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ABSTRACT 
Energy efficiency in buildings drives the development of sustainable materials, with Phase 
Change Materials standing out for their contribution to the construction sector. Phase Change 
Materials, integrated into materials like cement or concrete, regulate indoor temperatures by 
absorbing heat during the day and releasing it at night.  Accurate thermal property assessment 
is crucial for optimizing these materials, yet conventional experimental methods are time-
consuming, costly, and require specialized labor. While automation and machine learning 
streamline the process, they do not eliminate the need for expertise but rather shift the focus 
toward data-driven material innovation, complementing rather than replacing traditional roles. 
To enhance efficiency, our study integrates deep neural networks. A Generative Adversarial 
Network first augments the dataset, and a Multilayer Perceptron then predicts the properties of 
cementitious composites enriched with Phase Change Material and nano-silica aerogel. Using 
inputs such as mass composition and density, the model outputs compressive strength and 
thermal conductivity. Training with synthetic data yields high predictive accuracy, highlighting 
the potential of data augmentation in domains with limited datasets. This approach enhances the 
precision and efficiency of assessing thermal performance in innovative construction materials 
while supporting the evolving role of experts in the field. 

KEYWORDS 
Energy Efficiency, Phase Change Materials, Deep Neural Networks, Multilayer Perceptron, Data 
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INTRODUCTION 

Energy efficiency in buildings is essential for reducing energy consumption while 
maintaining thermal comfort and minimizing environmental impact. A key strategy to achieve 
this lower energy consumption involves integrating materials with enhanced thermal 
performance, reducing reliance on active heating and cooling systems [1]. Among these 
materials, phase change materials (PCMs) have gained prominence due to their ability to 
absorb and release thermal energy as they transition between phases, improving indoor 
temperature regulation and overall energy efficiency [2]. 
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Concrete, widely used in construction for its high compressive strength, durability, and 
affordability, presents opportunities for improved sustainability when combined with PCMs 
and other thermal-enhancing materials. By precisely tailoring the concrete composition, its 
thermal performance can be optimized without compromising structural integrity. Several 
studies have demonstrated the benefits of PCM integration in building envelopes [3]. For 
instance, Rajesh et al. [4] reported a 20% reduction in energy consumption when using PCM-
modified mortar, while Qu et al. [5] employed EnergyPlus simulations to assess thermal 
comfort improvements. Other experimental and numerical studies [6,7] have reinforced the 
potential of PCM-enhanced materials in mitigating temperature fluctuations and reducing heat 
transfer into buildings. 

Given the growing emphasis on sustainable construction, accurately assessing the thermal 
and mathematical properties of these advanced materials is critical. Traditional experimental 
methods, while reliable, are often time-consuming, costly, and require specialized labor. 
Predictive modeling offers an efficient alternative, enabling material performance evaluation 
without extensive physical testing. Beyond thermal conductivity, compressive strength remains 
a fundamental property for ensuring structural integrity. Therefore, an effective approach must 
balance both thermal and mechanical performance for practical implementation [8]. 

Machine learning (ML) and deep learning (DL) have emerged as powerful tools for 
predicting material properties, leveraging large datasets to identify patterns and improve 
accuracy [9]. ML models have been successfully applied to predict the properties of concrete. 
Mehta [10] compared some models to predict the strength of concrete with waste foundry sand, 
finding ANN to be the most accurate. Ji et al. [11] introduced five key mix parameters and used 
ANN-based models to optimize concrete mix design, improving efficiency, durability, and 
sustainability tensile strength. Song and Kwon [12] proposed a neural network-based technique 
to predict chloride diffusion in high-performance concrete, improving evaluation accuracy and 
efficiency. However, studies focusing on ML-based predictions of thermal properties remain 
limited. Among ML models, artificial neural networks (ANNs) are particularly effective for 
capturing complex relationships between material composition and performance [13,14]. 

