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ABSTRACT 
Traditionally, modelling tools for Multi-energy systems planning and management focus on the 
minimization of a single monetary objective. Multiple objectives are usually merged via 
monetization rates. The work presented herein aims to develop modelling frameworks to explore 
of configurations of Multi-energy systems according to non-comparable objectives and extract 
trade-off solutions through optimization algorithms. Three different methodologies are 
presented, integrating the single-objective configuration model CALLIOPE with multi-
objective algorithms for exploring the decision space. These are tested on a synthetic case study 
and evaluated for their input data requirements, computational demands and ability to 
thoroughly map the solution space. Results show each approach returns optimal system 
configurations, with considerably different technology mixes depending on objective priorities. 
The methodologies highlighted here represent a significant step forward in the search for multi-
objective models for Multi-energy systems planning and management, to support the search for 
truly integrated, efficient, and sustainable solutions. 
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INTRODUCTION 
Nowadays, energy systems worldwide face numerous challenges [1], which often require 

a partial or total re-evaluation of the system’s operation and the paradigm employed for its 
planning and management [2]. 

The imperative of reducing greenhouse gases (GHGs) emissions to contrast rapid global 
warming means relying more significantly on non-programmable energy sources, like wind 
and solar energy, whose production cannot be regulated to respond to the fluctuations of the 
demand, unlike traditional fossil fuel-based energy sources [3], [4]. Energy storage solutions 
are increasingly sought after to alleviate this issue, but they come with their own sets of 
limitations, like elevated costs, low storage potential and limitations on their applicability. 

Energy and heat production and delivery, which have traditionally been considered as two 
separated entities, are now progressively merging due to the phase-out of old heat generation 
technologies based on fossil fuels and the wider adoption of installations such as heat pumps 
and co-generations power plants [5]. Other systems, like transportation, are also expected to 
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become more electrified [6]. This shift, in turn, increase the cumulative load on energy grids 
and alters energy demand patters. 

Moreover, recent geo-political instabilities [7] and extreme weather patterns [8] have 
highlighted the fragility of many energy systems to fluctuations in the supply and demand, 
emphasizing the need to improve resilience by increasing independence from external sources 
and implementing measures to mitigate the impact of such instabilities [9].  

Finally, energy systems are shifting from a more centralized configuration, with few energy 
production units such as large power plants, to a more distributed structure, with many 
privately-owned and low production installations all interacting and contributing to the balance 
of the system [10]. 

Multi-energy systems (MESs) have emerged as interesting and viable solutions to these 
new challenges, while also being able to increase the overall efficiency, sustainability, and 
resilience of the energy system [11]. In MESs, different energy vectors are integrated at various 
levels via a combination of generation, storage and conversion technologies, in order to balance 
the energy sources of the system and optimize the allocation of resources. The high degree of 
flexibility that characterize MESs helps managing the increase uncertainty caused, for example, 
by a significant increase of non-programmable energy sources or the volatility of the prices of 
importing or exporting energy via different vectors. 

The planning and management of MESs poses significant challenges, due to the 
involvement of numerous technologies and the requirement for a high temporal resolution to 
effectively operate systems designed for swift responsiveness to external variations. The design 
of such systems is often supported by modeling tools (see [5] for a review), which enable the 
definition of their configuration and operating strategy through optimization. This optimization 
has traditionally been done using a single evaluation metric, focused on the minimization of 
the overall costs, for example to investigate optimal operation regarding energy consumption 
for residential building [12] or small, solar-powered energy communities [13] . This single-
objective perspective reduces the computational complexity of the optimization [14], and the 
uncertainty correlated to the collection of data related to more difficult-to-quantify objectives. 
In case multiple objectives are included, they are often aggregated via user-defined weights to 
return to the single evaluation metric [15]. In the context of multi-energy planning, where the 
economic objective is ubiquitous and often predominant, this corresponds to the definition of 
the monetization rate of the other metrics. 

This type of reduction, from often highly diversified objectives to a single economic 
indicator, is frequently a source of debates and controversies, due to the intrinsic difficulties 
related to estimating economic impacts, and the different degree of importance given to the 
considered objectives from different stakeholders. 

In this context, the need for an integrated approach emerges to address the complexity of 
energy systems in all their facets. The integration of multi-energy models and advanced multi-
objective optimization methodologies [16] represents an opportunity to tackle the intricate 
challenges of energy planning. These models go beyond traditional compartmentalization, 
allowing for a more holistic understanding of energy dynamics [17]. Moreover, by considering 
multiple non-comparable objectives, the result is not a single configuration but a range of 
different optimized system designs, each favoring a different set of objectives. [18], which can 
then be explored to highlight conflicts and synergies between objective and identify viable 
trade-offs solutions. 

There are limited studies in literature that analyze multi-energy planning and management 
with a multi-objective perspective. For example, [19] examines a case study in residential 
contexts, demonstrating how multi-objective algorithms can effectively explore compromise 
solutions between planning costs, fuel consumption, and environmental impacts; in [20] both 
costs (to be minimized) and generation (to be maximized) are effectively optimized, while [21] 
explores cost and emission dynamics in a system comprising fifty buildings and including 
electric vehicles charging stations. Multi-objective optimization problems are sometimes 
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solved using hierarchical optimization or pairwise comparison to identify a set of weights 
representing different stakeholder priorities, as in [22] 

In recent works, multi-objective evolutionary algorithms (MOEAs) have been used for 
MES planning in multi-objective contexts In [23] and [24], two-objective modeling 
frameworks have been developed to design optimal investment plans that minimize both costs 
and emissions. These studies focus on the energy and heat supply of a medium-sized town and 
the energy and water supply of a small island, respectively..Finally, [25] utilizes a customized 
version of the EnergyPLAN model, called EPLANopt, which applies a multi-objective 
evolutionary algorithm (MOEA) to derive trade-off solutions between costs and emissions for 
the energy system of the South Tyrol region in Italy. While these works contribute valuable 
insights, they rely on specialized frameworks tailored to specific case studies. As a result, 
adapting them to different contexts requires significant effort compared to widely used single-
objective MES models such as CALLIOPE [15], PyPSA [26], H2RES [27] or 
MUSEPLAN [28]. 

