the oil and gas industry, the research conducted by [15] forecasted oil prices during the COVID-19 by examining stock markets, global environmental indices (ESG), and green energy resources (GER). Advanced ML algorithms, including random forest, LightGBM, CatBoost, XGBoost, and neural network models, were used in this study. While [14] examined how Latin American (Latam) oil and gas companies' projected dividend growth and discount rates are impacted by their corporate ESG performance. The researchers built their research upon the work conducted by Campbell and Shiller to compute the present value decomposition.

Research Contribution

There is a noticeable gap in the existing literature, as limited studies have focused on predicting ESG scores in the oil and gas sector by integrating financial indicators, ESG metrics, and machine learning techniques. For instance, the research by [4] was limited to data from a single year (2020) and did not assess the predictive potential of their model or incorporate machine learning methods. Likewise, the studies by [6] and [14] did not utilize machine learning in their analyses. While [15] did apply machine learning algorithms, ESG scores were merely used as inputs to analyze corporate financial performance, rather than being predicted. Moreover, past research has yet to establish a reliable prediction framework for ESG scores specifically within the oil and gas industry. As a result, investors and key decision-makers face difficulties in forecasting firms' ESG performance.

Environmental, Social, and Governance-Finance Analysis Utilizing Machine Learning

The numerical results obtained from the models utilizing regression machine learning algorithms, were evaluated against their prediction accuracy. In the research conducted by [7], [8], and [10] researchers used mean average error (MAE) and the coefficient of determination (R²) parameters. In the research conducted by [9], two more performance variables were added, root mean square error (RMSE) and mean absolute percentage error (MAPE), for their models' results comparison. While [11] used the RMSE and MAE to examine the models obtained for predicting ESG scores.

Theoretical Background on Financial Indicators and Environmental, Social, and Governance Prediction

This report examines the performance of ESG scores through the lens of stakeholder theory. ESG scores and investments provide insights into various aspects of the company, such as its

internal governance competencies, interactions with local government, and other social responsibilities. Furthermore, companies are inclined to embrace social responsibilities, including fulfilling debt obligations [16].

Previous research has shown that within areas featuring well-established ESG scoring systems, investors incorporate high ESG performance as a key factor in making investment decisions [17]. Additionally, stakeholders, as suggested by [18] believe that companies which prioritize strong ESG practices, and a positive reputation are more likely to compete effectively in the market. Consequently, successful management, recognized by stakeholders, can lead to increased investment, productivity, and consumption.

Furthermore, according to [19] firms may improve their financial performance through the indirect advantages of having solid stakeholder relationships. Companies engaging in socially and environmentally responsible practices, coupled with effective governance processes align with stakeholders' interests, thereby improving financial performance. Furthermore, the resource-based hypothesis suggests that businesses with heightened ESG disclosure (ESGD) can gain competitive advantages, and that the financial performance appears to be positively correlated to ESGD. This suggests that companies can strengthen their corporate reputation and develop internal resources by engaging in ESGD initiatives.

Additionally, [7] showed that financial ratios such as ROA and ROE could be accurately predicted using machine learning models based on ESG ratings, reinforcing the strong link between ESG performance and financial outcomes. Similarly, [3] applied machine learning methods to fuse macroeconomic and microeconomic data, revealing that internal financial indicators play a significant role in shaping corporate ESG performance. In parallel, [12] established that strong financial results are positively associated with the adoption of sustainable business models, demonstrating that companies with solid financial standing tend to achieve better ESG outcomes while simultaneously reducing investment risk and securing competitive returns.

DATA

This section illustrates the data sourcing and pre-processing procedures, along with the resulted data sets, and the data analysis diagram.

Environmental, Social, and Governance Scores

LSEG Data & Analytics (LSEG) is a globally recognized provider of financial data, operating in 175 countries. Beyond its role as a key source of financial information, numerous research studies have analyzed its ESG disclosures, which encompass data from over 12,000 public and private companies, covering more than 80% of global market capitalization. The methodology used to determine sustainability ratings is entirely data-driven, carefully adjusted to reflect industry-specific criteria, and refined to mitigate biases related to market capitalization and transparency [20]. For companies in the oil and gas industry, the parameters used in E.G score calculations were compared. The environmental (E) and social (S) pillar scores are assessed in relation to firms and their industry counterparts, whereas the governance (G) pillar score is evaluated based on the country of incorporation. The total ESG score is derived from the combined scores of these three pillars. These scores are not absolute but are instead calculated relative to the broader industry and market context in which the company operates [21]. A total of 186 selected metrics contribute to the ESG scores, which are further categorized into 10 groups, as illustrated in Figure 1. Consequently, the overall scores provided by Refinitiv are utilized for this analysis, in alignment with the methodologies applied by [10], [8], and [4].

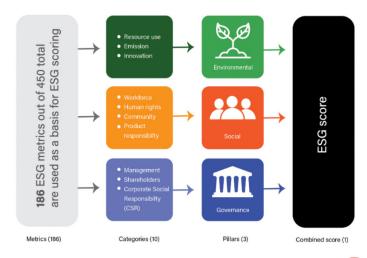


Figure 1: ESG score computation.

Financial Indicators

The input variables, consisting of historical financial indicators felevant to firms in the oil and gas industry, are also obtained from LSEG. The retrieval of both financial indicators and ESG scores was carried out using two separate methodologies, Datastream and Refinitiv, both of which are well-established data sourcing methods provided by LSEG.

The data were extracted upon the detailed examination of the literature. Notable differences can be observed between the financial indicators derived using the Datastream variables method and those selected via Refinitiv. These variations are primarily due to the differing data sources and the unique calculation methodologies applied to each indicator by the respective platforms. Appendix A outlines these discrepancies and highlights the indicators that were excluded from the analysis when Refinitiv was used as the data source.

Sample Size and Population

The dataset comprised companies from the oil and gas industry that had reported their ESG scores between 2010 and 2022. This selection process resulted in a total of 497 companies, whose data were acquired using both the Datastream and Refinitiv methodologies. Table 1 provides a breakdown of the number of companies from each continent included in this analysis.

Fable 1: Number of companies included in the analysis.

America	260
Europe	83
Asia	122
Oceania	28
Africa	4
Total	497

The selection of indicators covered a 12-year period, ranging from 2010 to 2022. Over the past decade and a half, the incorporation of ESG scores and related indicators into financial reporting has steadily increased within the oil and gas industry. To gain deeper insights into ESG score trends and patterns, a large sample size spanning 12 years was chosen for analysis.

Machine learning algorithms are particularly effective in predicting outcomes from extensive datasets, as they can identify intricate and hidden relationships while improving prediction accuracy. Therefore, the comprehensive dataset covering 12 years is well-suited for ML analysis. The exclusion of ESG scores for 2023 was due to incomplete disclosures for the selected companies. Since ESG scores serve as the primary predictor, missing data were not processed to prevent introducing noise into the dataset, as such inconsistencies could compromise the accuracy and reliability of the prediction model [22]

Dummy Variables

Dummy variables were integrated into the dataset alongside ESG and financial indicators to enable a more detailed analysis. The explanatory variables considered in the study include country, firm size, and ESG scores. These dummy variables were introduced to examine how firm size and geographic location influence ESG scores.

