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ABSTRACT

Energy prices have fluctuated significantl s like the COVID-19 pandemic
i g continued volatility. This study
nergy consumption of a smart energy
purpose, a genetic algorithm is applied to

explores how these pricing variations
management hybrid poly-generation

sensitivity analysis, comp vs. Critical cases in Spain. The results demonstrate a 23%
reduction in operationdd % decrease in energy importation under Critical
conditions, while dggi## s Mg peak periods reduced peak electricity costs by up to

59%. These find# ghlighg the 1mportance of adaptive, intelligent energy management
systems for redugi lhancing sustainability in volatile market conditions.

KEYWO

W&Crnetic Bio-inspired algorithms; Renewable integration, Energy management,
scenarios.

ficidt Cnergy management represents a major challenge, characterized by the complexity
derive m multiple factors, including the variability of natural resources, diversification of
energy sources, fluctuating demand, and the increasing integration of renewable technologies and
Electric Vehicles (EVs) as highlighted in [1]. Similarly, [2] discusses how the transition to
sustainable energy systems is compounded by similar challenges, with an emphasis on the
integration of renewable energy sources and the need for advanced energy management
strategies. In particular, the transition to a low-carbon energy system, as observed in the Nordic-
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Baltic region, exemplifies the complex interplay between different energy sources, demand
variability, and geopolitical contexts [3]. Consequently, the need for Microgrids (MG) and smart
grids has become imperative as the power grid and the electricity market undergo a gradual
transition from a centralized to a more distributed model to meet the current challenges [4].
Despite the advances made with the implementation of MG, ranging from coordinated control
strategies [5] to improvements in modelling [6], energy efficiency [7] and resource and demand
management [8], significant opportunities remain for innovation in terms of system optimization,
both in energy management and in equipment control, planning, and facility design [9].

In the field of strategies to improve these systems, methods have been investigated to optimize
the planning of the combination of generation sources, with a significant emphasis on the search
for scenarios of zero greenhouse gas emissions. For instance, a study on Benin's en sector

[10] demonstrates how integrating renewable energy sources, such as solar and
hydropower, can significantly reduce CO2 emissions while achieving higher rg nergy
penetration targets. Similarly, the evolution of power generation mixes glo ed
through system dynamics models, reveals the potential of clean energyj eeting
carbon neutrality goals [11]. Furthermore, the case of Ghana illust reasing
renewable energy penetration in the electricity sector can lead to g nhouse gas
emissions reductions, aligning with climate change mitigatio \ M 2T These studies

thoroughly analyse the impact of incorporating renewable ener: gy matrix, which
is important for guiding policies and implementing strategj the transition to more
sustainable energy systems more resilient to climate cha h such as [13] shows the
economic viability of using renewable technologies wh ring the optimal combination of
i droeWgtric storage, lithium batteries,

and EV batteries. Meanwhile, from an energy 14 4] emphasizes that energy savings
play a fundamental role in enhancing hybridgs? s, with energy efficiency serving
as a primary objective. This involves o 17119 use to reduce waste and maximize
system performance. Additionally, i g of implementing energy efficiency

tterns [15]. These studies highlight the need for
ific climates to maximize efficiency and reduce costs

nificant interest in applying computational intelligence
eration, optimization, and energy control challenges. For
instance, Artific etworks (ANN) combined with gravitational search algorithms
improve lo r sting accuracy [16], hybrid neuro-evolutionary methods enhance
wind poge§ outpuf mmeiction [17], and ANNs optimize catalytic processes for energy
iti BioJinspired algorithms, based on processes and patterns observed in nature, have