A major challenge in developing accurate ML models is the need for large, high-quality 
datasets. Insufficient data can hinder model generalization and lead to suboptimal predictions. 
To overcome this limitation, data augmentation techniques, such as Generative Adversarial 
Networks (GANs), have been increasingly utilized. Originally introduced by Goodfellow et al. 
[15] for image generation, GANs have since been adapted to generate synthetic tabular data, 
addressing data scarcity issues in various fields. Techniques such as Conditional Tabular GAN 
(CTGAN) [16] and CopulaGAN [17] have demonstrated success in augmenting real datasets 
to improve model performance. Despite extensive research on ML applications in concrete 
property prediction, the integration of advanced generative models like GANs for predicting 
both thermal and mechanical properties remains relatively unexplored. 

This study builds upon prior research [18] that developed a generalist model for predicting 
the thermal conductivity of concrete. Expanding on that approach, this work addresses the 
challenge of predicting both thermal conductivity and compressive strength using a limited 
dataset. A multilayer perceptron (MLP) model is employed for property prediction, while a 
CopulaGAN model is used to generate synthetic tabular data based on published studies. This 
combination enhances predictive accuracy and demonstrates the feasibility of integrating real 
and synthetic data. By improving the precision of material property assessment, this study 
contributes to the development of energy-efficient construction materials while maintaining 
structural integrity, supporting the broader goal of sustainable building practices. 
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METHODS 
The proposed methodology builds upon the foundation of a previously developed approach, 

refining and extending it through the incorporation of two key components: (1) the development 
of a Multilayer Perceptron (MLP) model designed to predict material properties based on their 
unique features, and (2) the implementation of a Generative Adversarial Network (GAN) for data 
augmentation. This dual-step process tackles the challenge of limited datasets by generating 
synthetic data to complement real data, ultimately improving the predictive accuracy and overall 
performance of the MLP model. The workflow followed in this study is outlined in Figure 1, 
which outlines each stage, from data gathering to model evaluation. This workflow was designed 
based on prior research and refined to address the specific challenges of predicting material 
properties using machine learning.  

 
 

 

 

Data processing  

To ensure consistency and reliability, data normalization was performed before training. 
The dataset underwent min-max scaling, transforming all input features to a range of [0,1] to 
prevent scale dominance and facilitate stable training. This normalization step was applied to 
both the real and synthetic datasets to maintain uniformity. 

Generative Adversarial Network 

Given the limited availability of real-world data, a CopulaGAN model was used to generate 
synthetic data while maintaining the statistical patterns of the original dataset. The GAN was 
trained with an adaptive learning rate and optimized to reduce differences between real and 
synthetic data. Once trained, it generated 1,000 synthetic data points, which were combined 
with the original dataset for model training. The quality of the synthetic data was evaluated by 
comparing its statistical properties to the real data using Kolmogorov-Smirnov (KS) tests and 
correlation matrix comparisons. 

Model building 

The Multilayer Perceptron (MLP) model was developed to predict material properties based 
on key input features. Its architecture included an input layer for processing normalized data, 
multiple hidden layers with activation functions to capture complex patterns, and an output 
layer tailored to the prediction task. The model was trained using an optimization algorithm 
with a predefined learning rate, while a loss function was employed to minimize prediction 
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errors. The dataset was divided into training and validation sets to ensure balanced learning 
and hyperparameter tuning was conducted to enhance model accuracy and generalization. 

Validation and case study  
 

To assess the model's reliability, a validation process was conducted by training and testing 
it under three different scenarios: one using only real data, another relying solely on synthetic 
data, and a third combining both datasets. This comparison allowed for a detailed evaluation 
of how data augmentation influences predictive accuracy and generalization. Model 
performance was analyzed by tracking the loss function's behavior and comparing predicted 
values against actual measurements. 
To further validate the approach, a case study was carried out to test the model's effectiveness 
in predicting thermal and mechanical properties on unseen data. This practical assessment 
provided insights into the model's adaptability and robustness in real-world applications. The 
results demonstrated that incorporating synthetic data significantly enhanced prediction 
accuracy, reinforcing the effectiveness of GAN-based data augmentation in overcoming 
dataset limitations. 

