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ABSTRACT

Energy efficiency in buildings drives the development of s
Change Materials standing out for their contribution {ggthe

le erials, with Phase
tion sector. Phase Change

is crucial for optimizing these materials, y perimental methods are time-
consuming, costly, and require specializ omation and machine learning
streamline the process, they do not elimi#fa xpertise but rather shift the focus

toward data-driven material innovati
To enhance efficiency, our study, in

ather than replacing traditional roles.
ural networks. A Generative Adversarial

precision and effi
while supportj

se Change Materials, Deep Neural Networks, Multilayer Perceptron, Data
ermal conductivity.

efficiency in buildings is essential for reducing energy consumption while
maintaining thermal comfort and minimizing environmental impact. A key strategy to achieve
this lower energy consumption involves integrating materials with enhanced thermal
performance, reducing reliance on active heating and cooling systems [1]. Among these
materials, phase change materials (PCMs) have gained prominence due to their ability to
absorb and release thermal energy as they transition between phases, improving indoor
temperature regulation and overall energy efficiency [2].
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Concrete, widely used in construction for its high compressive strength, durability, and
affordability, presents opportunities for improved sustainability when combined with PCMs
and other thermal-enhancing materials. By precisely tailoring the concrete composition, its
thermal performance can be optimized without compromising structural integrity. Several
studies have demonstrated the benefits of PCM integration in building envelopes [3]. For
instance, Rajesh et al. [4] reported a 20% reduction in energy consumption when using PCM-
modified mortar, while Qu et al. [5] employed EnergyPlus simulations to assess thermal
comfort improvements. Other experimental and numerical studies [6,7] have reinforced the
potential of PCM-enhanced materials in mitigating temperature fluctuations and reducing heat
transfer into buildings.

Given the growing emphasis on sustainable construction, accurately assessing th#”thermal

without extensive physical testing. Beyond thermal conductivity, compreg goth g8mains
a fundamental property for ensuring structural integrity. Therefore, an ef proach must
balance both thermal and mechanical performance for practical imp

Machine learning (ML) and deep learning (DL) have egag

predicting material properties, leveraging large datasets ta s and improve
accuracy [9]. ML models have been successfully applied properties of concrete.
Mehta [10] compared some models to predict the strength waste foundry sand,

(O
ANN-based models to optimize concrete mix dgfgn, Sgprowgg efficiency, durability, and
PEOPOSE
crte

to predict chloride diffusion in high-perfo
efficiency. However, studies focusing o,
limited. Among ML models, artifici
capturing complex relationships bet

dictions of thermal properties remain
(ANNSs) are particularly effective for

datasets. Insufficient data cag h neralization and lead to suboptimal predictions.

To overcome this limitati tation techniques, such as Generative Adversarial
Networks (GANSs), havgghe y utilized. Originally introduced by Goodfellow et al.
[15] for image gener s have since been adapted to generate synthetic tabular data,
addressing data sggmej premin Yarious fields. Techniques such as Conditional Tabular GAN
(CTGAN) [16] 4 PURGAN [17] have demonstrated success in augmenting real datasets

to improve
property pr

ance. Despite extensive research on ML applications in concrete
ictio tegration of advanced generative models like GANs for predicting
mdghanical properties remains relatively unexplored.

upon prior research [18] that developed a generalist model for predicting

redicting both thermal conductivity and compressive strength using a limited
ultilayer perceptron (MLP) model is employed for property prediction, while a
CopulaGAN model is used to generate synthetic tabular data based on published studies. This
combination enhances predictive accuracy and demonstrates the feasibility of integrating real
and synthetic data. By improving the precision of material property assessment, this study
contributes to the development of energy-efficient construction materials while maintaining
structural integrity, supporting the broader goal of sustainable building practices.



METHODS

The proposed methodology builds upon the foundation of a previously developed approach,
refining and extending it through the incorporation of two key components: (1) the development
of a Multilayer Perceptron (MLP) model designed to predict material properties based on their
unique features, and (2) the implementation of a Generative Adversarial Network (GAN) for data
augmentation. This dual-step process tackles the challenge of limited datasets by generating
synthetic data to complement real data, ultimately improving the predictive accuracy and overall
performance of the MLP model. The workflow followed in this study is outlined in Figure 1,
which outlines each stage, from data gathering to model evaluation. This workflow was designed
based on prior research and refined to address the specific challenges of predictinggmaterial
properties using machine learning.
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To ensure consistency and dafs normalization was performed before training.
The dataset underwent min-gaaxW forming all input features to a range of [0,1] to
prevent scale dominance a 1 ble training. This normalization step was applied to
both the real and synthg

atg whil taining the statistical patterns of the original dataset. The GAN was
dagtive learning rate and optimized to reduce differences between real and
nce trained, it generated 1,000 synthetic data points, which were combined

itS statistical properties to the real data using Kolmogorov-Smirnov (KS) tests and
matrix comparisons.