metaheuristics in optimization and prediction in a variety of contexts.
explored their application to improve the performance of renewable
ompared to traditional approaches, as in the case of Maximum Power Point
ntrollers using the Grey Wolf Optimizer (GWO) with lower curling effect, faster
settling time for each irradiation level, and improvement of the system response [ 19]. Furthermore,
comparative analyses have been performed between different optimization methods based on
nature-inspired algorithms, such as Particle Swarm Optimization (PSO) and GWO, in the
modelling of lithium-ion batteries [20], revealing remarkable enhancements in the model through
the terminal voltage compared to the non-optimized model, with superior performance through
the GWO. Also, [21] compares the performance of three bio-inspired algorithms, GWO, PSO,
and Genetic Algorithm (GA) in the tuning of DC-DC Boost Converter PID Controller, with good
overall performance after evaluating the system response under different input voltage and load
changes. Other studies have explored optimal energy management in smart microgrids,
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particularly in scenarios involving high penetration of EVs and distributed renewable sources,
utilizing hybrid approaches such as GAs and analytic hierarchy process [22].

On the other hand, proper energy management is necessary in the progress towards the next
stage of the energy transition. In this sense, it will be necessary that the household sector adapts
flexibly to align energy consumption with the highly variable production patterns inherent to
renewable energies [23]. Bio-inspired algorithms emerge as dynamic tools capable of addressing
the complexity of energy systems. Along these lines, several researchers have explored their
application in Hybrid Renewable Energy Systems (HRES) networks, developing methodologies
that integrate ANNs optimization to improve system reliability and efficiency through PSO [24].
In turn, other studies have used these algorithms to estimate the optimal amount of biomass
required in gasification plants to produce the necessary synthesis gas and cover the energf?demand
[25]. Even the efficiency of these approaches has been compared with [26] after implSgentang an

evolutionary game-theoretic approach for an energy management model, with et ts for
[27]. %
4

Despite the progress made, there are still unresolved challenges in this fig

d '
current approaches focus on optimizing the management of generated el ot
g U cstallishing a bi-

policy interventions in the European Union aimed at boosting tk
[28].

Therefore, an issue of utmost importance today in tf
energy management capable of adapting to the most

and EV charging) and energy use, mini
household in Valencia, Spain, is select

a demand, and a PV installation S and an EV are added to evaluate the proposed
hypothesis's feasibility further. odel is evaluated through a sensitivity analysis
under various electricity narios, including geopolitical conflicts, pandemic

status, and future projections. Also, two cases, referred
red to rigorously assess the model's robustness. Likewise,
act of external factors, such as global events like the COVID-
19 pandemic, on plfcnergy consumption patterns, demonstrating that lockdowns led to

significant i S8 grgy use at home due to lifestyle changes [29]. Such studies highlight
the need fordaptivg® management models that can respond to shifts in demand caused by
1 jrcunitances.

on of the proposed model shows significant improvements in the operational
t G, especially in the utilization of solar energy and batteries during Stable cases,
e adaptability of the algorithm in Critical cases. This points towards smarter energy
mana t that not only reduces costs but also improves the stability of the energy supply by
dynamically adapting to variable situations and reducing the carbon footprint. Hence, the main
objective of this work is to develop and validate an approach based on GAs through a sensitivity
analysis of electricity market costs, which addresses these shortcomings to improve the
operational efficiency of MG and advance the transition towards a cleaner and more sustainable
energy system. The proposed work is organized as follows: section 2 presents the methodology
with the system under study, and a description of the scenarios and cases considered, section 3

provides the results, section 4 refers to the discussion of this application, and section 5 outlines
the main conclusions and future work.




METHODS

The following section provides a detailed overview of the methodology used in this study.
Difterent software programs have been employed to conduct the research: FusionSolar has been
used to collect experimental data from the real installation, System Operator Information System
(ESIOS) has been employed for obtaining electricity market prices, Iberian Energy Market
Operator - Portuguese Hub (OMIP) has been used for future price projections, while MATLAB
has been employed to model the system under study and implement the GA.

In this section, the characteristics of the MG are presented in detail, the various systems
analysed, and the process of obtaining the experimental data. The configuration and adjustment
of the GA parameters are also described. Finally, the scenarios and cases simulated, and the

first data input step (stage 1), followed by the execution of the genets
concludes with the model evaluation stage (stage 3).
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N F igure 1. Methodology for the proposed optimized energy manager model

The 1nputs and outputs of the model are explained as follows.

