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ABSTRACT 

Soluble-lead-flow-batteries suffer from dendrite formation and thus shorting of the 

electrodes. Utilizing hexadecyltrimethylammonium-ion as an additive to the electrolyte, 

as well as periodic electrochemical renewal of electrode surfaces, the problem of dendrite 

formation has been eliminated. Laboratory scale cells have been designed and 

constructed that were able to cycle for more than 7,000 full cycles at 100% depth of 

discharge without intervention to the system. These cells have very high coulombic 

efficiencies of more than 97%, as well as energy efficiencies of 70% and greater for each 

individual cycle. The strategy of in situ renewal of electrode surfaces at certain cycle 

intervals allows these cells to be reconditioned and start with new electrode surfaces each 

time such a maintenance is performed. Thus, these cells can be reset to their starting 

condition with each of these maintenance cycles. 
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INTRODUCTION 

Electric energy harvested from solar, wind or hydropower is acknowledged to have 

little impact on the earth’s climate and should therefore be utilized in a preferred manner 
to electricity obtained from combustion of fossil fuels with regard to its impact on CO2 

emission and sustainability. However, due to the fluctuating and unpredictable nature of 

these sources, energy obtained in such a way needs to be stored in order to level out 

periods of low yields. Until storage systems are widely implemented, the electric grid still 
is very dependent on energy obtained from fossil fuels to maintain its stability [1]. 

Such storage facilities need to be able to have large capacities, high achievable cycle 

numbers and thus long operation times, while being able to cycle to low depths of 

discharge, and all at a reasonable cost. As electrical energy cannot be stored as such, 
except in capacitors, it generally has to be converted to some other form of energy in 

order to be stored and retrieved when needed. One method of storage is electrochemical 

storage, as employed in water-electrolysis or secondary batteries. 
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Currently, lead-acid batteries are being widely used for residential storage of power 

from Photovoltaic (PV) plants in the range of up to several kWh. While having an 

eminently low price and thus being very economic at small scales, their limitation in 

cycle life performance makes them non-ideal candidates for larger scale applications 

such as grid-stabilisation plants. Due to the lack of deep discharge ability and the rather 

short life of individual cells, such a system tends to have an increased service cost, 

elevating the price significantly. Soluble-Lead-Flow-Batteries (SLFB) are promising 

candidates for these large scale applications, as they solve many of the shortcomings of 

lead-acid batteries, such as poor deep cycle capability, low overall cycle life performance 

and high maintenance costs [2]. In addition to that, SLFB systems tend to be highly 

economic, they have an easy chemistry with only a single electrolyte and thus have a 

great improvement on energy density compared to other Redox-Flow-Battery (RFB) 

systems. As an ecological benefit, the methanesulfonic acid used in these batteries is non 

oxidising and has a high degree of biodegradability [3]. However, besides adhesion 

issues of lead dioxide on the positive electrode [4] as a common failure mechanism, lead 

has a tendency to deposit in a dendritic crystal form, which may eventually short the cell 

and require regeneration cycles for the cell to regain its performance. These dendrites 

have to be minimized in order for SLFB systems to enter the market of energy storage 

systems. It has been shown by the group of Meng et al. [5] that 2,000 cycles are possible 

in a laboratory beaker cell, however, these results have not yet been transferred to a flow 

cell. By adding suitable additives to the electrolyte and employing advanced charging 

techniques, as well as periodic renewal of electrode surfaces, laboratory flow-cells with 

high cycle numbers are shown to be feasible and thus smooth the way for economic and 

efficient energy storage systems. For examinations of deposit qualities, deposits formed 

from lead electrodeposition were characterized by Hull-cell experiments and Scanning 

Electron Microscopy (SEM), whereas full cell experiments were performed in laboratory 

scale modular flow cells, designed and constructed solely for this purpose. These 

flow-cells have an active surface area of 3.8 cm2 for each electrode respectively and are 

cycled at 20-40 mA cm−2 at 100% DoD. Additionally, periodic renewal of electrode 

surfaces has been implemented by fully stripping both electrodes to 0 V. In these 

laboratory scale prototype setups, more than 450 full cycles were achieved at  

40 mA cm−2, demonstrating the state of SLFB technology. 