The above-mentioned literature highlights how the integration of multi-energy models and 
multi-objective algorithms allows for the consideration of multidimensional challenges beyond 
cost alone. 

The central objective of this work is to develop a methodology that integrate multi-energy 
models and multi-objective optimization algorithms to increase not only applicative flexibility 
in multi-stakeholder contexts but also to reduce subjectivity in predefined trade-off balances. 
To do so, the explore and evaluate three different methos for developing multi-energy models 
with multiple objectives, aiming to extract the best paradigm in this regard. In particular, the 
three methods are: 1) coupling the single-objective multi-energy model CALLIOPE [15] with 
an exhaustive sampling procedure considering the relative weights of each optimization 
objective (method a); 2) the integration of CALLIOPE with evolutionary optimization 
algorithms for the optimal search of the weights defining the relative importance of the 
optimization objectives (method b); and 3) the use of evolutionary algorithms for solving the 
energy planning problem (method c). 

Both the first and second methodology, by exploring conflicts and synergies between 
interests and indicators, allow the application of CALLIOPE in multi-objective contexts, while 
the intrinsic structure of the model remains single objective. The advantage offered by these 
techniques lies in eliminating subjectivity in trade-off variables (or weights) through either 
exhaustive sampling (method a) or advanced optimization techniques (method b). Finally, 
method c transforms CALLIOPE into a fully-fledged multi-objective planning and 
management tool. 

These methodologies are tested on a synthetic case study based on the Sulcis-Iglesiente 
region in Sardinia, Italy. In this study, different MESs configurations are explored, which 
include additional renewable energy sources in the local energy system, change the current heat 
generation technologies and add energy storage options. These configurations are evaluated 
under four different objectives: economic costs, CO2 emissions, PMx emissions, and energy 
self-sufficiency. 

This paper presents modeling alternatives for MES planning and management that are truly 
multi-objective, allowing the identification of trade-off between different system 
configurations under multiple, non-comparable objectives. The methodologies described here 
also ensure a simple and easy integration with more widespread, single objective MES models, 
with minimal to no modifications to their code. 

METHODS 
The methods presented in this paper aim to overcome the need to define a-priori 

monetization rates (or any kind of aggregation weights or trade-offs variables) in single-
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objective multi-energy system optimization models, to allow for multi-objective analysis for 
non-comparable objectives. 

To achieve this, the methodological workflow shown in Figure 1 was developed. First, a 
schematization of the case study is defined on the single-target multi-energy systems modelling 
tool CALLIOPE. It includes both the technologies already installed in the analyzed area, and 
the pool of potential installations identified according to the territory’s resources, from which 
the algorithm can choose to plan the system configuration. For each technology, the system 
defines its costs according to each objective. The configuration of the CALLIOPE model, 
required inputs, and returned outputs are described in Section 3. 

The three methods employed to extract the set of Pareto-efficient decisions in the decision 
space of the problem differ in terms of modeling tools used, the number of inputs, and 
computational requirements. This section describes the structure and requirements of each 
methodology, while Section 5 discusses their advantages and limitations, including 
considerations based on the results obtained from the case study. 

The analyzed methodologies are: 
1. Exhaustive method (method a) 
2. Evolutionary multi-objective optimization on weights (method b) 
3. Evolutionary multi-objective optimization on system configuration (method c) 
All algorithms analyzed here aim to solve the following optimization problem: 

𝑢𝑢𝑝𝑝∗ ,𝑢𝑢𝑇𝑇∗ ,𝑚𝑚∗  = 𝑎𝑎𝑎𝑎𝑎𝑎  min
𝑢𝑢𝑃𝑃,𝑢𝑢𝑇𝑇,𝑚𝑚

𝐽𝐽(𝑢𝑢𝑃𝑃 ,𝑢𝑢𝑇𝑇,𝑚𝑚) (1) 

 
𝑢𝑢𝑝𝑝∗  represents the optimal planning configuration, 𝑢𝑢𝑇𝑇∗  is the optimal set of trade-off variables 
(or weights) that allows for a comprehensive exploration of the objective space, 𝑚𝑚∗ identifies 
the operational management decisions, and 𝐽𝐽  is the multidimensional objective function, 
comprised by all functions employed to derive the performances of the multiple objective 
considered in the analysis. The single-target multi-objective model CALLIOPE fully defines 
and optimizes 𝑚𝑚∗ through a model predictive control (MPC) algorithm; thus, the identification 
of 𝑚𝑚∗  will not be further discussed. On the contrary, the definition of 𝑢𝑢𝑝𝑝∗  and 𝑢𝑢𝑇𝑇∗  varies 
depending on the proposed methodology and will be subject of the analysis presented hereby. 
To evaluate the performance of the three methodologies in quantifiable manner, the consistency 
and diversity of the Pareto sets obtained from the algorithms is evaluated using two distinct 
and widely used performance metrics: the additive epsilon indicator and hypervolume. 

The CALLIOPE model 
CALLIOPE is an open-source software that enables the digitalization study, and 

optimization of complex multi-energy system. The model structure allows for the inclusion of 
generation, transmission, conversion, storage, and consumption technologies. These interact 
with each other in terms of energy flows attributed to different energy vectors, which can be 
produced, transported, converted, or consumed. Each system is bounded to satisfy some 
specific demands, also associated with an energy vector (e.g., demand for electricity or heat). 

The specified energy system can also be connected to external entities, such as the national 
energy grid. The connection of the system to the electrical grid for energy import is modeled 
as a new technology for energy generation that allows the purchase of electricity at a variable, 
user-defined and time-varying price. The possibility of exporting excess energy to the grid, on 
the other hand, must be specified for each installed technology by specifying the selling price. 
The fulfillment of the local energy demands, however, takes priority over the energy export. 
The first panel in Figure 1 shows a schematization of the input necessary to create a model of 
a multi-energy system in CALLIOPE. 

Once the system has been initialized with its installed or potential technologies and the 
different energy demands that characterize it, CALLIOPE searches for an optimal system 
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configuration from both planning and management perspectives, i.e., which and in what 
quantities the available technologies should be installed, and how these technologies should be 
operated, on an hourly time resolution. To do this, CALLIOPE uses a MPC algorithm to 
optimize management, embedded within a Mixed-Integer Linear Programming (MILP) 
algorithm for extracting planning variables. In this way, for each system configuration found 
by the MILP algorithm, the software optimizes its management through MPC. 