System under study

The MG consists of a solar PV installation, domestic demand, an ESS, an EV, and a grid
connection that allows sending surpluses and receiving when it is not possible to meet the demand.
Figure 2 shows the energy flow directions in the MG.



Figure 2. MG under study

priority order:
1. Demand is met using the energy generated by the PV installati
2. If the energy produced by the PV installation is insuffici@
the ESS is called upon.
3. If both the PV installation and the ESS fail to meet§
from the grid.
4. Situations involving surplus energy generated b
ESS. The surplus is injected into the grid ale 11§
This process ensures a continuous balance in e ly alg

Photovoltaic model

Data obtained from a house located
installation. This residence hasa PV i wer of 4.2 kWp, consisting of two strings
of six solar panels of 350 Wp each , with an MPPT assigned to each string. The
solar panels are mounted wit f 205° and aN azimuth of 202°. The solar inverter
connected to these panels ha;
production optimally.

potent r implementing effective energy management strategies. Table 1 presents in detail the
classification of the equipment used in the installation and their respective installed power.

Table 1. Power of the considered loads

Measured average power in one hour [kKW]

Oil heater 1.55
Fix load Radiation heater 1.19
X Television 0.15

Fridge 0.08




Measured average power in one hour [kKW]

Microwave 1.21
Oven 2.39
Electric water heater 1.50
. Dishwasher 0.67
Variable load Washing machine 0.90
AC 2.80
Total 12.44
Contracted power 4.50

Energy storage system model

The ESS employed in this study is based on an installation located at the Reng
Laboratory of the Polytechnic University of Valencia (LabDER-UPV). This sys
of 24 lead-acid batteries, with a total energy storage capacity of 10.32 kWh. Egel
has a nominal voltage of 2 V. MATLAB software was used to model the E! s
(1), eq. (2) and eq. (3). This approach allowed an accurate representati
the context of the study, thus ensuring the results' reliability and accu

h ehaviour in

that max — Npat * Vbat (1)
Whpyee = Edischarge * Mg — Ecp * @)

€)

of the battery, n,,; is the number of
atteries capacity, Why,: 1s the battery
harge energy, Ecpqrge 1s the battery charge
energy, 14 is the dlscharglng b 1. 1s the charging battery efficiency and SoC is

the battery State of Dischar

proposed as a hy % Nor the'EV simulation, the vehicle used in [30], the Nissan Leaf, which
is a leading ¢ , especially in the European market where it has secured its position
a¢ls been taken as a reference. Since its introduction in 2010, global sales

prises two battery cells connected in series, which in turn are connected in
other cells, forming a battery module. A total of 48 battery modules are
eries to create the battery pack. Each battery cell has a nominal capacity of 32.5 Ah,

and configuration of the battery modules, the total rated voltage and capacity are 360 V and 24
kWh, respectively. The complete battery pack is divided into three sections. One section contains
24 modules positioned centrally within the pack, while the other two sections hold 12 modules
each connected in series, located on either side of the central section.

Eq. (1), eq. (2), and eq. (3) were employed to model the EV battery charging system. The EV
discharge profile was developed based on the EV battery discharge behaviour analysis presented
in [26] and the driving cycles described in [27]. Two distinct driving cycles, as illustrated in
Figure 3, were selected for analysis. The first driving cycle, shown in Figure 3 (a), represents
a weekend case characterized by recreational use. This cycle involves an extended journey of
46,210.07 meters, typical of non-working days. In contrast, the second driving cycle, depicted
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in Figure 3 (b), corresponds to a weekday case and represents a commuting journey. This cycle
involves a shorter and more routine distance of 14,085.53 meters, reflecting typical work-
related travel patterns on working days. This approach provides more variability to the
scenarios studied.
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introduced in June 2021 to encourage more efficient energy use by
ring valley hours and higher rates during peak demand periods. The PVPC