Country

The country dummy variable was created by identifying the headquarters location of each of the 497 companies included in the study. A total of 55 countries were represented in the dataset.

Firm Size

To assess firm size, market capitalization values were collected for all 497 companies. These were then grouped into five categories following the classification system proposed by [23], as detailed in Table 2. The decision to use market capitalization as a measure of firm size aligns with the methodology of [24]

Mega-cap Equal to or greater than 200 000 000 000 200 000 000 000 Big-cap to 10000000000 Mid-cap 1000000000 2000000000 to 2000000000 Small-cap 250000000 to 250000000 Micro-cap 50000000 to 50000000 Nano-cap Up-to

Table 2: Market capitalization scale.

Environmental, Social, and Governance Scores

During variables for ESG scores were generated by categorizing the continuous ESG values into three levels, based on the classification framework suggested by [7]. These classifications are outlined in Table 3.

Table 3: ESG score classification (3 classes).

Leader	70.143≤ESG score≤100
Average	40.286≤ESG score<70.143
Laggard	ESG score<40.286

Data Preprocessing

Before applying machine learning algorithms, the extracted data from both sources required preprocessing. The following sections describe the preprocessing steps.

Data Normalization

Since ESG and financial indicators vary in scale, normalization was essential to ensure that each feature contributes equally to the analysis. This step is critical, as the quality and consistency of input data directly influence the performance of machine learning algorithms. For this study, Min-Max scaling was used, following the methodology of [9]. This approach transforms all values to fall within a 0–1 range, helping to standardize the data and enhance model performance, as presented in (Equation 1) [25].

$$X' = \frac{X - X_{min}}{X_{max} - X_{min}} \tag{1}$$

Where X' is the new data that has been normalized, X is the old data, X_{max} , and X_{min} are the maximum and minimum values in the data set respectively.

Environmental, Social, and Governance Score Classification

Originally collected as continuous data, ESG scores were used for regression analysis. However, to expand the range of machine learning models that could be applied, ESG scores were also categorized into three classes for classification analysis. In supervised machine learning, this labelling enables classification tasks where ESG scores, serving as target variables, are divided into "leader," "average," and "laggard" groups as per [7] work.

Lagged Environmental, Social, and Governance Scores

To enhance the predictive performance of the models, feature engineering techniques were applied, specifically, the creation of lagged features. In this context, previous-year ESG scores were introduced as a time-lagged variable (lag-1), based on the approach suggested by [26]. This accounts for time-dependent relationships between ESG scores and financial performance and helps improve forecasting accuracy [27] A lag represents the value of a variable from a previous time period [28]. In this analysis, a one-year lag was applied between ESG scores and financial indicators.

Panel Data

This research employed panel data analysis, combining both cross-sectional and time-series dimensions. This method allows the modeling of unobserved heterogeneity and captures consistent characteristics over time, such as economic behavior or management practices [29]. Following [36] and [31] a one-year lag in ESG scores was used to support this approach.

Data Exclusion

Real-world datasets often contain missing, noisy, or irrelevant information, which can negatively impact model performance. During preprocessing, missing values in ESG and financial data were addressed. Rows or columns that were entirely empty were excluded. Furthermore, in line with [8], any variable with over 65% missing data was removed from the dataset. Noisy data can significantly distort analytical outcomes and affect the effectiveness of normalization techniques such as Min-Max scaling. To maintain data quality, companies with more than three missing ESG scores were excluded from both the Refinitiv and Datastream datasets.

Training and Testing Data

In this analysis, cross-validation was employed as a resampling technique to assess model accuracy and reduce the risk of overfitting, a common issue when training data is insufficient [27] and [32]. This method ensured consistency by maintaining the same set of companies across all training and testing folds [33]. The default cross-validation configurations provided by MATLAB and Azure were used, with no further parameter adjustments.

Data Analysis Diagram

The data analysis process followed in this study is depicted in Figure 2. The process began with data collection, followed by multiple stages of data preprocessing. After preprocessing, the data were processed using two separate platforms, MATLAB and Azure AI/Machine Learning Studio, where ML algorithms were applied. The dataset was automatically split into training and testing subsets based on the default specifications of each platform. No parameter tuning was performed.

Subsets

The datasets were organized into 7 distinct groups. Figure 3 and Figure 4 show the final sets used for both regression and classification ML analysis.

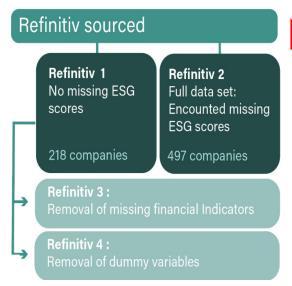


Figure 3: The 4 Refinitiv data sets.

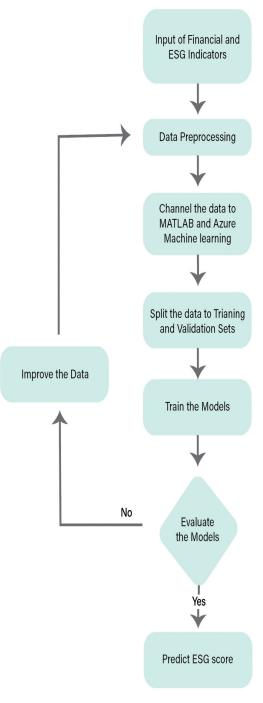


Figure 2: Data analysis diagram.

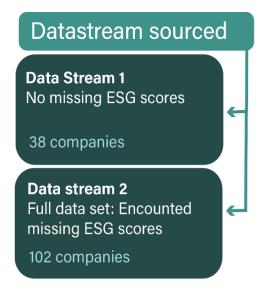


Figure 4: The 2 Datastream data sets.

Dummy variables were integrated into the dataset alongside ESG scores and financial indicators. The explanatory variables selected for analysis included country, firm size, and ESG scores. The inclusion of dummy variables aimed to enable a comprehensive evaluation of how firm size and country influence ESG scores. Additionally, for datasets that produced the most promising results, further analyses were conducted. This included testing models without dummy variables, removing missing financial indicators, and assessing their impact, as detailed in Table 4. In total, 6 data sets were tested in this analysis as shown in Figure 3 and Figure 4.

Table 4: Financial indicators with high missing values from Refinitiv.

Indicator	Missing Values (out of 2834)	Percentage of Missing Values (%)
Total Assest Actual	901	31.79
Total Liabilities	601	21.21
Return on Assest Actual	692	24.42
TobinQ	2514	88.71
Price to FCF per Share	1239	43.72
Price to Sales Ratio Mean	2493	87.97

DATA ANALYSIS AND FINDINGS

This section illustrates the results obtained from channelling the data to 2 distinct platforms to run the classification analysis, MATLAB, and Azure.