Both algorithms seek optimal solutions by minimizing a single performance indicator, 
which in CALLIOPE corresponds to cumulative costs. CALLIOPE allows the definition of 
different cost categories, whether economic costs or, for example, related to CO2 emissions or 
particulate matter. These costs can arise from the installation, maintenance, and management 
of installed technologies or from the purchase of energy from external sources (whether 
imported electricity or fuels). It is also possible to include negative costs if there is a goal to 
maximize, for example, job creation. However, optimization is always performed by 
minimizing a single indicator, and thus the software requires the user to specify conversion 
weights for each objective to extract a single cumulative system performance value. 

The optimized system returned by CALLIOPE includes the installed capacity for each 
technology and the operation strategy for each hourly timestep. Additionally, it also returns the 
fixed and variable costs associated with technologies and the cumulative total costs for each 
initialized cost category. 

Multi-objective optimization 
The single-objective optimization structure of CALLIOPE does not allow for the 

exploration of trade-offs between different non-comparable objectives. Here, various multi-
objective analysis methods integrating CALLIOPE are applied and compared.  

All the methodologies used return a set of Pareto-optimal system configurations. When 
visualized in the objective space, these solutions form an approximation of the Pareto front, 
which contains all possible non-dominated system configurations for the objectives considered. 

 
Exhaustive method.  A simple and intuitive method to extract optimal system configurations 

showing the trade-offs between objectives, while remaining within the single-objective constrain 
of CALLIOPE, is to iteratively run the model for different combination of weights. The optimized 
system configurations obtained will reflect the relative importance of the objectives, depending 
on the assigned weights.  

As described in Figure 1a, the exhaustive method (method A) requires the user to define, for 
each objective, a set of weight values. To find compromise solutions, the weights assigned to the 
objectives must ensure that their performances, once weighted, are comparable and have a similar 
impact on the cumulative indicator used for system optimization. This would typically require a 
basic prior knowledge on how the costs metrics for each objective compare to each other, so that 
the cost associated to each objective meaningfully influences the aggregated value used for the 
optimization, or the adoption of a very large set of weights.  

Once defined, the elements in these sets are combined by computing their n-dimensional 
cartesian product (where n is the number of objectives) to extract the set of all the possible weight 
combinations 𝐊𝐊. Each subset 𝑘𝑘 ∈ 𝐊𝐊 is a vector containing a single weight value for each objective. 
The CALLIOPE software is then initialized and run for each 𝑘𝑘 , and returns different 
configurations of the energy system, optimized based on the relative importance of the objectives. 
Considering the exhaustive nature of the approach, it follows that the cardinality of 𝐊𝐊 must be 
high enough to encompass the analysis all the possible tradeoff between objectives. This iterative 
process yields a collection of optimal system configurations, each linked to distinct objective 
performances, collectively shaping the Pareto front associated with this method.  
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Figure 1. Paper workflow. The figure depicts a schematization of the procedures described in this 
paper. Blue text indicates user-defined inputs, while red text represents outputs. Mathematical and 

modeling tools used are shown in grey boxes. 

 
Clearly, it is challenging to predict the probability distribution of weights that would lead to 

the optimal approximation of the Pareto front. Consequently, this paper employs the Sobol 
sampling algorithm to extract weight combinations. The algorithm systematically samples the 
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multidimensional space encompassing possible weight combinations for each objective, 
producing a quasi-equidistributed subset. While effectively enabling the multi-objective 
exploration of trade-offs, the mentioned method is constrained by the need to predefine the 
cardinality of . 𝐊𝐊. If set too small, it may result in an inadequate exploration of the Pareto front; if 
set too high, it may lead to excessive computational complexity. 

Referring to the optimization problem expressed in equation 1, the method A therefore defines 
the set 𝑢𝑢𝑡𝑡∗ of weights a priori, and for each combination, optimizes the energy planning 𝑢𝑢𝑝𝑝∗  using 
the MILP algorithm. 

 
Evolutionary multi-objective optimization on weights.  An exhaustive exploration of the 

feasibility space of relative weights associated with each objective presents strong limitations both 
computationally and in terms of efficiently exploring trade-offs. A possible solution in this regard 
could be the use of Multi-Objective Evolutionary Algorithms (MOEAs) that, instead of 
determining the entire set of weight values to explore in advance, adapt the parameterization of 
their search through an optimization process.  

Despite various types being proposed in the literature (see, for example,[29]), most MOEAs 
are characterized by a methodological process articulated in five main steps: 

1. Initialization: randomly generate initial parameter values for optimization within a 
predefined feasibility interval. 

2. Simulation: perform simulations using the generated parameter values. 
3. Objective Evaluation: calculate the values of the optimization objectives based on the 

simulation results, 
4. Pareto Selection: identify and store solutions that are Pareto-optimal. 
5. Evolutionary Step: Generate a new set of parameter values for the next iteration 

through combinations of the archived Pareto-optimal solutions. 
The steps two to five described in the list above are repeated until either some convergence 

criterion is met (no significant improvement between two consecutive iterations), or a certain 
amount of pre-defined function evaluations are reached.  

In this work, the objective weights constitute the decision variables of the MOEA. In each 
iteration, the algorithm identifies a combination of weights which are then fed to CALLIOPE to 
obtain a system configuration, associated with a specific performance rate for each objective, as 
shown in Figure 1b. 

It is noteworthy that, in contrast to method a, method b eliminates the necessity to predefine 
either 𝐊𝐊 or its cardinality. Furthermore, in method b, the search process is optimized by the 
evolutionary algorithm itself, eliminating the need to assume the probability distribution of the 
parameters (or weight). These two factors offer significant advantages in terms of both 
computational efficiency and exploration effectiveness, since the only requirement is the 
definition of feasibility space for the weights. 

In this work, the MOEA algorithm OMOPSO was selected (Optimized Multi-objective 
Particle Swarm Optimization, [30]). This algorithm employs a user-defined parameter ϵ as a 
threshold value below which the variation of an objective can be considered negligible, and 
therefore the solution found can be excluded.  