Model building

The Multilayer Perceptron (MLP) model was developed to predict material properties based
on key input features. Its architecture included an input layer for processing normalized data,
multiple hidden layers with activation functions to capture complex patterns, and an output
layer tailored to the prediction task. The model was trained using an optimization algorithm
with a predefined learning rate, while a loss function was employed to minimize prediction



errors. The dataset was divided into training and validation sets to ensure balanced learning
and hyperparameter tuning was conducted to enhance model accuracy and generalization.

Validation and case study

To assess the model's reliability, a validation process was conducted by training and testing
it under three different scenarios: one using only real data, another relying solely on synthetic
data, and a third combining both datasets. This comparison allowed for a detailed evaluation
of how data augmentation influences predictive accuracy and generalization. Model
performance was analyzed by tracking the loss function's behavior and comparing predicted
values against actual measurements.

To further validate the approach, a case study was carried out to test the model's e

dataset limitations.

This approach demonstrates how combining GAN-based
predictive modeling can enhance property assessment, prd
solution for sustainable construction research.

CASE STUDY

The proposed model is applied to a case
Phase Change Materials (PCM) and nan

gh concrete mixtures enhanced with

As emphasized in the introduction,
are critical properties that significantly
influence a building's thermal perfo ctliral resistance. These properties are highly
dependent on the type and proporfa stituents within the concrete mixture. Therefore,
this study aims to predict TC an. n fle mass composition of the mixture's components.
To address the challengeg i i

om relevant literature, ensuring a diverse dataset to support
itical input parameters that influence thermal conductivity (TC)

ey
adgregate content (AAg), PCM aggregate content (PCMAg), water
content (W)fand supgrplasticizer content (Sp). Figure 2 provides a schematic illustration of the

TheWeastted TC values range from 0.19 to 1.80 W/m-K, with a standard deviation of 0.4 W/m-K,
while values span from 1.4 to 42.0 MPa, with a standard deviation of 11.5 MPa. This
variability underscores the significant role that compositional differences play in determining the
thermal and mechanical properties of the mixtures, emphasizing the importance of developing a
robust predictive model capable of accurately capturing these complex relationships.
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7 Compressive strength

—>9 Thermal conductivity

X

D C S TC
238431 650  1741.00 1.8000
237827 650  1566.59 1.4046
2366.20 650  1479.85 1.3057
235412 650  1305.75 0.9556
232394 650  1218.70 0.9021
225151 650  1131.65 0.8815
2179.07 650  1044.60 0.8526
2046.28 650 957.55 0.7991
1949.70 650 783. 0.7002
1883.30 650 0.6879
1798.79 650 1131.65 0.6714
1720.32 650 1218.70 247 9.75 14 0.6508
1611.67 650 0 1305.75 247 9.75 10 0.6302
1490.95 0 1479.85 247 9.75 7.2 0.6014

710 0 1566.90 247 9.75 6.9 0.5519

87.05 0 1653.95 247 9.75 55 0.4902

0 0 1741.00 247 9.75 5.2 0.4201

1653.95 87.05 0 247 9.75 32 1.5034

. 1479.85 261.15 0 247 9.75 23 1.1080
1991% 650  1392.80 348.2 0 247 9.75 22 0.9021
1913.48 650  1305.75 435.25 0 247 9.75 20 0.8609
1859.15 650  1218.70 522.3 0 247 9.75 19 0.8197
171429 650 1044.60 696.4 0 247 9.75 14 0.7826
1635.81 650 957.55 783.45 0 247 9.75 12 0.6796
1515.09 650 870.50  870.5 0 247 9.75 7.6 0.5519
1442.66 650 783.45  957.55 0 247 9.75 6.3 0.4819
1219.32 650 609.35 1131.65 0 247 9.75 4.5 0.4325
115292 650 52230 1218.7 0 247 9.75 3.3 0.3913
1038.23 650 435.25 1305.75 0 247 9.75 3 0.3501
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820.93 650 261.15 1479.85
754.53 650 174.10  1566.9
712.27 650 87.05 1653.95
688.13 650 0 1741.00

247 9.75 2.1 0.2636
247 9.75 1.8 0.2018
247 9.75 1.5 0.2018

0
0
0
0 247 9.75 1.4 0.1854

The dataset is randomly divided into two subsets: 80% for training and 20% for validation. To
evaluate the model's robustness and generalization capability, its performance is tested on an
independent dataset. The reliability and reproducibility of the Artificial Neural Network (ANN)
model are examined using established metrics such as Root Mean Square Error (RMSE) and the
coefficient of determination (R?). These metrics provide a comprehensive evaluation of the
model's accuracy in capturing the complex relationships between input parameters a e target
properties.