a employed inherently reflect both the major regulatory shift in 2021 and the minor
implemented annually. This methodological approach ensures that the analysis is
consistent with the actual market dynamics and regulatory framework over the study period
Before 2021, the PVPC tariff followed a simpler structure with two time periods: peak and
valley. The valley period generally covered nights and weekends when demand was lower, while
the peak period included daytime hours when electricity demand was higher. This change to the
three-period system was implemented to better reflect the fluctuating costs of electricity
production. It is important to take this distinction into account for the different simulated scenarios,
given the years in which each tariff structure was applied. The hours corresponding to each tariff
period are shown in Table 2. The abbreviation DHA in the referenced table corresponds to Two-
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period Time Discrimination, while TD refers to the Three-period Domestic Access Tariff. Both
abbreviations are derived from their original terms in Spanish.

Table 2. Electricity market periods for tariff 2.0TD and 2.0DHA

Period Days Time range
Tariff 2.0TD (from June 2021 onwards)

Peak Monday to Friday 10:00 - 14:00, 18:00 - 22:00

Flat Monday to Friday 08:00 - 10:00, 14:00 - 18:00, 22:00 - 00:00
Valley Monday to Friday 00:00 - 08:00
Valley Saturday, Sunday, and Holidays All day

Tariff 2.0DHA (before June 2021)
Peak Monday to Friday 12:00 - 22:00

Valley Monday to Friday 00:00 - 12:00, 22:00 -
Valley Saturday, Sunday, and Holidays All d

Optimization approach

domestic and EV
ed with the power

To improve the current MG presented, the GA is introduced
demand, and modify the supply source for both, by minimizing &€
grid for a relevant week, thus improving the energy managg@fgiNg

[ ‘a la

level of each solution, selection of individuals, breeding of tR€ select€éd ones, and creation of a

carefully adjust its parameters and
ghtexts and microgrid configurations.
e GA to address what is proposed in

operators to ensure the effectiveness of the
Table 3 details the specific parameter settj
this research.

The mutation and crossover rat
complete range of values, from

values have Dgn determined after a series of tests covering a
mifgnum Yo the maximum (0 to 1) with steps of 0.1. These
tests showed that a mutation rgte rO%dS the most effective results in exploring the search
space associated with the@o roblem. Figure 1 shows the optimization process

developed.
Ole 3. Parametrization of GA
Paramete unction Value
Objectiv fun Minimize PVPC costs.
) Depends on the operating time of the load and
Numb E js

oNyaria nvar EV.
) Ib ON switch time.
ub OFF switch time.
tQ¢n - 1:nvar
tion size - nvar
ufation rate mutation uniform 0.3
Crossover rate crossoverlaplace 0.7

Sensitivity scenarios

This section provides a comprehensive overview of the energy demand and climatic
conditions considered in this study, as well as an analysis of the various electricity cost scenarios
derived from market fluctuations.

Cases description. This study considered two simulated cases regarding total demand
consumption and resource availability: Stable (sunny, characterized by higher availability of solar
energy resources and lower energy demand) and Critical (cloudy, associated with lower




availability of solar energy resources and higher energy demand). Regarding energy consumption,
the daily average for the Stable case is 127 kWh, whereas for the Critical case, it is 164 kWh.

Concerning the classification of solar generation data into "sunny" and "cloudy" conditions
was established through an analysis of total energy generation values over a specified week. The
data indicate that the total solar generation for sunny days ranged from 203.28 kWh to 264.66
kWh, while cloudy days exhibited generation values between 72.21 kWh and 201.80 kWh.
Notably, the highest generation values were consistently associated with sunny conditions,
whereas the cloudy conditions demonstrated significantly lower output levels.