This approach demonstrates how combining GAN-based data augmentation with MLP 
predictive modeling can enhance property assessment, providing a scalable and efficient 
solution for sustainable construction research. 
 

CASE STUDY 
The proposed model is applied to a case study focused on concrete mixtures enhanced with 

Phase Change Materials (PCM) and nano-silica aerogel. As emphasized in the introduction, 
thermal conductivity (TC) and compressive strength (CS) are critical properties that significantly 
influence a building's thermal performance and structural resistance. These properties are highly 
dependent on the type and proportion of the constituents within the concrete mixture. Therefore, 
this study aims to predict TC and CS based on the mass composition of the mixture's components. 

To address the challenges associated with limited datasets, this study utilizes 33 experimental 
samples, each representing unique compositions of Phase Change Material (PCM) and nano-silica 
aerogel. These samples were sourced from relevant literature, ensuring a diverse dataset to support 
model development [19]. Seven critical input parameters that influence thermal conductivity (TC) 
and compressive strength (CS) were identified for this analysis: density (D), cement content (C), 
sand content (S), aerogel aggregate content (AAg), PCM aggregate content (PCMAg), water 
content (W), and superplasticizer content (Sp). Figure 2 provides a schematic illustration of the 
neural network architecture used in this case study, highlighting the relationship between the input 
parameters, the processing layers, and the predicted outputs.   

Table 1 offers a comprehensive summary of the range of values for each input parameter, 
along with the corresponding TC and CS outputs, illustrating the variability within the dataset. 
The measured TC values range from 0.19 to 1.80 W/m·K, with a standard deviation of 0.4 W/m·K, 
while CS values span from 1.4 to 42.0 MPa, with a standard deviation of 11.5 MPa. This 
variability underscores the significant role that compositional differences play in determining the 
thermal and mechanical properties of the mixtures, emphasizing the importance of developing a 
robust predictive model capable of accurately capturing these complex relationships. 



Rosa, A. C., Mateu, C., et al. 
Data-Augmented Deep Learning Models for Assessing…  

Year 2025 
Volume 13, Issue 2, 1130591 

 
 

Journal of Sustainable Development of Energy, Water and Environment Systems 5 

 

 

Figure 2. The multilayer perceptron model 

 
Table 1. Summary of Input Parameters and Corresponding Outputs 

D C S AAg PCMAg W Sp CS TC 
2384.31 650 1741.00 0 0 247 9,75 42 1.8000 
2378.27 650 1566.59 0 174.10 247 9.75 38 1.4046 
2366.20 650 1479.85 0 261.15 247 9.75 35 1.3057 
235412 650 1305.75 0 435.25 247 9.75 31 0.9556 
2323.94 650 1218.70 0 522.3 247 9.75 28 0.9021 
2251.51 650 1131.65 0 609.35 247 9.75 23 0.8815 
2179.07 650 1044.60 0 696.40 247 9.75 20 0.8526 
2046.28 650 957.55 0 783.45 247 9.75 19 0.7991 
1949.70 650 783.45 0 957.55 247 9.75 16 0.7002 
1883.30 650 696.40 0 1044.60 247 9.75 16 0.6879 
1798.79 650 609.35 0 1131.65 247 9.75 14 0.6714 
1720.32 650 522.30 0 1218.70 247 9.75 14 0.6508 
1611.67 650 435.25 0 1305.75 247 9.75 10 0.6302 
1490.95 650 261.15 0 1479.85 247 9.75 7.2 0.6014 
1430.58 650 174.10 0 1566.90 247 9.75 6.9 0.5519 
1376.26 650 87.05 0 1653.95 247 9.75 5.5 0.4902 
1352.11 650 0 0 1741.00 247 9.75 5.2 0.4201 
2354.12 650 1653.95 87.05 0 247 9.75 32 1.5034 
2082.49 650 1479.85 261.15 0 247 9.75 23 1.1080 
1991.95 650 1392.80 348.2 0 247 9.75 22 0.9021 
1913.48 650 1305.75 435.25 0 247 9.75 20 0.8609 
1859.15 650 1218.70 522.3 0 247 9.75 19 0.8197 
1714.29 650 1044.60 696.4 0 247 9.75 14 0.7826 
1635.81 650 957.55 783.45 0 247 9.75 12 0.6796 
1515.09 650 870.50 870.5 0 247 9.75 7.6 0.5519 
1442.66 650 783.45 957.55 0 247 9.75 6.3 0.4819 
1219.32 650 609.35 1131.65 0 247 9.75 4.5 0.4325 
1152.92 650 522.30 1218.7 0 247 9.75 3.3 0.3913 
1038.23 650 435.25 1305.75 0 247 9.75 3 0.3501 
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820.93 650 261.15 1479.85 0 247 9.75 2.1 0.2636 
754.53 650 174.10 1566.9 0 247 9.75 1.8 0.2018 
712.27 650 87.05 1653.95 0 247 9.75 1.5 0.2018 
688.13 650 0 1741.00 0 247 9.75 1.4 0.1854 