MATLAB Results

The 7 data sets were fed into regression learner analysis, using continuous ESG scores. The obtained R^2 of Refinitiv 1 are provided in Table 5. The highest value of R^2 was found to be

0.892 obtained from Bagged trees (ensemble) model. R² is used to evaluate the effectiveness and fit of regression models, higher the values of R², (closer to 1), the higher the explanation of the variance in the dependent variable (ESG scores), that is explained by the independent variables (financial indicators and ESG scores), according to [34], generally, a model with an R² value greater than 0.9 is considered reliable, hence, a value of 0.892 is slightly lower than being reliable.

Table 5: Refinitiv 1(no missing ESG scores) regression R² values.

Model Type	R^2
Bagged Tree	0.892
Boosted Tree	0.892
Decision Tree	0.865

In order to test the effect of having companies with missing ESG scores, Refinitiv 2 was tested, and the results of R² values were compared to Refinitiv 1 values, as presented in Figure 5. R² value was reduced from 0.892 to 0.812 for the ensemble bagged trees.

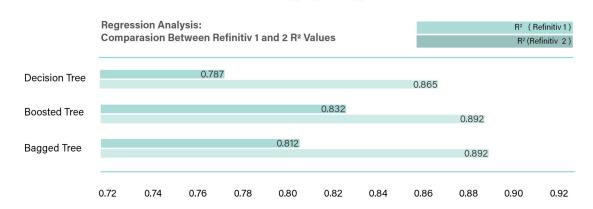


Figure 5: Comparison between Refinitiv 1 and 2 (encountered missing ESG scores) R² values.

Table 6 and Figure 6, presents the RMSE, MSE and MAE values for both Refinitiv 1 and 2. In addition to evaluating the models based on R² value, other performance metrices such as MAE, MSE and RMSE were also analyzed. According to [35], MAE and MSE are used to evaluate the models by considering the distance between the predicted values and the actual training data points. Moreover, MSE is more sensitive to outliers compared to MAE. The values obtained from the 5 models are promising as the error values are small (maximum obtained error is 0.0617 for MAE, and 0.00717). Ensemble bagged tree model outperforms the other 2 models with MAE value of 0.0535 and MSE values of 0.00571. Furthermore, RMSE is commonly used to standardize the units of MSE. The distinct types of regularization inherent to these metrics influence their relative effectiveness depending on the structure of the data [35]. Ensemble bagged tree outperform other models as it has the least RMSE value.

Furthermore, the values of MAE, MSE, and RMSE are 0 if the regression model fits the data perfectly, and they are positive if the fit is not perfect. Therefore, the models with lower

values (closer to 0) have better prediction performance [35], accordingly, the error results obtained from the regression analysis of this data set are excellent.

Table 6: Comparison between Refinitiv 1 and 2 RMSE, MSE, and MAE values.

Model Type	RMSE		MSE		MAE	
	(Refinitiv 1)	(Refinitiv 2)	(Refinitiv 1)	(Refinitiv 2)	(Refinitiv 1)	(Refinitiv 2)
Bagged Tree	0.0756	0.1002	0.0057	0.01	0.0535	0.0674
Boosted Tree	0.0757	0.0949	0.0057	0.009	0.0535	0.0662
Decision Tree	0.0847	0.1068	0.0072	0.0114	0.0617	0.0745
Regression Analy Comparison Betw 0.15		d 2 Errors	l	Bagged Tree	Decision Tree B	Boasted Tree
0.1						
0.05						
0						
	RMSE Refinitiv 1	RMSE Refinitiv 2	MSE Refinitiv 1	MSE Refinitiv 2	MAE Refinitiv 1	MAE Refinitiv 2

Figure 6: Comparison between Refinitiv 1 and 2 RMSE, MSE, and MAE values.

Figure 7 presents the comparison between Refinitiv 1 and 3 R² values, to test the effect of removing the missing financial indicators from the data set. R² value was 0.892 before the exclusion, and 0.858 after the exclusion.

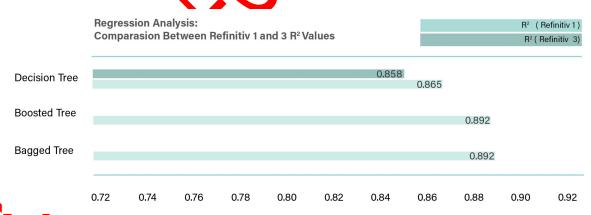


Figure 7: Comparison between Refinitiv 1 and 3 (no missing financial indicators) R² values.

Figure 8 presents a comparison between Refinitiv 1 and 4. It is observed that once the dummy variables are removed from the data set, the performance of the regression analysis improved slightly in terms of R², from the highest accuracy of 0.892 obtained from bagged trees in Refinitiv 1 to 0.920 obtained by the linear regression in Refinitiv 4, by an amount of 2.779%. This introduced and made the Robust linear regression models superior to the ensembled bagged trees, that obtained the highest accuracy. One possible explanation to this increase in performance once the dummy variables are removed is that the linear regression exhibits limitations in capturing the nonlinearity and complexity inherent in the data system

with dummy variables [36] Therefore, as a result of having complex sets with dummy variables, linearity is not assumed, therefore, tree-based algorithms are more applicable than linear regression [33]

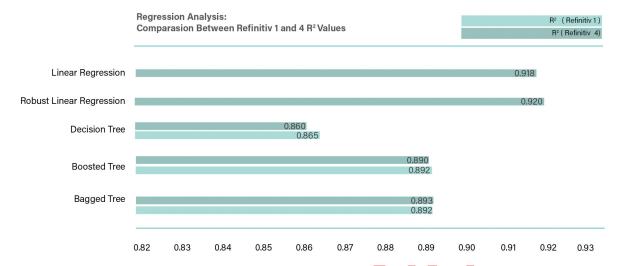


Figure 8: Comparison between Refinitiv 1 and 4 (no dummy variables) R² values.

Table 7 represents a comparison between Refinitiv 3 and 4 performance metrices in terms of the values of MAE, MSE, RMSE.

Table 7: Refinitiv 3 and 4 RMSE, MSE, and MAE values

Model Type	MSE	RMSE	MAE			
	Refinitiv	/ 3				
Decision Tree	0.0865	0.00749	0.0625			
Refinitiv 4						
Decision Tree	0.0861	0.00741	0.0621			
Robust Linear	0.0646	0.00417	0.0491			
Linear	0.0652	0.00425	0.0497			
Bagged Tree	0.0750	0.00563	0.0529			
Boosted Tree	0.0761	0.00579	0.0552			

Similar regression analysis was performed on the data obtained from Datastream. The results obtained are presented in Figure 9. The highest R² value was obtained from bagged trees, as 0.878 in comparison to Refinitiv regression analysis, which was 0.892.

Figure 9: R² values of Datastream 1 (no missing ESG scores set).

To test the effect of utilizing the full data set with missing ESO scores. Datastream 2 was used, and the values of R^2 obtained are compared to Datastream 1 as provided in Figure 10. The value of R^2 for the ensemble bagged tree increased slightly from 0.878 to 0.888 when the whole data set with missing values was used. The results conclude that the sample size is important in machine learning, hence, this indicates that both, classification, and regression analysis would significantly benefit from a larger set of companies, and historical data of ESG and financial indicators extended for a decade or more, and robust features [7].