Returning to equation 1, method B uses the OMOPSO algorithm described above to define 
sets 𝑢𝑢𝑡𝑡∗ of weights that ensure the best possible exploration of the objectives space. As with the 
exhaustive method, energy planning and management (𝑢𝑢𝑃𝑃,𝑚𝑚) is optimized in CALLIOPE 
using MILP and MPC. 

 
Evolutionary multi-objective optimization on system configuration.  The third methodology 

involves the direct optimization of the energy system configuration by OMOPSO (method C). As 
shown in the diagram in Figure 1c, the methodology involves, as in the previous case, a coupling 
between CALLIOPE and a multi-objective evolutionary optimization algorithm. In this case, 
however, the decision variables optimized by the algorithm are not the weights assigned to the 
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objectives, but the installed capacity for each available technology, defined as a percentage of the 
maximum capacity. Therefore, the planning of the energy system, which in the two methods 
previously described is carried out internally by CALLIOPE via the MILP algorithm, is entrusted 
to the MOEA, moving away from the single-objective optimization of the MILP to a fully multi-
objective one. The optimization of energy system management, on the other hand, is still 
performed by CALLIOPE, considering only the economic objective.  

Thanks to the separation of the optimization operations of planning and system management 
between two different algorithms, this methodology stands out from the previous ones for lacking 
the need to define sets or assign feasibility spaces to weights, like in the previous two methods. 
However, while all solutions found by the previous two methodologies were always optimally 
configurated by the MILP algorithm, here, most of the configurations found by the MOEA across 
its iterations will result sub-optimal. MOEAs typically require multiple iterations before returning 
optimized solutions to the problem. At the start of the algorithm and for the first generations, the 
analyzed system solutions are configured randomly or are extremely unoptimized. This is 
necessary to allow the evolutionary algorithm to learn which configurations are more efficient and 
converge towards Pareto-optimal solutions but may require a high number of iterations. 

In reference to the optimization problem expressed in equation 1, method C foregoes the 
search for 𝑢𝑢𝑡𝑡∗ in favor of only optimizing the system configuration 𝑢𝑢𝑃𝑃 directly with OMOPSO, 
while the identification of 𝑚𝑚∗ is still left to CALLIOPE via MPC. 

Metrics of performance 
The performance metrics employed in this investigation encompass the additive epsilon 

indicator and hypervolume. These metrics offering a quantifiable measure of the consistency and 
diversity of the Pareto sets approximation, respectively. Calculations for these metrics were 
performed in relation to the reference set, i.e.: the best-known Pareto approximation obtained by 
combining those of the three algorithms. 

The additive epsilon-indicator [31] quantifies the largest distance that an approximation set 
must be translated to dominate the reference set. Consequently, it exhibits heightened sensitivity 
to gaps in trade-offs. If a Pareto approximate set contains gaps, solutions necessitate translation 
over a more considerable distance, resulting in a notably increased additive epsilon-indicator 
metric value. The lower the metric value, the lower the minimal worst-case distance from the 
reference set. 

Hypervolume [29] measures the volume of the objective space dominated by an 
approximation set. Thus, the goal is to maximize this metric. In this study, hypervolume was 
normalized concerning the reference set hypervolume. Consequently, a value of 1 signifies that 
the approximation set dominates an equivalent volume as the reference set. Hypervolume stands 
out as a challenging and comprehensive metric, providing insights into an algorithm's convergence 
and the diversity of its representation of trade-offs. 

EXPERIMENTAL CONFIGURATION 
This section reports the steps taken to apply the methodologies described above to a synthetic 

case studied molded after the Sulcis-Iglesiente (SI) province in Sardinia, Italy, with the aim of 
showing which method can identify suitable alternatives and tradeoffs for the energy development 
of the examined territory. 

Case study modelization and data availability 
Modeling the case study in CALLIOPE requires hourly data on electricity and heat demand, 

the availability of solar and wind resources, and information on the characteristics and maximum 
theoretical capacity of potential future installations, considering the territory’s availability.  
Though a collaboration with the University of Cagliari and the use of previous datasets of RSE, 
electricity and heat demand data were obtained via from the dataset of the Italian ministry of 
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Economic Development and downscaled. The potential renewable energy production in the 
territory is estimated via the grid-based TOTEM [32] tool. All data are referred to the sample 
year 2015. 

The technical and economic parameters of the currently installed technologies used in the 
simulations are derived from previous studies by RSE while the emission factor values come from 
estimates made by ISPRA (Italian Institute for Environmental Protection and Research, 
https://www.isprambiente.gov.it/it). It is specified that a capital cost of zero has been considered 
for all currently installed technologies. 

The possible planning alternatives 𝑢𝑢𝑝𝑝 involve the expansion of the electric and thermal, as 
well as the introduction of storage technologies, as shown in Figure 2. The technical and 
economic parameters of potentially installable technologies are derived from previous works by 
RSE [33], while emission factor values are not provided as they are considered null for all 
technologies. The values of the maximum installable capacity serve as constraints related to the 
territory's capacity to accommodate new technologies. It is important to note that this parameter 
serves only as a constraint in the planning problem, and the solution will define the optimal 
capacity based on the optimization objectives. 

 
Figure 2. Conceptual framework of possible technological planning decisions in the synthetic case 

study. 

For photovoltaics, this value was calculated using the TOTEM tool, estimating the total 
suitable area for installation, and dividing it by an occupancy coefficient set at 11 m2/kW for 
ground installations and 5 m2/kW for rooftop installations, resulting in about 49 MW and 185 
MW, respectively. For wind power, the possibility of doubling the currently installed capacity 
(about 100 MW) onshore and installing the same capacity offshore has been assumed, selecting 
the type of installation plant most suited given the wind energy data available. 

Further planning alternatives include the installation of new heat pumps, with the potential 
capacity to fully cover the total heat demand (178 MW). These heat pumps present a higher 
efficiency then the one already installed (COP of 4 compared to 3.2). Finally, an electrochemical 
storage technology is introduced to add flexibility to the system. A maximum installable capacity 
has not been defined precisely given the uncertainties related to this technology and has been set 
to a sufficiently high value so to not result as an upper boundary to the optimization. 