 
The dataset is randomly divided into two subsets: 80% for training and 20% for validation. To 

evaluate the model's robustness and generalization capability, its performance is tested on an 
independent dataset. The reliability and reproducibility of the Artificial Neural Network (ANN) 
model are examined using established metrics such as Root Mean Square Error (RMSE) and the 
coefficient of determination (R²). These metrics provide a comprehensive evaluation of the 
model's accuracy in capturing the complex relationships between input parameters and the target 
properties.   

By combining experimental data collected from the literature with predictive modeling, this 
case study demonstrates the potential of ANN models to address data scarcity challenges while 
offering precise predictions for optimizing concrete mixtures. This approach not only ensures 
efficient material design but also contributes to advancing the integration of machine learning in 
material science applications. 

RESULTS AND DISCUSSION 
The initial step of this study focuses on developing a Multilayer Perceptron (MLP) model 

designed to predict two critical properties of concrete: compressive strength and thermal 
conductivity. These predictions are based on the mass composition of the concrete's constituents 
and its density, capturing the intricate relationships between material composition and 
performance. The configuration and design of the MLP model are detailed in Table 2, which 
provides a comprehensive summary of its essential components, including the selected 
hyperparameters, evaluation metrics, activation functions, optimization techniques, and loss 
functions. 

 
Table 2. The main features of the model 

Hyperparameters 
 Hidden layers = 2 
 Neurons = [200,100] 
 Batch size = 64 
 Learning rate = 0.001 
 Epochs = 100 
Metrics  
 RMSE 
 R² 
Activation function 
 ReLU 
Optimization function 
 Stochastic Gradient 

Descent (SGD) 
Loss function 
 MSE 

 
The second step of this study focuses on evaluating the impact of synthetic data on the training 

of the MLP model. This analysis is conducted to determine whether a model trained with 
augmented data can produce results comparable to the performance achieved through training 
with real data and possibly enhance it. This study investigates two distinct scenarios: (a) training 
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the MLP model exclusively with the real dataset containing 33 entries, and (b) training the model 
with the synthetic data consisting of 1000 entries first and then the real dataset. 

Both scenarios utilize the same model architecture and hyperparameters to ensure consistency, 
with the key difference being the composition of the datasets used during the training and 
validation phases. Our approach in scenario (b) involves training the model first with synthetic 
data. Subsequently, the same model architecture uses the real dataset to enhance the model's 
performance. The results of the training phase reveal that scenario (b) outperforms scenario (a) in 
terms of overall metrics. For scenario (a), the model achieved a Root Mean Square Error (RMSE) 
of 0.0700 and a coefficient of determination (R²) of 0.9940. In contrast, scenario (b) demonstrated 
improved performance with an RMSE of 0.0530 and an R² of 0.9971. Table 3 provides a detailed 
comparison of the validation and test results for both scenarios, highlighting the enhanced 
predictive accuracy achieved through synthetic data augmentation. 