Flow-battery-systems 

RFB, also named flow-batteries, are one promising approach of converting electrical 

energy to chemical bonding energy, so that the energy may be easily retrieved when 

needed with high efficiencies of up to 100%. While classical batteries contain their active 

masses within the battery housing, their power and capacity are directly linked to each 

other. Power is determined by the active surface area and maximum current density of the 

electrode interface (separator between the two active masses), capacity is determined by 

the amount of electroactive species within the electrodes, which correlates directly to the 

thickness of the electrode. The inherent design constraints of batteries allow for very little 

variation of one parameter without affecting the other. Flow-batteries, however, consist 

of an electrochemical cell or rather a series (stack) of cells connected in a bipolar 

assembly (each cell is connected to its adjacent cell by means of an electrically 

conductive bipolar plate), employing a certain active surface area responsible for power, 

while the active masses are usually dissolved in an electrolyte and being stored within an 

external container. During charge or discharge of the system, fresh electrolyte is fed to 

the cell by means of pumps at an appropriate flow to allow electrochemical reactions at 

the electrode surfaces and at the same time removing reaction products. Such a system 

allows for much easier scaling of power and capacity as both variables may be scaled 

fully individually within a large range. Current flow battery systems are mostly based on 
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vanadium compounds dissolved in sulfuric acid electrolyte Vanadium-Redox-Flow 

Battery (VRFB). Due to the relatively low solubility of vanadium-ions in the electrolyte, 

as well as the need for two separate electrolytes, each with its own pump and storage 

container, for the anode and the cathode, such systems are rather bulky and have a 

correspondingly low energy density of 20-25 Wh/L [6]. Additionally, for these systems 

in order to work properly, an ion exchange membrane is needed to keep the two 

electrolytes separated from each other, which adds further complexity and cost to the 

system. 

 

Soluble-lead-flow-batteries.  This type of flow-battery, also referred to as all-lead-flow 

battery, describes a form of a hybrid RFB system. While for most RFB systems all active 

masses are in a solvated state within the corresponding electrolyte at all times, a hybrid 

RFB system differs significantly as at least one of the electroactive species is being 

deposited onto the electrode substrate within the electrochemical cell. For an SLFB 

system, both active masses are plated onto the electrodes to form a solid film during 

charge of the battery, namely lead (Pb) on the negative and lead dioxide (PbO2) on the 

positive electrode. During discharge, both active masses are oxidised and reduced, 

respectively to their soluble form (Pb2+) and dissolved within the Methanesulfonic Acidic 

(MSA) electrolyte. Since the surface of the electrochemical cell, opposed to other RFB 

systems, also plays a role in determining the capacity of the system, power and capacity 

may not be scaled fully independently from each other. However, there is still a lot more 

variation regarding different plating thicknesses for different use cases than for classical 

battery systems. The SLFB system has been extensively researched and described by 

Pletcher et al. [7-15] and there were prototypes built and tested in the past [14]. Still some 

major problems have not yet been overcome, so that this system is not ready for the 

market yet. SLFB, however, is a very promising candidate for a means of energy storage, 

as it has some significant benefits compared to other RFB Systems. For one, an SLFB 

system only needs a single electrolyte for both electrode reactions. Therefore, only one 

electrolyte reservoir, one pump and one set of pipes/tubing is needed (Figure 1). This also 

means that an ion exchange membrane or separator is redundant for such a system which 

significantly eases the system design and reduces the footprint by up to a factor of 50% 

compared to other RFB systems. In addition, the overall cell reaction involves a 2 

electron transition as seen in eq. (1), which further increases energy density. As the active 

species has a very high solubility, an electrolyte of 50% Pb MSA (commercially 

available from chemical suppliers) has a theoretical energy density of more than  

180 Wh/L. A more practicable electrolyte containing 1 mol/L Pb, still has 86 Wh/L, 

which is more than two times the energy density of a single VRFB electrolyte and more 

than four times that of a VRFB system needing two electrolytes. 
 

 
 

Figure 1. Schematic diagram of a SLFB-cell 



Lanfranconi, M., Lilienhof, H.-J.,  

All-Lead-Flow-Batteries as Promising Candidates ... 

Year 2019 

Volume 7, Issue 2, pp 343-354  
 

Journal of Sustainable Development of Energy, Water and Environment Systems 346 

2Pb�� + 2H�O  

��
�����
�⎯⎯⎯⎯⎯⎯⎯⎯�

   ������    
�⎯⎯⎯⎯⎯⎯⎯⎯�  Pb + PbO� + 4H�    �� =  +1.544   (1)

MATERIALS AND METHODS 

All experiments were performed in a lab scale, using a battery tester BT-G-501 from 

ARBIN Instruments for full cell experiments and a battery test system from BaSyTec for 

pulse plating experiments. Full cell setups consisted of modular cells machined from 

acrylic glass (PMMA) with EPDM-rubber gaskets and Polypropylene (PP) fittings 

equipped with Polyvinylchloride (PVC) tubing (Figure 2). As a means of electrolyte 

circulation, a Watson-Marlow peristaltic benchtop pump was used with flow rate set to 

approx. 44 ml/min. All full cells were cycled at 20 mA cm−2 or 40 mA cm−2 respectively, 

for both charge and discharge. End of charge was determined by a certain capacity 

(20 mAh cm−2) and end of discharge by a certain potential (1.1 V) (Table 1). 