Electricity cost scenarios description. By analysing diverse scenarios, this study aims to
observe the potential implications of fluctuating electricity costs on the operation and op‘umlzatlon
of hybrid energy systems. Particularly, four relevant and different electricity cost scen
Spanish market are considered. These scenarios were defined as follows:

e War: This scenario reflects the period during which the impact of geop

significantly affected electricity costs in Spain (that is, the war betw&
Ukraine). During this time, costs surged to unprecedented le T

profound impact on electricity costs in Spain. In cont
decreased substantially, reaching notably low levels.
e BAU: This scenario represents a week of Septem

vulnerability of energy markets to external shocks. ‘
e (COVID: This scenario represents the period in which the ( %‘ pagflemic had a

on market prlces.

e OMIP 2030: This scenario incorporate
Spain in 2030. It reflects anticipate

and demand patterns, policy chan

Since the COVID scenario occ , the corresponding electricity tariff is
2.0DHA, while the remaining scenari to the 2.0TD tariff. The graphs representing
electricity costs are presented i . Th&@ data for the first three scenarios analysed in the
sensitivity assessment come figu tform of the electricity grid operator in Spain [32].
In contrast, the cost projedd 0 IP 2030 scenario were obtained from the Spanish
marke;nu operator [33]. g

[T T T T
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Figure 4. Comparison of electricity costs across different scenarios



Carbo dioxide emissions calculation

Regarding the calculation of reduced CO2 emissions, the value provided by [34] of 0.10
[tCO2eq./MWh] in the national system has been used to assess the impact of the proposed
hypothesis.

RESULTS

This section begins by showing the costs obtained, as this is the main objective of the study
and the sensitivity analysis. Then, the results related to energy consumption and CO2 emissions
reduction are presented, to conclude with an analysis of the computation time of the optimization
processes.

Sensitivity analysis by electricity costs

This section presents the electricity costs by case and scenario. The costs afg shoWg the
Base condition (before the implementation of the optimization algorithm) 3 L applfing the
optimization algorithm, referred to as the Optimized condition.

To assess the effectiveness of the model optimization and its perfo ndemdtferent cases

ts across various
scenarios, including War, COVID, BAU, and OMIP 2030. Thg WeéCd for both Critical
and Stable cases, displaying the baseline and optimized arison highlights the
differences in electricity costs between each scenario and th the optimization process

on cost reduction.
Table 4. Electricity costs under df eren s and optimization cases

Stable
Base  Optimized Cost reduction
% 3040€ 22.54€ -7.86€ -26%
-40% 3.92€ 219€  -1.73€ -44%
-19% 8.15€ 579€  -236€ -29%
-17% 346 € 282€  -0.64€ -19%

Critical

Base  Optimized

War 5893€ 50.49
COVID 7.17€
BAU 13.66 €
OMIP 2030 6.33 €

g the optimization model for each proposed electricity cost
pation shows that the scenario with the greatest impact from
e Critical case (with reduced availability of renewable energy), which

electricity costs
scenario. A

lementing the optimization model. These percentages highlight the cost savings

r each scenario, offering insight into the model's performance across varying cases.
1n greater detail how the electricity cost curves affect consumption costs by period,
the co onding calculations have been broken down and detailed in Table 5 for Critical and
Stable cases. In this way, it is possible to observe the distribution of costs in each of the tariff
periods: peak, flat, and valley. After the implementation of the model, it is possible to visualize
how the model shifts electricity consumption costs (therefore, demand and EV, and electricity
usage) towards the lowest cost periods. This analysis is carried out for each of the scenarios
considered, making it possible to evaluate the distribution of costs according to the different
weather and tariffs.