Table 8 and Figure 10 and Figure 11 represent the performance metrices of both Datastream 1 and 2 dets for the regression analysis

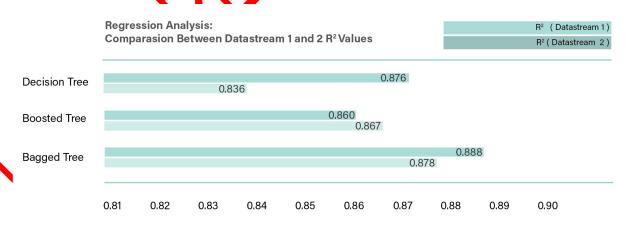


Figure 10: Comparison of R² values of Datastream 1 and 2 (encountered missing ESG scores)

Table 8: RMSE, MSE, and MAE values of Datastream 1 and 2.

Model Type	RMSE		MSE		MAE	
	Datastream 1	Datastream 2	Datastream 1	Datastream 2	Datastream 1	Datastream 2
Bagged Tree	0.0765	0.0784	0.00590	0.00620	0.0547	0.057
Boosted Tree	0.0798	0.0878	0.00640	0.00770	0.0604	0.0627
Decision Tree	0.0886	0.0826	0.00780	0.00680	0.0645	0.0601



Figure 11: Comparison between Datastream 1 and 2 RMSE MSE, and MAE values.

Azure Results

Regression was applied on Refinitiv 1 data set, and the results obtained are provided in Table 9. The highest obtained R² value was 0.922 and obtained from the voting ensemble algorithm, followed by slight reduction for the algorithm's extreme random trees 0.920, elastic net 0.919, random forest 0.913. LightGBM 0.914, and XGBoost regressor 0.906. Since a greater R² value suggests a better fit for the data set, its value is considered important. However, a value closer to a same as when the value of R² score is 1, the regression predictions and the data are perfectly matched [37].

As explained with the results obtained from MATLAB, the closer the values of MAE and RMSE to zero, the better the performance of the model. According to the obtained results, the highest MAE and RMSE values amongst the 6 models were 0.0516 and 0.0701, obtained by XGBoost regressor. Those values, although are the highest, yet, are promising, and close to the other 5 models of error values.

When relative variances in a regression job are more important than absolute values, the MAPE, which highlights percentage errors, is the suitable metric [35]. The values of MAPE obtained from this analysis showed the lowest value when elastic net was used, with a percentage of 18.725, followed by Random Forest 19.455, voting ensemble 20.059, LightGBM 20.576, and XGBoost regressor 22.971.

Table 9: Refinitiv 1(3 classes of ESG scores) performance metrices.

Performance metric	Voting Ensemble	Extreme Random Trees	Elastic Net	Random Forest	Light GBM	XGBoost Regressor
MAE	0.0466	0.0477	0.0472	0.0482	0.0496	0.0516
MAPE	20.059	21.714	18.725	19.455	20.576	22.971
R² Value	0.922	0.920	0.919	0.917	0.914	0.906
RMSE	0.0640	0.0647	0.0650	0.0660	0.0674	0.0701

Testing the effect of removing the financial indicators, Table 10 represents a comparison between Refinitiv 1 and 3 R² values. The results show that all the models implied showed a slight reduction in the value of R² except the XGBoost regressor, whose value of R² was 0.907 and increased to 0.913 when the missing financial indicators were removed. The influence of reducing the sample in regression analysis reduced the performance of R², is aligned to the findings from MATLAB.

Table 10: Comparison between Refinitiv 1, 3 and 4 R^2 values

Model Type	R² (Refinitiv 1)	R² (Refinitiv 3)	R ² (Refinitiv 4)
Voting Ensemble	0.922	0.922	0.916
Extreme Random Trees	0.92	0.92	0.916
Elastic Net	0.919	0.919	0.913
Random Forest	0.917		0.912
Light GBM	0.914	0.913	0.906
XGBoost Regressor	0.906	0.913	
Decision Tree		0.906	0.905

Figure 12 represents the R² comparison between Refinitiv 1, 3, and 4 for the data set for the regression analysis. First, the results of Refinitiv 4 show the value of R² obtained was slightly lower for the models, voting ensemble, extreme random trees, elastic net, random forest, and LighGBM, in comparison to the values obtained from Refinitiv 1. Employing that having duranty variables in the data set had very slight lower accuracy effects on the data set when Azure platform is used.

Comparing the results of the three regression cases, initially, the voting ensemble provided the highest R² value which was 0.922 for Refinitiv 1. However, once Refinitiv 3 was used, R² generally reduced slightly, furthermore, Refinitiv 4, resulted in further slight reduction in the R² values. This could be attributed to the fact that regression analysis prefers slightly larger sample sizes to account for the increased variety in the training and testing data sets [36]. Furthermore, the results of the regression analysis could be improved with a solid dataset that includes a large set of financial and ESG historical data [7].

Regression Analysis: Comparison Between Refinitiv 1,3 and 4 R² Values

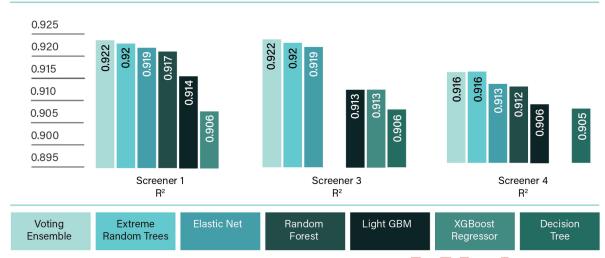


Figure 12: Comparison between Refinitiv 1, 3, and 4 R² values.

Table 11 and Table 12 represents the obtained performance metrices for Refinitiv 1, 3 and 4, indicated by their values of MAE, RMSE and MAPE values.

Table 11: MAE and RMSE for Refinitiv 1.3 and 4

Model Type		MAE			RMSE	
	(Refinitiv 1)	(Refinitiv 3)	(Refinitiv 4)	(Refinitiv 1)	(Refinitiv 3)	(Refinitiv 4)
Voting Ensemble	0.0466	0.0468	0.0481	0.0640	0.0640	0.0664
Extreme Random Trees	0.0477	0.0474	0.0483	0.0650	0.0650	0.0666
Elastic Net	0.0472	0.0475	0.0489	0.0650	0.0650	0.0676
Random Forest	0.0482		0.0501	0.0660		0.0682
Light GBM	0.0496	0.0498	0.0511	0.0670	0.0677	0.0701
XGBoost Regressor	0.0516	0.0502		0.0701	0.0676	0.0709
Decision Tree		0.0514	0.0519		0.0701	

Table 12: MAPE for Refinitiv 1, 3 and 4.