Finally, energy import from the grid is associated with both a time-varying economic cost, 
extracted by for the year 2015 from the website of the GME, the company responsible for 
organizing and managing energy markets in Italy [34], and a fixed CO2 emission factor. For this 
study, it is assumed that no CO2tax or other forms of carbon compensation are already included 
in the price of imported energy. For this study, it is assumed that no CO2 tax or other forms of 
carbon compensation are included in the price of imported energy. This ensures that the emissions 
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associated with imported energy are fully accounted for when quantifying total carbon emissions. 
On the other hand, energy export is also associated with revenues according to the varying energy 
prices reported by the GME 

Optimization objectives  
Four distinct objectives have been identified for the Sulcis Iglesiente case study: the 

minimization of the total current net cost, the CO2 emissions and the particulate emissions, and 
the maximization of the energy independence of the system. Each objective performance is 
monitored through the following utility functions. 

The total current net cost 𝐽𝐽𝐶𝐶[€] is defined as the sum of investment costs 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖, operational 
costs 𝐶𝐶𝑜𝑜𝑝𝑝𝑜𝑜𝑜𝑜  for each installed technology, plus the costs of importing from the grid 𝐶𝐶𝑖𝑖𝑚𝑚𝑝𝑝𝑜𝑜𝑜𝑜𝑡𝑡, and 
subtracting revenue from energy export 𝐶𝐶𝑜𝑜𝑒𝑒𝑝𝑝𝑜𝑜𝑜𝑜𝑡𝑡. Cash flows (operational costs, export revenue, 
and import costs) are discounted annually based on a specific discount factor 𝐽𝐽𝐶𝐶  is mathematically 
defined as: 

 

𝐽𝐽𝐶𝐶 =  ��𝐶𝐶𝑗𝑗𝑖𝑖𝑖𝑖𝑖𝑖 + �𝑑𝑑𝑖𝑖𝐶𝐶𝑖𝑖,𝑗𝑗
𝑜𝑜𝑝𝑝𝑜𝑜𝑜𝑜

𝐻𝐻

𝑖𝑖=1

� + 𝑑𝑑𝑖𝑖�𝐶𝐶𝑖𝑖
𝑖𝑖𝑚𝑚𝑝𝑝𝑜𝑜𝑜𝑜𝑡𝑡 −  𝑑𝑑𝑖𝑖�𝐶𝐶𝑖𝑖

𝑜𝑜𝑒𝑒𝑝𝑝𝑜𝑜𝑜𝑜𝑡𝑡
𝐻𝐻

𝑖𝑖=1

𝐻𝐻

𝑖𝑖=1

𝑖𝑖𝑡𝑡𝑡𝑡

𝑗𝑗= 1

 (2) 

 
Where 𝑛𝑛𝑡𝑡𝑜𝑜 represents the number of installed technologies, and 𝐻𝐻 is the time horizon. The 

discount factor 𝑑𝑑𝑖𝑖 is expressed in terms of the applied discount rate 𝑡𝑡𝑡𝑡 as: 
 

𝑑𝑑𝑖𝑖 =  
1

(1 + 𝑡𝑡𝑡𝑡)𝑖𝑖 
(3) 

 
CO2 emissions 𝐽𝐽𝐶𝐶𝐶𝐶2[𝑘𝑘𝑎𝑎] depends on all the energy produced by the installed technologies, 

both for the purpose of satisfying the local demand and exporting the energy to the grid, and are 
calculated as: 

 

𝐽𝐽𝐶𝐶𝐶𝐶2 =  ���𝑘𝑘𝑗𝑗
𝐶𝐶𝐶𝐶2𝐸𝐸𝑖𝑖,𝑗𝑗

𝐻𝐻

𝑖𝑖=1

�
𝑖𝑖𝑡𝑡𝑡𝑡

𝑗𝑗= 1

 (4) 

 
Where 𝐸𝐸𝑖𝑖,𝑗𝑗[𝑘𝑘𝑘𝑘ℎ] represents the energy produced at time step 𝑖𝑖 by technology 𝑗𝑗, and 𝑘𝑘𝑗𝑗

𝐶𝐶𝐶𝐶2 

� 𝑘𝑘𝑘𝑘
𝑘𝑘𝑘𝑘ℎ

� is a specific emission coefficient for each technology. Locally, LPG and oil heat pumps 
emit CO2. Moreover, the energy imported from the grid is attributed an emission rate equal to the 
national average for 2015 (0.26 𝑘𝑘𝑎𝑎𝐶𝐶𝐶𝐶2 𝑘𝑘𝑘𝑘ℎ⁄ , data from ISPRA [35]). 

Particulate emissions 𝐽𝐽𝑃𝑃𝑃𝑃𝑥𝑥[𝑘𝑘𝑎𝑎] are expressed similarly to CO2 emissions, i.e., as the product 
of the energy produced by a specific technology and an emission factor 𝑘𝑘𝑗𝑗

𝑃𝑃𝑃𝑃x  � 𝑘𝑘𝑘𝑘
𝑘𝑘𝑘𝑘ℎ

� . 
Mathematically: 

 

𝐽𝐽𝑃𝑃𝑃𝑃𝑥𝑥 =  ���𝑘𝑘𝑗𝑗
𝑃𝑃𝑃𝑃𝑥𝑥𝐸𝐸𝑖𝑖,𝑗𝑗

𝐻𝐻

𝑖𝑖=1

�
𝑖𝑖𝑡𝑡𝑡𝑡

𝑗𝑗= 1

 (5) 

 
The analysis focuses only on local emission sources, thus only biomass boilers (emission 

factor: 0.66 𝑘𝑘𝑎𝑎𝑃𝑃𝑃𝑃𝑒𝑒 𝑘𝑘𝑘𝑘ℎ⁄ ), or LPG or fuel oil boilers (0.12 𝑘𝑘𝑎𝑎𝑃𝑃𝑃𝑃𝑒𝑒 𝑘𝑘𝑘𝑘ℎ⁄ ). 
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The independence from the energy grid 𝐽𝐽𝐼𝐼𝐼𝐼[€], defined as the product of energy imported 
from the grid 𝐸𝐸𝑖𝑖,𝑅𝑅𝑜𝑜𝑡𝑡𝑜𝑜 [𝑘𝑘𝑘𝑘ℎ] and the import price 𝑐𝑐𝑖𝑖