Table 5. Weekly avoided costs by period for different scenarios and cases: base vs. optimized
costs



Period Base Optimized Weekly avoided cost Weekly avoided cost by

by period period
Critical case
Peak 2474 € 11.78 € -12.96 € -52%
War Flat 5.17€ 7.67 € 2.50€ 48%
Valley 29.02€ 31.05€ 2.02 € 7%
Peak 5.97€ 243 € -3.55€ -59%
COVID - - - - -
Valley 1.19€ 1.90 € 0.70 € 59%
Peak 7.04 € 432€ 272 € -39%
BAU Flat 1.01€ 1.72 € 0.71 € 70%
Valley 5.60 € 5.05€ -0.55 €
Peak 337€ 1.73 € -1.65€
Cz)(l)\/?%P Flat 0.54 € 0.68 € 0.14 €
Valley 242 € 2.71€ 0.28 €
Stable case
Peak 1543 € 10.63 € -4.80 €
War Flat 2.32€ 3.65€ 1.32€
Valley 12.65€ 8.26 €
Peak 3.16 € 1.27€
COVID

Valley 0.76 € 092 €
Peak 420¢€ 239¢€
BAU Flat 0.68 € 1.16 €
Valley 3.28€ 2.24
Peak 2.00€ 1.1
Flat 033 €
Valley 1.14 €

OMIP
2030

Sensitivity analysis by enex
This section focuses on
scenarios. The objecti

@ ‘ nergy consumption patterns across different cases and

eakdown of energy import for each scenario, including War,
. This table contrasts the baseline consumption with the optimized
gh the implementation of the optimization algorithm. Comparing the

ns.

le 6. Energy imports under different scenarios and optimization cases, in [kWh]

Critical Stable
Base  Optimized Costreduction  Base Optimized Cost reduction
War 1218.18 1063.16  155.02  13% 643.60  477.65 16596  26%
COVID 1218.18 1049.44 168.74 14% 643.60 465.46 178.14  28%
BAU 1218.18 103738  180.80 15% 643.60  469.66 17394  27%
OMIP 2030 1218.18 1039.16  179.02  15% 643.60 517.70 12590  20%

In the case of Table 6, it is important to note that, unlike Table 4, the values for imported
energy in the baseline model (without optimization) remain constant across all scenarios. This
uniformity arises because the consumption pattern is identical in the baseline model for all



scenarios. The differences in imported energy values only manifest after the application of the
optimization model. Conversely, in the table related to costs, varying values were observed in the
baseline model. This variability is attributable to the specific cost curve scenario being analysed,
where each scenario presents a distinct cost structure. Thus, while the energy import values are
consistent in the baseline model, the cost values fluctuate based on the underlying scenario,
showing the model's ability to reveal economic insights as a function of the operating context.

Following the implementation of the optimization algorithm, a marked shift in electricity
imports can be observed across all scenarios. This shift is particularly evident in the peak periods
from Table 7, where the optimization model effectively redistributes energy consumption, thereby
reducing the reliance on imported electricity.

Table 7. Weekly energy imports by period for different scenarios and cases: base vs!
costs, in [kWh]

Weekly avoided cost Weg
by period
Critical case
Peak 481.47 224.83
War Flat 113.70 159.88
Valley  623.01 678.45
Peak 817.73 335.95

COVID - - -
Valley  400.45 713.49
Peak 481.47 281.85
BAU Flat 113.70 161.44

Valley  623.01 594&
Peak 48147 5
OMIP
o Flat 11370 23

Period Base  Optimized

Valley  623.01 .58
e case
20444 -86.36 -30%
3 24.64 42%
89.58 -104.23 -35%
171.28 -266.86 -61%
294.18 88.71 43%
149.83 -140.67 -48%
101.59 42.30 1%
218.23 -75.58 -26%
172.90 -117.60 -40%
109.39 50.10 84%
Valley  293.81 23542 -58.39 -20%

Sensitivity analysis by carbon dioxide emissions saved

This section presents an analysis of the CO2 emissions saved in terms of metric kilograms of
CO2 equivalent (kgCO2eq) under various scenarios and cases. Table 8 summarizes the reductions
in CO2 emissions achieved through the implementation of the optimization model for different
scenarios, including War, COVID, BAU, and OMIP 2030. The negative values in the table
indicate a decrease in emissions relative to the baseline conditions, highlighting the effectiveness
of the optimization process in achieving lower carbon footprints.