Model Type	MAPE			
	(Refinitiv 1)	(Refinitiv 3)	(Refinitiv 4)	
Voting Ensemble	20.06	19.46	19.04	
Extreme Random Trees	21.71	20.04	19.78	
Elastic Net	18.73	18.55	18.08	
Random Forest	19.46		20.63	
Light GBM	20.58	19.50	20.30	
XGBoost Regressor	22.97	24.07		
Decision Tree		19.96	20.00	

Feature Importance

Figure 13, Figure 14, and Figure 15 illustrate the feature importance of country-level, firm size, and ESG scores for the Refinitiv 1 dataset, respectively. The minimum-redundancy maximum-relevancy (mRMR) feature selection method was applied in this analysis, as it has been shown to outperform traditional top-ranking methods in various recent studies, as noted by [38].

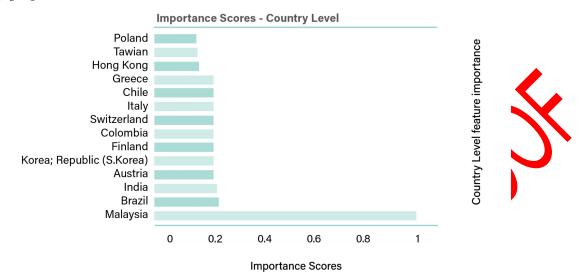


Figure 13: Importance score-Country level.

Figure 14: Importance scores-Firm size.

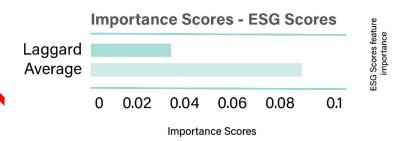


Figure 15: Importance scores-ESG score.

DISCUSSION

This study examines the prediction of ESG scores in the oil and gas sector by leveraging historical financial and ESG indicators as input data. Additionally, machine learning has proven to be highly effective and well-suited for predicting complex scenarios within the ESG-finance domain [9].

MATLAB Analysis

The results obtained from bagged, boosted, and decision tree models for the Refinitiv 1 dataset were closely aligned. Each algorithm yielded high accuracy but emphasized different factors. In the case of ensemble boosted trees, one possible reason for its performance is that boosting operates sequentially, correcting errors from previous trees to minimize bias in the final prediction. The ensemble's final output is derived from the collective predictions of all trees in the model [39]. Decision trees are widely recognized for their effectiveness in regression analysis [40] as demonstrated in the results across the Refinitiv 1, 2, 3, and 4 datasets. The strong performance of these models may be attributed to the efficiency of the tree traversal algorithm [40] and their high generalization capability [25] Regarding ensemble bagged trees, their effectiveness lies in the fact that bagging generates multiple subsets of the original dataset and trains them independently [41] This approach utilizes all available dataset features and integrates them simultaneously to produce a collective prediction [42]. Linear regression performed best for Refinitiv 4 when the dummy variables were removed from the data set. For the results obtained in MATLAB, linear regression failed to interrupt the results, except for this data set. The highest R² value and the lowest MAE, MSE, and RMSE for Refinitiv 4 were obtained from the robust linear regression, a form of linear regression algorithms that utilizes weighted least squares that includes the weight as an additional scaling factor in the fitting process, which improves the fit. The weights determine how much each response value affects the final parameter estimates, with low-quality data points, such as outliers, having less influence on the it [38].

Azure Analysis

The voting ensemble delivered the highest performance among the regression models, though its advantage over other models was only marginal. The strong performance of the voting ensemble in machine learning tasks is attributed to its ability to combine multiple learning models rather than relying on a single predictor. It generates multiple decision trees and determines the prefer ed output class through a majority vote [43]. XGBoost was employed for regression analysis due to its advantages, including high accuracy, sensitivity, and precision. The model achieved a regression score of 0.906, indicating a reliable and wellperforming outcome. The results obtained from the random forest algorithm were also reliable, likely due to its robustness against noise and resistance to overfitting [25]. Both random forest and LightGBM are well-suited for regression problems, effectively handling continuous values [44]. However, random forest was unable to accurately interpret the results for the Refinitiv 3 dataset. Regarding the extreme random trees algorithm, its results were very similar to those of other models, demonstrating its computational efficiency. According to [45], in the randomized tree strategy, using all original training samples instead of bootstrap replicas helps reduce bias, contributing to the model's effectiveness. The elastic net algorithm was utilized for the regression analysis, that is a built upon the traditional regression or logistic regression [46]. For the regression analysis, the R² values were too close to the results obtained from voting ensemble, extreme random trees, random forest, Light GBM, XGBoost regressor, and decision tree. However, the elastic net models achieved the lowest MAPE amongst the other algorithms. The performance of this model is attributed to its ability to assess the random effects of panel data regressions that incorporate multiple interactions [21]. Lastly, decision

trees, in azure machine learning, were only able to interpret the results of regression analysis of the data of Refinitiv 3 and 4, meaning, decision trees were only applicable with the reduced data sets. This could be attributed to the fact that decision trees utilize a divide-and-conquer strategy, excelling when there are only a few highly relevant attributes. However, their performance declines when there are numerous complex interactions among attributes. Errors can propagate through the tree, especially as the number of classes increases. Additionally, as the tree grows larger, the records within leaf nodes often become too small to support statistically significant decisions [25]. Furthermore, another possible reason is that decision trees could be unstable, and the difficulty to manage the tree size [40]

Datastream Results

The results obtained from the Datastream show a significant reduction in performance in comparison to the Refinitiv sourced data. A comparison between the Datastream and Refinitiv regressions reveal that the highest R² value was obtained from bagged trees as 0.878 in comparison to Refinitiv regression analysis, which was 0.892. Furthermore, the value of R² for the ensemble bagged tree increased slightly from 0.878 to 0.888 between Datastream 1 and 2. This reduction in performance for Datastream sourced data could be attributed to overfitting, the sample data obtained from Datastream is too small in comparison of Refinitiv, as a result, inadequate data for training and testing are provided for the machine learning algorithms. According to [32] the more training data provided, the stronger the generalization ability. The accuracy of learning outcomes is significantly influenced by the volume of training data available, and improved performance correlates with larger datasets. Consequently, addressing data shortage becomes imperative to mitigate potential overfitting during training, thereby preserving the model's generalization capability [32]

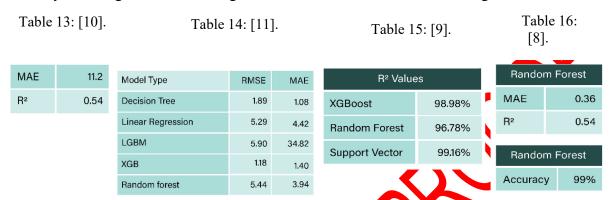
Effect of Country and Firm Size

At the country level, this study examined the impact of country-level sustainability performance. Feature importance analysis revealed that country-level factors had the highest influence. Notably, Malaysia emerged as the most significant indicator, with a feature importance value of 0.934. Malaysia has been a focal point in ESG research since implementing its first corporate social responsibility (CSR) framework in 2006. The integration of CSR into the Tenth Malaysia Plan, along with mandatory CSR disclosure requirements under the Companies Act 2016, has contributed to high CSR scores among Malaysian firms. As a result, Malaysia has positioned itself as a global leader in CSR reporting, with approximately 91% of its top 100 companies disclosing their corporate sustainability performance [47]. These findings align with [48], who argued that countries with strong ESG improvement initiatives often experience positive economic outcomes from their sustainability efforts. Furthermore, this effect is more pronounced in nations with supportive regulatory, legal, financial, and cultural frameworks for ESG implementation.