 
Table 3. Comparison between the performance metrics of the MLP model trained with both datasets 

Scenario Dataset CS TC 
  RMSE R² RMSE R² 

(a) Validation 0.6329 0.9970 0.0226 0.9964 
 Test 1.2728 0.9922 0.0381 0.9921 

(b) Validation 0.5669 0.9975 0.0203 0.9971 
 Test 0.7239 0.9975 0.0149 0.9988 
 
Despite the constraints posed by the limited real dataset in scenario (a), the MLP model 

delivered reliable predictions for both compressive strength (CS) and thermal conductivity (TC) 
across the training, validation, and test datasets. However, the predictive performance improved 
markedly in scenario (b), where synthetic data augmentation was employed during training. This 
enhancement was consistently reflected across all datasets, demonstrating the effectiveness of 
integrating synthetic data to overcome the limitations of a small real dataset. 

The evaluation of the MLP model was conducted using an independent test set comprising 8 
data points. Figure 3(a) and Figure 3(b) depict the CS predictions for scenarios (a) and (b), 
respectively, while Figure 4(a) and Figure 4(b) illustrate the TC predictions. For CS, Figure 3(a) 
shows that scenario (a) produced results reasonably aligned with the x=y line, although several 
predictions deviated, with errors exceeding 0.18. Scenario (b), as shown in Figure 3(b), displayed 
significantly improved alignment with the x=y line, reducing prediction errors substantially. This 
enhancement is evident in the metrics, with scenario (b) achieving an R² value of 0.9975 and an 
RMSE of 0.7239, a noticeable improvement over scenario (a). 

The results of TC predictions are shown in Figure 4(a) and Figure 4(b). In scenario (a), some 
predictions deviated from the ideal line, with a maximum error of 0.05, as indicated in Figure 
4(a). In contrast, scenario (b), presented in Figure 4(b), reduced these errors by 50%, with a 
maximum deviation of 0.025. The performance metrics for scenario (b) further highlight this 
improvement, with an R² value of 0.9921 and an RMSE of 0.0381, underscoring the benefits of 
incorporating synthetic data into the model training. 

Overall, the results confirm that augmenting the training dataset with synthetic data enhances 
the predictive accuracy of the MLP model for both compressive strength and thermal conductivity. 
The incorporation of synthetic data not only minimizes errors across the test dataset but also 
strengthens the model's generalization capabilities, offering a robust solution for scenarios 
constrained by limited real data availability. 
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Figure 3. Comparison of compressive strength predictions on the test dataset under two training 

scenarios: (a) MLP trained solely on real data and (b) MLP trained on a hybrid dataset combining 
1,000 synthetic data points with real data. 

Figure 4. Comparison of thermal conductivity predictions on the test dataset under two training 
scenarios: (a) MLP trained solely on real data and (b) MLP trained on a hybrid dataset combining 

1,000 synthetic data points with real data.  

 
Figure 5 and Figure 6 illustrate the correlation between the actual test dataset values and the 

predictions generated by the Multilayer Perceptron (MLP) model. These visual comparisons 
provide a clear understanding of the model's ability to forecast compressive strength and thermal 
conductivity. In Figure 5(a) and Figure 6(a), the model is trained exclusively on the real dataset, 
while Figure 5(b) and Figure 6(b) present the model's performance when trained with an 
augmented dataset containing 1,000 synthetic data points alongside the real dataset. 

For compressive strength predictions, Figure 5(a) demonstrates a generally strong agreement 
between predicted and actual values, though deviations are evident, with errors ranging from 0.57 
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to 1.92 MPa. When synthetic data is included in the training, as shown in Figure 5(b), the model's 
performance significantly improves, particularly for compressive strength values between 7 MPa 
and 31 MPa. The incorporation of synthetic data leads to more consistent predictions and a marked 
reduction in error magnitude. 

 

 
Figure 5. Prediction performance comparison for compressive strength on the test dataset under 

two training conditions: (a) MLP trained solely on real data and (b) MLP trained on a hybrid dataset 
combining 1,000 synthetic data points with real data. 