𝑖𝑖𝑚𝑚𝑝𝑝𝑜𝑜𝑜𝑜𝑡𝑡, is mathematically expressed as: 
 

𝐽𝐽𝐼𝐼𝐼𝐼 =  �𝑐𝑐𝑖𝑖
𝑖𝑖𝑚𝑚𝑝𝑝𝑜𝑜𝑜𝑜𝑡𝑡

𝐻𝐻

𝑖𝑖= 1

𝐸𝐸𝑖𝑖,𝑅𝑅𝑜𝑜𝑡𝑡𝑜𝑜 (6) 

 

Experiment Parameterization 
All three methodologies aim to identify multiple optimal alternatives for sustainable multi-

energy territory planning and management. For each of them, an experiment is conducted on the 
case study presented in the previous section. The configurations of the three methods are as 
follows: 

• Method a: Planning variables 𝑢𝑢𝑃𝑃 are obtained for a single configuration of weights (or 
trade-off variables) through MILP. The value of weights 𝑢𝑢𝑇𝑇  is exhaustively explored 
through a sampling of the feasibility space ([0-1], [0-10], [0-1]) using Sobol Sampling 
with a size of 1024. This implies that the planning problem is solved through MILP for 
1024 function evaluations (FE), with weight values decided a priori through random 
sampling. 

• Method b: Similar to the previous case, 𝑢𝑢𝑃𝑃 values are obtained through MILP. The value 
of weights 𝑢𝑢𝑇𝑇 is determined through evolutionary algorithms, with feasibility space [0-3], 
[0-30], [0-3]. The evolutionary nature of the algorithm enables an expansion (tripling) of 
the feasibility space compared to method a, requiring fewer assumptions about the system 
while avoiding an increasing in the computational burden. Each evolutionary algorithm 
performs 1000 FEs, starting from an initial population of 100. To ensure that the found 
solutions are not constrained to the 100 initial values, the algorithm is run with six seeds 
(i.e., initializations). 

• Method c: In this case, the planning variables 𝑢𝑢𝑃𝑃 are no longer optimized through MILP 
but through MOEA The algorithm's parameterization, as in the previous case, requires 
specifying a maximum number of FEs, an initial population, and the number of seeds. 
These values are set respectively to 10,000 FEs (the number of variables to be optimized 
is more than double compared to the previous case), 100, and six. 

RESULTS 
The methodologies described in the Method section have been applied to the Sulcis-

Iglesiente case study, to assess and compare their effectiveness in extracting interesting and 
heterogeneous trade-off solutions for the planning and management of the multi-energy system.  

Pareto front identification 
Figure 3 displays the results obtained by the three methods in the considered case study. Each 

Pareto front shows a four-dimensional objective space, with the costs on the x axis and CO2 
emissions on the y-axis. Marker color indicates the energy independence (defined as the sum of 
the import costs), while the marker size represents PMx emissions. The frontiers exhibit an elbow-
shaped structure which illustrating the trade-off between costs and CO2 emissions. The color 
gradient, transitioning from yellow to blue as one moves to the right, signifies required 
investments for achieving grid independence. While the marker size experiences marginal 
variations along most of the frontier, the bottom-right region features larger dark blue circles, 
indicating the necessity of employing high PMx emission technologies to maximize independence. 

To aid in its description, the Pareto frontier, it has been partitioned into 4 macro-regions, as 
shown in Figure 3d. While these regions do not possess defined boundaries and often blur with 
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each other, they nevertheless help us to highlights groups of configurations that prioritize certain 
objectives at the expense of others. In region I, the solutions identified primarily focus on 
minimizing the economic objective. The system is configured to minimize investments in new 
infrastructure and relies mainly on importing electricity from the grid to fill local 
production deficits. 

 
Figure 3. Pareto front obtained with the 3 methodologies described in the paper. a) Exhaustive 

method, b) evolutionary multi-objective optimization on weights, c) evolutionary multi-objective 
optimization on system configuration. d) visualization of the main macro-regions partitioning the 

extracted Pareto fronts. 

Region II contains configurations that minimize CO2 and PMx emissions, characterized by 
investments in new renewable plants to reduce energy imports, and a heat production mainly 
entrusted to new heat pumps to avoid the use of CO2 and PMx emitting boilers.  

In region III, the configurations found are optimized to maximize independence from the grid. 
Like solutions in regions II, they are characterized by significant investments in renewables, which 
are sought after here to reduce the system dependence to outside import. However, heat production 
is mainly entrusted to oil and LPG boilers, avoiding additional energy purchase from the grid to 
power heat pumps, while being cheaper than biomass boilers. These configurations overall emit 
more CO2 than other solutions on the frontier with similar economic investment, hence their 
position on the upper part of the frontier. 

Finally, in Region IV, the solutions focus on minimizing CO2 emissions, with less emphasis 
on particulate reduction. Solutions in this region have a similar energy production mix to those in 
region II; however, they favor the use of biomass boilers rather than employing heat pumps 
bowered in part by imported energy, which is associated with a low but still present emission rate, 
resulting in increased particulate emissions and costs. 

Figure 3 also allows for the comparison of the frontiers found using the three methodologies 
described above. The frontier in Figure 3a, referring to the exhaustive method, appears to be 
overall heterogeneous, with areas characterized by a low density of found solutions, such as zone 
I, alongside others where a high number of solutions with almost identical configurations are 
present (the lower band in zone II). In comparison, the use of method B) results in a more 
homogeneous and evenly-filled frontiers, with new configurations being found in previously 
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unexplored areas characterized by high costs and filling the previously sparse region with low 
costs.  

Finally, method c), even while having the highest number of FEs, return the most incomplete 
frontier, with many areas, especially those correlated with high costs, missing even a single non-
dominated configuration. This is reflected by the values assumed by the metrics of performances, 
represented in Figure 4. Method b clearly outperforms both other techniques, dominating 
(hypervolume very close to one), and consistently covering (additive epsilon indicator close to 
zero) the entire objective space. Method a offers good performances as well, even though both 
less consistent and diverse. The low epsilon indicator performance of method c) suggest large 
portions of Pareto set unexplored. Moreover, further scrutiny into the configuration of the 
solutions reveal that many of them are still somewhat unoptimized, with multiple redundant heat 
generation technologies being included even when not needed to fulfill the demand. 