At the firm level, feature importance was found to be lower than at the country level. Mega-capitalization companies had the highest firm-level feature importance, with a value of 0.131. Company size plays a crucial role in determining access to ESG initiatives and financial stability [31]. Several factors highlight the significance of firm size in the ESG-financial performance relationship. Larger firms generally possess greater financial resources than smaller ones, allowing them to invest more extensively in sustainability initiatives [10]. Additionally, large corporations typically have structured strategies and business monitoring mechanisms that facilitate effective sustainability management. Moreover, firm visibility plays a key role, as prominent companies are more likely to adopt superior sustainability practices to maintain their reputation among stakeholders [49]

Furthermore, the substantial difference in feature importance scores between the highestranked and second-ranked features suggests a high level of confidence in the feature selection process. This significant drop indicates that MATLAB is highly certain in identifying the most critical predictor [38].

Most studies highlighted in this work suggest a positive relationship between ESG performance and financial performance [10]. The results obtained from this study are aligned with the results obtained from [8] and [9], who utilized quantitative approaches utilizing firms' financial indicators to predict ESG scores and are superior to the results of [11] and [10], as indicated in Table 13, Table 14, Table 15, and Table 16. Furthermore, this research addresses the gap in the literature where the prediction of ESG scores, specifically in the oil and gas industry, utilizing machine learning and firm financial indicators is lacking.



According to stakeholder theory, adopting ESG practices and promoting transparency can contribute to enhancing a company's overall value [50]. Engaging with stakeholders and addressing their concerns through socially responsible actions can help mitigate externalities and build stronger, positive relationships. As a result, an increasing number of companies are now publicly disclosing their ethical, social, and environmental practices and actively working to reduce their negative environmental impacts [51]. [52] argue that ESG initiatives can create shareholder value by boosting firm cash flows, for instance, a strong corporate reputation can drive higher product sales, and skilled employees can improve productivity, while [10] emphasize that sustainability-oriented floms of fer greater utility to socially conscious investors. These insights suggest that sustainability initiatives align more closely with stakeholder interests. Furthermore, firms exhibiting stronger financial performance are believed to have a greater capacity to undertake social responsibilities, as higher profitability enables more significant investment in socially responsible activities [51].

In particular, the old and gas sector faces mounting ESG pressures from investors, regulatory bodies and the broader public. Consequently, ESG scores have become an increasingly critical factor in investment decision-making, with their significance continuing to rise each year. In response to these trends, this research presents a comprehensive methodology aimed at assisting stakeholders and policymakers in predicting ESG scores to support more sustainable investment decisions [9]

CONCLUSION

Companies and their stakeholders are increasingly prioritizing ESG and sustainability, particularly in the oil and gas sector, where environmental and social risks are highly scrutinized. This study introduces a predictive methodology for ESG scoring in the industry by leveraging publicly available financial and ESG indicators alongside advanced machine learning algorithms. A total of ten models including decision trees, ensemble methods (boosted, bagged, and voting), XGBoost, LightGBM, random forest, extra trees, linear regression, robust regression, and elastic net, were evaluated. The voting ensemble model achieved the highest predictive accuracy with an R² of 0.922.

In addition to firm-level indicators, the study incorporated country-level sustainability regulations and firm size, revealing that country-level ESG enforcement was the most influential factor in ESG score prediction, followed by firm size.

This research contributes to the existing literature by offering a data-driven approach specifically designed for the ESG assessment in oil and gas, an area where standardized evaluation remains a challenge. The framework provides an accurate and reliable method to support ESG performance assessment, enabling more informed decision-making, supporting regulatory benchmarking, and enhancing transparency in ESG reporting and compliance practices across the energy sector.

REFERENCES

- [1] O. Lee, H. Joo, H. Choi, and M. Cheon, "Proposing an Integrated Approach to Analyzing ESG Data via Machine Learning and Deep Learning Algorithms," *Sustainability (Switzerland)*, vol. 14, no. 14, Jul. 2022, doi: 10.3390/su14148745.
- [2] M. Gamlath, C. Gunathilaka, A. Wijesinghe, S. Ahangama I. Ferera, and L. Sivaneasharajah, "An Integrated Approach to ESG Index Construction with Machine Learning," in *Moratuwa Engineering Research Conference, MERCon*. Institute of Electrical and Electronics Engineers Inc., 2023, pp. 252–257. doi: 10.1109/MERCon60487.2023.10355516.
- [3] C. Zheng, M. Zhang, C. Zeng, F. Xiao, and M. Liu, "Analysis of the Influential Factors and Prediction of Corporate ESG Performance under Multi-source Data Fusion Based on Frontier Machine Learning," European Alliance for Innovation n.o., Jun. 2023. doi: 10.4108/eai.2-12-2022.2328731.
- [4] A. Ramírez-Orellana, Mc. C. Martínez Victoria, A. García-Amate, and A. A. Rojo-Ramírez, "Is the corporate financial strategy in the oil and gas sector affected by ESG dimensions?," *Resources Policy*, vol. 81, Mar. 2023, doi: 10.1016/j.resourpol.2023.103303.
- [5] H. Yu and T. Su, "ESG performance and corporate solvency," *Financ Res Lett*, vol. 59, Jan. 2024, doi: 10.1016/j.frl.2023.104799.
- [6] D. Zhang, D. Bai, and X. Chen, "Can crude oil futures market volatility motivate peer firms in competing ESG performance? An exploration of Shanghai International Energy Exchange," *Energy Econ*, vol. 129, Jan. 2024, doi: 10.1016/j.eneco.2023.107240.
- [7] M. Gamlath, C. Qunathilaka, A. Wijesinghe, S. Ahangama, I. Perera, and L. Sivaneasharajah, An Integrated Approach to ESG Index Construction with Machine Learning, in *Moratuwa Engineering Research Conference, MERCon*, Institute of Electrical and Electronics Engineers Inc., 2023, pp. 252–257. doi: 10.1109/MERCon60487.2023.10355516.
- [8] D. Si, "An Efficient Predicative Approach of ESG Invest Scoring Using Random Forest Algorithm," *BCP Business & Management GEBM*, vol. 45, pp. 382–392, Apr. 2023, doi: https://doi.org/10.54691/bcpbm.v45i.4950.
- [9] H. Y. Lin and B. W. Hsu, "Empirical Study of ESG Score Prediction through Machine Learning—A Case of Non-Financial Companies in Taiwan," *Sustainability* (Switzerland), vol. 15, no. 19, Oct. 2023, doi: 10.3390/su151914106.
- [10] T. Krappel, A. Bogun, and D. Borth, "Heterogeneous Ensemble for ESG Ratings Prediction," Sep. 2021, Accessed: Dec. 20, 2023. [Online]. Available: http://arxiv.org/abs/2109.10085
- [11] O. Lee, H. Joo, H. Choi, and M. Cheon, "Proposing an Integrated Approach to Analyzing ESG Data via Machine Learning and Deep Learning Algorithms," *Sustainability (Switzerland)*, vol. 14, no. 14, Jul. 2022, doi: 10.3390/su14148745.