 
Thermal conductivity results reveal even greater improvements. Figure 6(a) highlights the 

model's capability to closely approximate actual values, with approximately half of the data points 
showing errors up to 0.05 W/m.K. Figure 6(b) demonstrates the superior accuracy achieved by 
incorporating synthetic data, with only two data points exhibiting minor errors of 0.02 and 0.03 
W/m.K. These results underscore the enhanced predictive reliability gained through data 
augmentation. 

Overall, the comparison of actual versus predicted values across both scenarios clearly 
indicates that integrating synthetic data enhances the MLP model's performance. The augmented 
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dataset improves the model's accuracy and minimizes prediction errors, particularly in scenarios 
with limited real data availability. These findings validate the effectiveness of the proposed data 
augmentation approach in strengthening the model's generalization capabilities. 

 

 
Figure 6. Prediction performance comparison for thermal conductivity on the test dataset under 

two training conditions: (a) MLP trained solely on real data and (b) MLP trained on a hybrid dataset 
combining 1,000 synthetic data points with real data. 

CONCLUSIONS 
This study introduced an innovative approach to training a multilayer perceptron (MLP 

model by leveraging data augmentation techniques. Specifically, a generative adversarial 
network (GAN) was utilized to generate synthetic datasets, which allowed the MLP to be 
trained on a combination of real and artificial data. The methodology was demonstrated using 
a limited dataset of concrete mixtures incorporating phase change materials (PCM) and nano-
silica aerogel, focusing on predicting both thermal conductivity and compressive strength. 

Two training scenarios were examined in this study: (a) using only the real dataset for MLP 
training and (b) pretraining the MLP with 1000 synthetic data points followed by real data. The 
results revealed a substantial improvement in prediction accuracy and error reduction when 
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synthetic data was incorporated into the training process. This underscores the reliability of the 
CopulaGAN synthesizer for generating high-quality synthetic data and highlights the 
robustness of MLP models when trained on hybrid datasets. Scenario (a) achieved RMSE and 
R² values of 1.2728 and 0.9922 for compressive strength, and 0.0381 and 0.9921 for thermal 
conductivity. In contrast, scenario (b) achieved significantly better results, with RMSE and R² 
values of 0.7239 and 0.9975 for compressive strength, and 0.0149 and 0.9988 for thermal 
conductivity. 

Building upon earlier work by the authors, this research extends the predictive capabilities 
of the MLP model, adapting it to include compressive strength alongside thermal conductivity, 
while demonstrating its flexibility with a smaller, augmented dataset. The findings underscore 
the potential of data augmentation to overcome the limitations of data scarcity, a common 
challenge in machine learning applications for materials science. 

In addition to achieving significant accuracy improvements, this study highlights the 
broader applicability of the proposed methodology to other energy-efficient construction 
materials. By combining real and synthetic data, the MLP model offers an adaptable and 
scalable framework for predicting multiple material properties. However, further research 
could expand this work by incorporating additional input variables such as temperature, 
aggregate characteristics, and mineral composition. Furthermore, expanding the dataset and 
validating the model using independent or experimental data could enhance its generalizability 
and robustness. 

Ultimately, this study demonstrates the transformative potential of integrating synthetic 
data into predictive modeling workflows, enabling reliable predictions even with limited 
datasets. By addressing these challenges, the proposed methodology provides a valuable tool 
for advancing the development of sustainable and energy-efficient building materials. 
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NOMENCLATURE 
Abbreviations 

AAg Aerogel aggregate content 
ANN Artificial neural network 

C Cement content 
DL Deep learning 

DNN Deep neural network 
GAN Generative adversarial network 
ML Machine learning 

MLP Multilayer perceptron 
PAg PCM aggregate content 

S Sand content 
Sp Superplasticizer content 
W Water content 

Symbols 
Coefficient of determination 𝑅𝑅2 
Compressive strength - CS [MPa] 

Density - D 𝜌𝜌 [kg/m³] 
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Root mean squared error 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 
Thermal conductivity - TC 𝑘𝑘 [W/m.K] 
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