By combining experimental data collected from the literature with predicti gy, this
case study demonstrates the potential of ANN models to address data scarcity
offering precise predictions for optimizing concrete mixtures. This apprdé
efficient material design but also contributes to advancing the integratign o¥
material science applications.

RESULTS AND DISCUSSION

The initial step of this study focuses on developing
designed to predict two critical properties of concrete:
conductivity. These predictions are based on the mag@™@agposiyon of the concrete's constituents
and its density, capturing the intricate relagapoiih ctwech material composition and
performance. The configuration and design W m@del are detailed in Table 2, which

tial \@@mponents, including the selected

provides a comprehensive summary ofgifs
hyperparameters, evaluation metrics, a ci@hs, optimization techniques, and loss

functions.

T eptron (MLP) model
resSiye strength and thermal

mdin features of the model

le
pchgarafeters
Hidden layers =2
Neurons = [200,100]

Batch size = 64

Learning rate = 0.001

Epochs =100
Metrics

RMSE

R2
Activation function
ReLU

Optimization function
Stochastic  Gradient
Descent (SGD)

Loss function
MSE

The second step of this study focuses on evaluating the impact of synthetic data on the training
of the MLP model. This analysis is conducted to determine whether a model trained with
augmented data can produce results comparable to the performance achieved through training
with real data and possibly enhance it. This study investigates two distinct scenarios: (a) training



the MLP model exclusively with the real dataset containing 33 entries, and (b) training the model
with the synthetic data consisting of 1000 entries first and then the real dataset.

Both scenarios utilize the same model architecture and hyperparameters to ensure consistency,
with the key difference being the composition of the datasets used during the training and
validation phases. Our approach in scenario (b) involves training the model first with synthetic
data. Subsequently, the same model architecture uses the real dataset to enhance the model's
performance. The results of the training phase reveal that scenario (b) outperforms scenario (a) in
terms of overall metrics. For scenario (a), the model achieved a Root Mean Square Error (RMSE)
0f'0.0700 and a coefficient of determination (R?) 0of 0.9940. In contrast, scenario (b) demonstrated
improved performance with an RMSE of 0.0530 and an R? 0of 0.9971. Table 3 provides a detailed
comparison of the validation and test results for both scenarios, highlighting th hanced
predictive accuracy achieved through synthetic data augmentation.

Table 3. Comparison between the performance metrics of the MLP model trained

Scenario Dataset CS
RMSE
(a) Validation 0.6329
Test 1.2728

(b) Validation 0.5669

Test 0.7239
Despite the constraints posed by the limited cenario (a), the MLP model
delivered reliable predictions for both compres CS) and thermal conductivity (TC)

e predictive performance improved
markedly in scenario (b), where synthetic was employed during training. This

enhancement was consistently reflect

ct the CS predictions for scenarios (a) and (b),
(b) illustrate the TC predictions. For CS, Figure 3(a)
easonably aligned with the x=y line, although several
predictions deviated, ing 0.18. Scenario (b), as shown in Figure 3(b), displayed
significantly imprgme ith the x=y line, reducing prediction errors substantially. This
enhancement is &§ W We metrics, with scenario (b) achieving an R? value of 0.9975 and an
RMSE of 0. 3 ¢ improvement over scenario (a).

respectively, while Figure
shows that scenario (a)

ario (b), presented in Figure 4(b), reduced these errors by 50%, with a
ton of 0.025. The performance metrics for scenario (b) further highlight this

Overall, the results confirm that augmenting the training dataset with synthetic data enhances
the predictive accuracy of the MLP model for both compressive strength and thermal conductivity.
The incorporation of synthetic data not only minimizes errors across the test dataset but also
strengthens the model's generalization capabilities, offering a robust solution for scenarios
constrained by limited real data availability.
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mnparison of thermal conductivity predictions on the test dataset under two training
naridy: (¥ MLP trained solely on real data and (b) MLP trained on a hybrid dataset combining
1,000 synthetic data points with real data.