- [12] A. Sokolov, J. Mostovoy, J. Ding, and L. Seco, "Building Machine Learning Systems to Automate ESG Index Construction," *The Journal of Financial Data Science*, vol. 3, no. 3, pp. 129–138, 2020, doi: https://doi.org/10.3905/jesg.2021.1.010.
- [13] "Does ESG Score and Intangible Asset improve Financial performance?: Machine Learning Model of KOSPI Enterprises," in *Proceedings 2022 IEEE International Conference on Big Data, Big Data 2022*, Institute of Electrical and Electronics Engineers Inc., 2022, pp. 6621–6623. doi: 10.1109/BigData55660.2022.10021050.
- [14] J. Rojo-Suárez, A. B. Alonso-Conde, and J. D. Gonzalez-Ruiz, "Does sustainability improve financial performance? An analysis of Latin American oil and gas firms," *Resources Policy*, vol. 88, Jan. 2024, doi: 10.1016/j.resourpol.2023.104484.
- [15] S. Ben Jabeur, R. Khalfaoui, and W. Ben Arfi, "The effect of green energy, global environmental indexes, and stock markets in predicting oil price crashes: Evidence from explainable machine learning," *J Environ Manage*, vol. 298, Nov. 2021, doi: 10.1016/j.jenvman.2021.113511.
- [16] Y. J. Y. C. Y. S. Jinlin Zheng, "Green bond issuance and corporate ESG performance: Steps toward green and low-carbon development," *Res Int Bus Finance*, vol. 66, no. 2023, Oct. 2023.
- [17] M. H. Giovanni Cardillo, "Stay close to me: What do ESG scores tell about the deal timing in M&A transactions?," *Financ Res Lett*, vol. 51, no. 103498. Jan. 2023.
- [18] M. G. X.-Y. Z. L. K. Yiwei Li, "The impact of environmental, social, and governance disclosure on firm value: The role of CEO power," *The British Accounting Review*, vol. 50, no. 1, Jan. 2018.
- [19] K. Albitar, K. Hussainey, N. Kolade, and A. M. Gerged, "ESG disclosure and firm performance before and after IR: The moderating role of governance mechanisms," *International Journal of Accounting and Information Management*, vol. 28, no. 3, pp. 429–444, Jun. 2020, doi: 10.1108/JJAIM-09-2019-0108.
- [20] LSEG Data & Analytics | Financial Technology & Data, "LSEG Data & Analytics," LSEG London Stock Exchange Group. Accessed: Jan. 13, 2024. [Online]. Available: https://www.lseg.com/en/data-analytics
- [21] A. Del Vitto, D. Marazzina, and D. Stocco, "ESG ratings explainability through machine learning techniques," *Ann. Oper Res.*, 2023, doi: 10.1007/s10479-023-05514-z.
- [22] A. L'Heureux, K. Grolinger, H. Y. Elyamany, and M. A. M. Capretz, "Machine Learning with Big Data: Challenges and Approaches," *IEEE Access*, vol. 5, pp. 7776–7797, 2017, doi: 10.1109/ACCESS 2017.2696365.
- [23] R. Wayman, "Understanding Small-Cap and Big-Cap Stocks." Accessed: Apr. 01, 2024. [Online]. Available: https://www.investopedia.com/insights/understanding-small-and-big-cap-stocks/
- [24] M. Jihadi, E. Vilantika, S. M. Hashemi, Z. Arifin, Y. Bachtiar, and F. Sholichah, "The Effect of Liquidity, Leverage, and Profitability on Firm Value: Empirical Evidence from Indonesia," *Journal of Asian Finance, Economics and Business*, vol. 8, no. 3, pp. 423–431, 2021, doi: 10.13106/jafeb.2021.vol8.no3.0423.
- [25] A. Singh, N. Thakur, and A. Sharma, "A Review of Supervised Machine Learning Algorithms," in 2016 3rd international conference on computing for sustainable global development (INDIACom), IEEE, Mar. 2016, pp. 1310–1315.
- [26] V. Kumar, N. Kedam, K. V. Sharma, D. J. Mehta, and T. Caloiero, "Advanced Machine Learning Techniques to Improve Hydrological Prediction: A Comparative Analysis of Streamflow Prediction Models," *Water (Switzerland)*, vol. 15, no. 14, Jul. 2023, doi: 10.3390/w15142572.
- [27] O. Surakhi *et al.*, "Time-lag selection for time-series forecasting using neural network and heuristic algorithm," *Electronics (Switzerland)*, vol. 10, no. 20, Oct. 2021, doi: 10.3390/electronics10202518.