 
Figure 4. Metrics of performance for the three algorithms tested in this study: a) Hypervolume and; b) 

Additive epsilon indicator. 

Non-dominated system configurations 
This section describes the features and composition of some non-dominated solutions to 

provide an overview of the optimal configurations found by CALLIOPE with different sets of 
weights.. The solutions are extracted from the Pareto front returned by the exhaustive method, as 
the other methods only returns the objective performance and decision variable values of the non-
dominated solutions, requiring extensive computation to rerun CALLIOPE for each solution to 
extract the full details on the configurations.  

Figure 5 shows the configuration of the energy system for six solutions identified by 
CALLIOPE for different weight sets. The examples are divided into two groups, presenting very 
similar cumulative costs (solutions I, II, and III in the first group, IV, V, and VI in the second). 

Solutions I, II, and III are low-cost configurations, characterized by a similar mix of electrical 
production. In addition to existing technologies, ground and rooftop photovoltaic plants, and 
onshore wind turbines up to their maximum installable capacity, are included. Imports from the 
grid constitute more than a third of the annual production. As expected, solution I has the lowest 
grid import, as it focuses primarily on minimizing energy imports. The energy mix for heat 
production, however, is significantly different in the three solutions. In configuration I, in order to 
reduce electricity demand and thus the import needed from the grid, heat production is almost 
70% derived from fossil fuel boilers. In solution III, with aims to only minimize CO2 production, 
biomass boilers are used, which have a higher cost than other boilers and emit considerably more 
PMx. However, most of the heat production is via the new heat pumps installed. Solution II, finally, 
mostly focus on installing new heat pumps.  
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Figure 5 Details on the multi-energy system configurations found using the exhaustive method. Panel 

a) shows the The top-right figure identifies the macro-regions of the Pareto frontier used for its 
description. Panel b) presents six examples of optimized system configurations. Each solution shows 

the percentage of total energy production for each present technology, for the electricity and heat 
energy vectors. 

In solutions IV, V, and VI, the increase in invested capital is justified by the installation of 
offshore wind turbines, the most expensive available power generation technology. Regarding 
heat production, patterns similar to those observed in the previous three solutions are found. 
Configuration IV, like I, mainly invests in fossil fuel boilers to reduce both costs and the energy 
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import. Solution V mainly uses heat pumps to meet the demand, while Solution VI favors the 
adoption en-masse of biomass boilers to minimize CO2 emissions. 

Figure 6 provides a visual indication of the adoption frequency of available technologies in 
the case study under consideration, depending on the weight given to the objectives considered 
and their relative importance in terms of total energy production. As can be seen, for renewable 
electricity generation technologies, generated power increases with increasing investment costs, 
moving from left to right, while it appears almost unchanged moving from top to bottom, or 
moving from solutions that prioritize grid independence to those that aim to reduce CO2 and 
particulate emissions. Therefore, regardless of the prevailing objective, the sequence in which 
technologies are adopted with increasing investments appears similar, with the adoption of 
onshore wind and ground photovoltaic first, followed by rooftop photovoltaic, electrochemical 
storage batteries, and onshore wind. 

The patterns appear different when considering heat generation technologies. In this case, the 
presence of different technologies is strongly influenced by the relative importance of the 
independence, CO2, and particulate emission objectives. On the graph, this results in an increase 
or decrease in energy production by moving vertically on the frontier. Returning to the zone 
partitioning in Figure 3d, GPL and oil-fired boilers are mainly adopted in configurations that 
focus on independence (at the top of the Pareto frontier, in zone III and IV). In contrast, biomass 
boilers dominate heat production in solutions that aim only to reduce CO2 emissions. The new 
heat pumps, present in almost all solutions, in configurations in zone II emerge as the predominant 
heat source in the system, as they avoid direct CO2 and particulate emissions resulting from 
boiler use. 
DISCUSSION AND FUTURE RESEARCH 

The methodologies showcased in this paper represents a decisive step forward towards the 
creation of truly multi-objective optimization model of multi-energy systems. The results 
presented in this paper demonstrate that is possible to integrate the single-objective modelling 
tools already available, like CALLIOPE, into an external multi-objective framework, and 
achieve the same results of a fully multi-objective model, i.e the identifications of non-
dominated solutions which showcases significant trade-offs between the objectives, 

The methodologies outlined above can be compared based on their input data requirements, 
algorithm computational demand, and their ability to explore the decision space and provide a 
diverse set of optimal system configurations (and thus a more accurate approximation of the 
full Pareto front). The latter goal guarantees that the optimal configurations obtained highlight 
all possible trade-offs between non-comparable objectives. 

From the results, it emerges that the exhaustive method (A) does allow to obtain a 
sufficiently heterogeneous Pareto frontier, which is however still heavily dependent on the size 
and distribution of the initial sampling. The identification of the latter, however, requires the 
user to already have prior knowledge of the system and how the performance indicators of the 
objectives relate to each other. For this reason, the extraction of weight sets represents an 
evident point of criticism in this methodology. Moreover, exhaustive methods like the one 
described run the risk of being particularly inefficient in utilizing available computational 
resources. In fact, looking at the resulting Pareto front, it is observed that, especially in zone II 
in Figure 3d, different combinations of weights converge on configurations that are 
particularly similar or practically identical to each other’s, with comparable objective 
performances, which constitute a waste of resources that could be used to explore more 
interesting configurations. In zone I and III, the system configurations instead appear extremely 
sensitive to the slightest variation in the associated weights, and therefore the broad sampling 
of the space of weight combinations result in large portions of the Pareto frontier being left 
unexplored. Consequently, the method does not fully utilize the allocated computational 
resources, with areas of the objective space virtually unexplored and others characterized by 
an elevated density of mostly similar configurations. 
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Figure 6. Fraction of energy generated by each of the available technologies for installation, for 

Pareto-efficient solutions found through the exhaustive method. The color of the indicators reflects 
the fraction of the annual energy production generated by the analyzed technology, relative to its 

primary output energy vector. The color scale represented by the color bar to the right of each graph 
has different values for each technology 

Multi-objective evolutionary optimization on weights (B) ensures a heterogeneous 
exploration of the Pareto frontier, with better results than the exhaustive method. The resulting 
frontier appears more complete and evenly distributed. Although this method still requires the 
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a priori definition of value range to assign to the weights, the use of MOEAs allows for the use 
of wider ranges, reducing the need for prior knowledge of the system. In fact, the ability of 
MOEAs to gradually evolve across their iterations to better explore the decision space in the 
search for interesting new non-dominated solution guarantees a more efficient use of the 
available computational resources. However, this method still requires prior knowledge of the 
system to define the weights feasibility spaces. 