Figure 5 and Figure 6 illustrate the correlation between the actual test dataset values and the
predictions generated by the Multilayer Perceptron (MLP) model. These visual comparisons
provide a clear understanding of the model's ability to forecast compressive strength and thermal
conductivity. In Figure 5(a) and Figure 6(a), the model is trained exclusively on the real dataset,
while Figure 5(b) and Figure 6(b) present the model's performance when trained with an
augmented dataset containing 1,000 synthetic data points alongside the real dataset.

For compressive strength predictions, Figure 5(a) demonstrates a generally strong agreement
between predicted and actual values, though deviations are evident, with errors ranging from 0.57
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Rosa, A. C., Mateu, C., et al. Year 2025
Data-Augmented Deep Learning Models for Assessing... Volume 13, Issue 2, 1130591

to 1.92 MPa. When synthetic data is included in the training, as shown in Figure 5(b), the model's
performance significantly improves, particularly for compressive strength values between 7 MPa
and 31 MPa. The incorporation of synthetic data leads to more consistent predictions and a marked
reduction in error magnitude.
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S\, Prediction performance comparison for compressive strength on the test dataset under
conditions: (a) MLP trained solely on real data and (b) MLP trained on a hybrid dataset
combining 1,000 synthetic data points with real data.

Thermal conductivity results reveal even greater improvements. Figure 6(a) highlights the
model's capability to closely approximate actual values, with approximately half of the data points
showing errors up to 0.05 W/m.K. Figure 6(b) demonstrates the superior accuracy achieved by
incorporating synthetic data, with only two data points exhibiting minor errors of 0.02 and 0.03
W/m.K. These results underscore the enhanced predictive reliability gained through data
augmentation.

Overall, the comparison of actual versus predicted values across both scenarios clearly
indicates that integrating synthetic data enhances the MLP model's performance. The augmented
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dataset improves the model's accuracy and minimizes prediction errors, particularly in scenarios
with limited real data availability. These findings validate the effectiveness of the proposed data
augmentation approach in strengthening the model's generalization capabilities.
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CO IONS

This study introduced an innovative approach to training a multilayer perceptron (MLP
model by leveraging data augmentation techniques. Specifically, a generative adversarial
network (GAN) was utilized to generate synthetic datasets, which allowed the MLP to be
trained on a combination of real and artificial data. The methodology was demonstrated using
a limited dataset of concrete mixtures incorporating phase change materials (PCM) and nano-
silica aerogel, focusing on predicting both thermal conductivity and compressive strength.

Two training scenarios were examined in this study: (a) using only the real dataset for MLP
training and (b) pretraining the MLP with 1000 synthetic data points followed by real data. The
results revealed a substantial improvement in prediction accuracy and error reduction when



synthetic data was incorporated into the training process. This underscores the reliability of the
CopulaGAN synthesizer for generating high-quality synthetic data and highlights the
robustness of MLP models when trained on hybrid datasets. Scenario (a) achieved RMSE and
R? values of 1.2728 and 0.9922 for compressive strength, and 0.0381 and 0.9921 for thermal
conductivity. In contrast, scenario (b) achieved significantly better results, with RMSE and R?
values of 0.7239 and 0.9975 for compressive strength, and 0.0149 and 0.9988 for thermal
conductivity.

Building upon earlier work by the authors, this research extends the predictive capabilities
of the MLP model, adapting it to include compressive strength alongside thermal conductivity,
while demonstrating its flexibility with a smaller, augmented dataset. The findings underscore
the potential of data augmentation to overcome the limitations of data scarcity, agg€ommon
challenge in machine learning applications for materials science.

In addition to achieving significant accuracy improvements, this stud Blli80ts the
broader applicability of the proposed methodology to other energy-efficie i

could expand this work by incorporating additional input varia
aggregate characteristics, and mineral composition. Furthermggg, ¢
validating the model using independent or experimental data &
and robustness.

ne dataset and
generalizability

datasets. By addressing these challenges, the pro
for advancing the development of sustainable
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Abbreviations
Acrogel aggregate content
Artificial neural network
C Cement content
DL Deep learning
DNN Deep neural network
GAN Generative adversarial network
ML Machine learning
MLP Multilayer perceptron
PAg PCM aggregate content
S Sand content
Sp Superplasticizer content
A4 Water content
Symbols
Coefficient of determination R?
Compressive strength - CS [MPa]

Density - D p [kg/m?]



Root mean squared error RMSE
Thermal conductivity - TC k [W/mK]
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