- [28] I. Y. Javeri, M. Toutiaee, I. B. Arpinar, T. W. Miller, and J. A. Miller, "Improving Neural Networks for Time Series Forecasting using Data Augmentation and AutoML," May 2021. Accessed: May 21, 2024. [Online]. Available: http://arxiv.org/abs/2103.01992
- [29] L. A. B. C. Barros, D. R. Bergmann, F. Henrique Castro, and A. D. M. da Silveira, "Endogeneity in panel data regressions: Methodological guidance for corporate finance researchers," *Revista Brasileira de Gestao de Negocios*, vol. 22, no. Special Issue, pp. 437–461, 2020, doi: 10.7819/rbgn.v22i0.4059.
- [30] L. Lam, "ESG Reporting and Its Effect on Financial Performance of Oil, Gas, and Utility Companies in the United States.," University of Richmond, Richmond, VA, USA, 2023. Accessed: Jun. 03, 2024. [Online]. Available: https://scholarship.richmond.edu/honors-theses/1697/
- [31] M. G. Bruna, S. Loprevite, D. Raucci, B. Ricca, and D. Rupo, "Investigating the marginal impact of ESG results on corporate financial performance," *Financ Res Lett*, vol. 47, Jun. 2022, doi: 10.1016/j.frl.2022.102828.
- [32] H. Zheng, Z. Zhou, and J. Chen, "RLSTM: A New Framework of Stock Prediction by Using Random Noise for Overfitting Prevention," *Comput Intell Veurosci*, vol. 2021, 2021, doi: 10.1155/2021/8865816.
- [33] J. Svanberg *et al.*, "Corporate governance performance ratings with machine learning," *Intelligent Systems in Accounting, Finance and Management*, vol. 29, no. 1, pp. 50–68, Jan. 2022, doi: 10.1002/isaf.1505.
- [34] S. M. Baek, W. S. Kim, Y. S. Kim, S. Y. Baek, and Y. J. Kim, "Development of a simulation model for HMT of a 50 kW class agricultural tractor," *Applied Sciences (Switzerland)*, vol. 10, no. 12, Jun. 2020, doi: 10.3390/APP10124064.
- [35] D. Chicco, M. J. Warrens, and G. Jurman, "The coefficient of determination R-squared is more informative than SMAPE, MAR, MAPE, MSE and RMSE in regression analysis evaluation," *PeerJ Comput Sci*, vol. 7, pp. 1–24, 2021, doi: 10.7717/PEERJ-CS.623.
- [36] S. Jaydip, S. Mehtab, and A. Engelbrecht, *Machine Learning Algorithms, Models and Applications*. IntechOpen, 2021. doi: 10.3772/intechopen.94615.
- [37] K. Vaid and U. Ghose, "Predictive Analysis of Manpower Requirements in Scrum Projects Using Regression Techniques," in *Procedia Computer Science*, Elsevier B.V., 2020, pp. 335–344. doi: 10.1016/j.procs.2020.06.039.
- [38] Mathworks, "Reduce Ordlier Effects Using Robust Regression." Accessed: May 28, 2024. [Online] Available: https://www.mathworks.com/help/stats/robust-regression-reduce-outlier-effects.html
- [39] A. Shivanda and D. P. Agrawal, "Prediction of Defaulters using Machine Learning on Azure ML, in 2020 11th IEEE annual information technology, electronics and mobile communication conference (IEMCON), IEEE, Nov. 2020, pp. 0320–0325.
- [40] V. Sheth, U. Tripathi, and A. Sharma, "A Comparative Analysis of Machine Learning Algorithms for Classification Purpose," in *Procedia Computer Science*, Elsevier B.V., 2022, pp. 422–431. doi: 10.1016/j.procs.2022.12.044.
- [41] P. Y. Taser, "Application of Bagging and Boosting Approaches Using Decision Tree-Based Algorithms in Diabetes Risk Prediction," MDPI AG, Mar. 2021, p. 6. doi: 10.3390/proceedings2021074006.
- [42] N. Stepanov, D. Alekseeva, A. Ometov, and E. S. Lohan, "Applying Machine Learning to LTE Traffic Prediction: Comparison of Bagging, Random Forest, and SVM," in 2020 12th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT), IEEE, 2020, pp. 119–123.
- [43] Proceedings, 2020 16th IEEE International Colloquium on Signal Processing & its Application (CSPA 2020): 28th-29th February 2020: conference venue, Hotel Langkawi, Lot 1852 Jalan Penarak, Kuah 07000 Langkawi, Kedah, Malaysia. IEEE, 2020.

- [44] I. H. Sarker, "Machine Learning: Algorithms, Real-World Applications and Research Directions," May 01, 2021, *Springer*. doi: 10.1007/s42979-021-00592-x.
- [45] E. K. Ampomah, Z. Qin, and G. Nyame, "Evaluation of tree-based ensemble machine learning models in predicting stock price direction of movement," *Information (Switzerland)*, vol. 11, no. 6, Jun. 2020, doi: 10.3390/info11060332.
- [46] R. A. de Lima Lemos, T. C. Silva, and B. M. Tabak, "Propension to customer churn in a financial institution: a machine learning approach," *Neural Comput Appl*, vol. 34, no. 14, pp. 11751–11768, Jul. 2022, doi: 10.1007/s00521-022-07067-x.
- [47] W. M. W. Mohammad and S. Wasiuzzaman, "Environmental, Social and Governance (ESG) disclosure, competitive advantage and performance of firms in Malaysia," *Cleaner Environmental Systems*, vol. 2, Jun. 2021, doi: 10.1016/j.cesys.2021.00015.
- [48] J. Wang, J. Yu, and R. Zhong, "Country environmental, social and governance performance and economic growth: The international evidence," *Accounting and Finance*, vol. 63, no. 4, pp. 3911–3941, Dec. 2023, doi: 10.1111/acfi.13079.
- [49] C. F. Antonio D'Amato, "Corporate social responsibility and firm value. Do firm size and age matter? Empirical evidence from European listed companies." *Corp Soc Responsib Environ Manag*, vol. 27, no. 2, 2019.
- [50] Z. Chen and G. Xie, "ESG disclosure and financial performance: Moderating role of ESG investors," *International Review of Financial Analysis*, vol. 83, Oct. 2022, doi: 10.1016/j.irfa.2022.102291.
- [51] E. Adegbite, Y. Guney, F. Kwabi, and S. Tahir, "Financial and corporate social performance in the UK listed firms: the relevance of non-linearity and lag effects," *Review of Quantitative Finance and Accounting*, vol. 52, no. 1, pp. 105–158, Jan. 2019, doi: 10.1007/s11156-018-0705-x.
- [52] A. K. L. T. S. Stuart L. Gillan, "Firms and social responsibility: A review of ESG and CSR research in corporate finance," *Journal of Corporate Finance*, vol. 66, p. 101889, 2021, doi: 10.1016/j.jcorpfin.2020.101889.

APPENDIX A

*Final list of financial indicators obtained from the literature review.*Table 17: Datastream and Refinitiv extracted financial indicators.

Data Stream Variables-Datastream	Screener-Refinitiv
Return On Assets	Actual Return on Assets
Return On Equity Total %	Return On Equity - Actual
TobinQ	Tobin Q(sourced from Datastream)
Market Value (Capital)	Market Value
Total Return Index	Total Return Index (Excluded)
Diviend Yield	Net Dividend Yield
Not Income Available To Common	Price To Sales Ratio - Mean
Total Assests	Quick Ratio
Long Term Debt	Earning per share - Mean
Price To Sales (Excluded)	Price To Book Value per share
Quick Ratio	Price/Earnings Ratio (Adjusted) (Excluded)
Earing per share	Employees(Excluded)
Current Ratio	Voluntary Turnover of Employees(Excluded)
Price To Book Value	Involuntary Turnover of Employees(Excluded)
Price/Earnings Ratio (Adjusted)	EBITDA -Actual
Employees	Revenues - Mean
Voluntary Turnover of Employees	Total Liabilities
Involuntary Turnover of Employees	CEO-Chairman Separation(Excluded)
Earnings Before Interest, Taxes & Depreciation (EBITDA)	Foreign Sales Growth 1 Year Annual Growth(Excluded)
Net Sales Or Revenues	Net Sales Or Revenues
Total Liabilities	Total Liabilities
CEO-Chairman Separation	CEO-Chairman Separation
Foreign Sales Growth 1 Year Annual Growth	Foreign Sales Growth 1 Year Annual Growth
Trailing Twelve Months Operating Margin	Trailing Twelve Months Operating Margin(Excluded)
Net Cash Flow Operating Activities	Net Cash Flow Operating Activities
Price/Cash Flow Ratio	Price/Cash Flow Ratio - Per share
Net Cash Flow Operating Activities	Net Cash Flow Operating Activities
Total shareholder's equity	Total shareholder's equity(Excluded)
Total investment return	Total investment return (Excluded)
Net margin	Net margin (Excluded)