Given that this analysis focuses on weekly emissions reductions, the values are presented in
[kgCO2eq] rather than the more commonly used metric tons of CO2 equivalent [tCO2eq]. This



choice reflects the smaller scale of weekly reductions, providing a more precise representation of
the impact of the optimization algorithm over shorter timeframes.

Table 8. Comparative of CO2 emissions saved in [kgCO2eq]

Critical Stable

War 15.50 16.60

COVID 16.87 17.81

BAU 18.08 17.39

OMIP 2030 17.90 12.59

Computational time performance

The computational times required for each optimization process under diff cs and
scenarios are presented in Table 9. These times offer insight into the per the
optimization algorithm. As observed, the computational times vary across sg the War

62 minutes, respectively. In contrast, the Stable cases consistently
time, with all scenarios except BAU showing times around
computational effort is likely related to the increased complexif

variability in
lectricity demand

ases and scenarios, in [min]

Stable
War 23
COVID 23
BAU 16
OMIP 2030 23
DISCUSSION
The implementatigQ W Zation algorithm in this study yielded substantial cost

disruptions, the optimization process resulted in a 26% reduction in
fically, the net weekly costs before optimization were approximately 30.40

ces might otherwise inflate costs. Similarly, in the BAU scenario, representing
contemporary energy market conditions, a cost reduction of 29% was also observed. This
consistency across different scenarios under the Stable case suggests that the algorithm has a
robust capacity to optimize energy usage by redistributing energy consumption to less expensive
periods, even when the external market forces are less extreme compared to the War scenario. In
this case, costs decreased from 8.15 € before optimization to 5.79 € post-optimization. This
reduction, while lower in absolute terms compared to the War scenario, is still significant,
particularly considering that the BAU scenario operates within a more predictable market
environment. The algorithm’s effectiveness in both the War and BAU scenarios indicates that the



benefits of optimization are not confined to periods of market volatility, but also extend to more
stable and regular market conditions.

However, while the results under Stable cases are notable, it is under Critical cases that the
optimization process showcases its full potential. Critical cases simulate scenarios where
renewable energy availability is severely constrained, often due to adverse weather patterns or
other external pressures that limit the system's ability to rely on clean energy sources. In such
situations, the reliance on imported electricity increases, and without optimization, the system
would face significantly higher costs. Under these more challenging conditions, the optimization
algorithm proved to be exceptionally effective, yielding even greater cost reductions than under
the Stable case. Concermng, the COVID scenario, for instance, which represents a period marked

QAL these

costs dropped to 2.43 €. This reduction shows the model's capacity to adapt to ;%‘ ined
1 . i Q c C = C '

scenario, where renewable energy is less accessible, and electricity import % 1gHeT. In this

€ to 11.78 €. This reduction, though slightly lower in percentage tg % savings achieved
i ch ¢ e cost in the War

on market forecasts, presents another interesting case fo nder Critical cases in this
scenario, a reduction of 49% was observed in peak pegjod ¢ with cOsts falling from 3.37 € to
1.73 €.

The analysis of energy imports is also imp
the reliance on external electricity supplies a
case, the optimization algorithm resultedd
where renewable energy sources are T

Ashows the model's ability to reduce
ed scenarios. First, under the Stable
10ns in energy imports, in situations
the War scenario, for instance, energy

hieved a 27% reduction in energy imports under
the Stable case, lowering impo : Wh. Furthermore, the results from the COVID

where energy imports y : 8%, to 465.46 kWh. Although the reductions are less
C d under the Critical case, this still represents a significant

availability gPmen8gable §netgy is more restricted. In these scenarios, the optimization model
demonstigte eifntial by significantly reducing energy imports during peak periods,
and for electricity are at their highest. For example, in the COVID scenario,
& peak periods were reduced by 59%, dropping from 817.73 kWh to 335.95
in the War scenario under the Critical case further validate the optimization
aptability. Peak period imports were reduced by 53%, from 481.47 kWh to 224.83

g significant drop. It is also worth noting the results in the OMIP 2030 scenario, which
projects future energy market conditions. Under the Critical case, the optimization model
managed to reduce peak period imports by 50%, from 481.47 kWh to 241.85 kWh.