Finally, the Pareto frontier extracted with the multi-objective evolutionary optimization of 
system configuration method(C) appears populated by configurations that are not fully 
optimized and devoid of entire areas explored by the other methods. Indeed, it appears that the 
method has a clear limitation in its high computational demand. MOEAs typically require 
multiple iterations before returning optimized solutions to the problem. At the start of the 
algorithm and for the initial generations, the system configurations are random or extremely 
suboptimal, but are nevertheless run through CALLIOPE to extract objective performances, 
with great expense of computational resources. This is necessary to allow the evolutionary 
algorithm to learn which configurations are more efficient and converge towards Pareto-
optimal solutions. However, depending on the complexity of the problem, these solutions may 
only be identified after a very high number of iterations. In comparison, in the previous two 
methods, the configurations returned by CALLIOPE for each weight set are all Pareto-efficient, 
with the only risk being their redundancy. Furthermore, the MPC method for optimizing 
management is the operation that demands the most computational resources in CALLIOPE. 
Therefore, removing the need to use MILP algorithm for planning optimization does not result 
in a significant reduction in computational load, which could have compensated for the 
increased number of iterations required. In summary, method C, although theoretically 
representing the most robust method as it does not require the use of weights to compare 
objectives, results relatively ineffective and inefficient compared to the previous ones, despite 
significantly more computational resources being allocated. 

In general, method B appears as the most effective for optimizing multi-objective energy 
systems. Thanks to evolutionary algorithms, it allows for optimal use of computational 
resources and uniform and heterogeneous exploration of the objective space. The main 
limitation of the method, namely the need for prior knowledge of the system to define the 
feasibility space of weights, is partially limited by the convergence speed of the algorithms, 
which allows for the definition of wider ranges. However, it is important to mention how 
method C goes beyond this limitation, and although it has proved ineffective in the case study 
examined, it could be effective for less complex systems with fewer decision variables. 

The different system configurations described in Figure 3 and Figure 4 show a high 
degree of variance in both the type and capacity of the technologies installed. This 
heterogeneity showcases the multiple trade-offs emerging among the objectives, and the 
relative importance of each technology according to the relevance attributed to each objective.  

As the main goal of this research was the identification and analysis of different multi-
objective multi-energy system configuration models, the methodologies were tested on a 
synthetic case study with data series taken for a single sample year. Naturally, when planning 
for a real case study, it becomes fundamental to include multiple years of data, as well as tools 
to consider and incorporate uncertainties in the analysis. Future developments in this line of 
research might focus on applying the identified paradigm found here to a real case study and 
analyzing the impact of climate, socio-economic, and technological uncertainties on the system 
and extracting optimal configurations to identify solutions that are not only optimal but also 
robust against sensitive inputs. A possible paradigm in this direction might be the one proposed 
by [36], which would allow the sensitivity of the optimization objectives to multiple 
uncertainty sources. New evaluation metrics, such as those presented in [37], can also could 
be introduced to identify optimal solutions that are resilient to uncertainties in the system and 
future changes. 
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CONCLUSION 
The transition from traditional energy systems to multi-energy systems is considered vital for 

achieving decarbonization goals. Multi-energy systems allow for more efficient use of available 
resources through greater flexibility derived from the integrated management of the entire system 
and interaction among different energy vectors through storage and conversion technologies. They 
are particularly suitable for addressing the challenges of massive integration of non-programmable 
renewable sources into energy systems and adapting to local resources. 

The integration of processes and energy vectors traditionally kept separate in these systems, 
however, makes planning and management particularly challenging. Therefore, to ensure efficient 
system configuration, the support of modeling tools that allow exploration of different alternatives 
and extraction of optimized solutions is necessary. 

Many of these models, often have a single-objective perspective, maximizing the monetary 
profit of the system, resulting from the influence of traditional energy system planning paradigms, 
which typically favored economic objectives as the single or predominant evaluation metric. The 
work contained in this paper aims to overcome this limitation and develop multi-objective 
planning systems for multi-energy systems by coupling the single-objective multi-energy model 
CALLIOPE with multi-objective optimal solution search tools.  

To this end, three different methods have been considered and explored and applied to a 
synthetic case study. The first method involves coupling CALLIOPE with an exhaustive weight 
sampling procedure, the second involves optimal search for relative weights through integration 
with evolutionary optimization algorithms, and the third uses these algorithms for both energy 
planning problem resolution and multi-objective evolutionary optimization of 
system configuration. 

All three methods return multiple and diverse configurations of the multi-energy system, 
which allows for the identification of the interplay between technologies and objectives. However, 
the performance indicators highlighted how the employment of multi-objective evolutionary 
algorithm for the weights space exploration (method b) constitutes the better methodological 
paradigm for optimizing energy systems planning and operation, given its ability to thoroughly 
explore the Pareto front and extract heterogeneous system configurations. 

Finally, all three methodologies have been designed to be easily integrated with other widely 
available MESs planning and management systems which use single-objective matrices to 
optimize the system configuration, such as PyPSA [26], H2RES [27] and MUSEPLAN [28] 
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NOMENCLATURE 
GHG Greenhouse Gas 
MES Multi-energy System 
MILP Mixed-Integer Linear Programming 
MOEA Multi-Objective Evolutionary Algorithm 
MPC Model Predictive Control 
OMOPSO Optimized Multi-objective Particle Swarm Optimization 
PM Particulate Matter 
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