Beyond the raw cost reductions, it is important to recognize how the optimization algorithm
shifts energy consumption patterns, especially in terms of reducing peak period costs and
reallocating demand to less expensive times of day. For instance, across several scenarios, it was
observed that while peak period costs decreased significantly, there was a slight increase in flat
and valley period costs, as the optimization process redistributed energy demand. This reallocation
is particularly important as it demonstrates the algorithm’s capability to smooth out energy
consumption, preventing spikes during high-cost periods and spreading demand more evenly
throughout the day.




Furthermore, the optimization model presented in this study also shows a reduction of CO2
emissions since it is directly linked to the energy imports reduction. In scenarios characterized by
the Critical case, the optimization process was able to achieve reductions in emissions by
redistributing energy use away from peak demand periods, helping to decrease the overall
environmental footprint. In more Stable cases, for instance, in the BAU and OMIP 2030 scenarios,
the optimization model continued to demonstrate its relevance. Although the availability of
renewable energy was higher, leading to inherently lower baseline emissions, the optimization
process still managed to deliver meaningful reductions in CO2 emissions.

Concerning the computational times for the optimization algorithm, significant variations
were observed across scenarios, reflecting the complexity of energy management under different
cases. In the Critical case, such as the War and BAU scenarios, computation times re
60 minutes due to the need to manage limited renewable energy availability anduc
demand. Conversely, under Stable cases, computation times were considerably 6V ically
around 23 minutes, as the optimization process benefited from more adaptative e % .

>

characterized by
fucted across four

CONCLUSION

This study presents an analysis of a genetic algorithm framework ¢
management in hybrid poly-generation systems, focusing on a sjgm

distinct scenarios: War, COVID, BAU, and OMIP 2030, of market conditions
and price dynamics. The analysis was further contextua mining both Stable and
Critical cases, the former with high resource availab er energy demand, and the latter
with low energy availability and high energy d dcedure highlights the model's
adaptability and effectiveness in diverse opera

The results show substantial cost reductj anagement, particularly under the

Critical case where renewable energy av ited. For instance, during the COVID
scenario, the optimization algorithm a % reduction in costs during peak periods,
showcasing its capability to managge es effectively in times of crisis. Its ability to
reduce energy imports by shiftig tiofi patterns away from peak periods and into valley
periods contributes to a more nt energy system that is better equipped to handle
fluctuations in energy supf . Additionally, the model contributed to significant
reductions in CO2 ¢ orcing the dual benefits of economic efficiency and

it effectively add
enhance effiffe
computan®l procegscS®o enable real-time applications, thus maximizing the potential for timely
s rgfluctions.

e study provided valuable insights into the implementation of advanced

The computatgFffigc Mmec of the algorithm varied across scenarios, indicating that while
y

s through simulations in significant contexts contributes to the ongoing address on
energy practices and highlights the importance of resilient energy infrastructures
against volatility in the electricity market.
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NOMENCLATURE
Symbols
C Battery capacity [Wh]
E Energy [Wh]
Wh Battery energy [Wh]
n Efficiency
SoC State of charge
%4 Voltage [V]
Subscripts
bat battery
C charge
d discharge
max maximum
Abbreviations
ANN Artificial Neural Network
BAU Business as Usual
DR Demand Response
ESIOS System Operator Information System
EV Electric Vehicle
GA Genetic Algorithms
GWO Grey Wolf Optimizer
HRES Hybrid Renewable Energ
LabDER-UPV Renewable Energy Lab oithe BPlytechnic University of Valencia
MG Microgrid
MPPT Maximum Power oMt Trackin
OMIP Iberian Energy d#fark: eraor - Portuguese Hub
PSO Particle Sw gnizat

PV Photovolt

PVPC Volu all Consumers

SoC State
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