Characterisation of additives was performed using a Hull-cell and applying a current of 

5 A for 90 s. As a counter electrode for lead deposition experiments, a pure lead cathode 

was used (Table 2). All experiments were performed at room temperature of 

approximately 295 K. SEM pictures were taken using a HITACHI tabletop microscope 

TM3000. Electrolyte composition for all experiments was 1.0 mol/L 

lead-methanesulfonate with 0.7 mol/L methanesulfonic acid added as described by  

Meng et al. [5]. 

 

 
 

Figure 2. Acrylic test cell with electrolyte inlet at bottom and outlet at top  

(copper current collectors were used to connect carbon compound electrodes) 

 
Table 1. Summary of experimental conditions for full cells 

 

Flow Current density [mA cm−2] End of charge [mAh cm−2] End of discharge [V] 

44 mL/min 20-40 20 1.1 

 
Table 2. Summary of experimental conditions for Hull-cell experiments 

 

Stirring [rpm] Current [A] Time [s] Counter electrode 

450 5 90 Pure lead 

Lead electrodeposition 

Metal electrodeposition is widely utilized and procedures are very well known and 

documented. One very common phenomenon during lead electrodeposition is dendritic 
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growth, which is one major failure mechanism not only for lead-acid batteries, but also 

for zinc-air or lithium-ion batteries. It has been shown that lead deposits in its dendritic 

form when the growth rate is limited by the diffusion of ions from the solution to the 

interface [16]. Local depletions of lead ions are very difficult to avoid, even with a very 

controlled and intense flow of fresh electrolyte to the cell. This is the case as the electrode 

itself changes its shape during electrodeposition and thus a functional flow field is rather 

difficult to design. Especially under the conditions of current densities of more than  

40 mA cm−2, which are desired for economic use of SLFB cells, local imbalances of the 

electrolyte concentration can occur quickly, leading to dendrite formation. Dendrites in a 

SLFB cell not only can penetrate the inter electrode gap and cause short circuits between 

active masses, but also these dendritic crystals do not adhere well to the electrode surface 

and may be flushed from the cell and accumulate in the reservoir. Therefore, these 

particles may not be available for the subsequent discharge reaction. Such an imbalance 

between the two active masses lead to an unbalanced build-up of active masses on one of 

the electrodes and thus eventually to cell failure.  

 

Additives.  A variety of additives are known to have the ability to suppress dendritic 

growth. However, due to the function of such additives, this always comes at the cost of 

efficiency. This has to be kept in mind particularly when utilizing such additives for a 

battery, where efficiency is a key factor. There is a variety of additives known and 

utilized in the lead electroplating industry to deposit lead as shiny coatings for electronic 

components such as solder pads. Commercial lead electroplating solutions, however, 

may cause problems in SLFB systems, such as strong inhibition of the positive electrode. 

As industrial electroplating focuses on the bare metal or its alloys, deposition of oxide 

layers is usually not desired. Indeed, industrial electroplating baths usually even include 

reducing agents, which may react with the positive electrode during its plating and under 

certain circumstances even completely inhibit PbO2 electrodeposition. Consequently, 

these solutions are of little use for SLFB systems and new dendrite inhibitors have to be 

found. One major concern of such additives indeed is the presence of the PbO2 electrode 

in the cell, as PbO2 is known to be a strong oxidizer for organic compounds, while the 

organic additive is oxidised, the PbO2 electrode is being reduced and thus consumed.  

The additives necessary for deposition of smooth metallic layers are called expanders and 

brighteners. Expanders such as lignin-derivates or succinic acid are commonly employed 

in lead-acid batteries to ensure an even crystal growth of lead during charge. They have 

an effect that is more related to shifting the crystal size from growth of larger crystals to 

smaller, well distributed crystals and not so much inhibition of dendritic growth as such. 

Nevertheless, these expanders work well in SLFB cells to maintain an even crystal 

growth and thus inhibit the creation of large crystals that are prone to dendritic growth. 

Pletcher et al. [11] have performed an extensive research on additives for SLFB cells and 

identified a few possible candidates that are very suitable to create smooth and even 

deposits for lead. From the selection presented, however, the best solution seems to be the 

use of Hexadecyltrimethylammonium (HDTMA) cations, as these help to form well 

adhering layers with high coulombic efficiencies of 93% at 20 mA cm−2, while compared 

to Lignin and Triton X-100, HDTMA performed in a similar way, but it is not as easily 

oxidized by the PbO2 present in the cell. For an economic operation of a cell, however, at 

least a current density of 40 mA cm−2 is desired. 

 

Pulse plating.  Pulse plating is another approach of reducing dendritic growth by 

applying a short pulse of current (TON), followed by a period of rest (TOFF), and 

sometimes even a short discharge (TDISC). The total time is described as TTOT (eq. 2).  

By applying for example a pulse with TON = 100 ms followed by TOFF = 200 ms the 

electrodes are being allowed some time to equilibrate in between the current pulses, thus 



Lanfranconi, M., Lilienhof, H.-J.,  

All-Lead-Flow-Batteries as Promising Candidates ... 

Year 2019 

Volume 7, Issue 2, pp 343-354  
 

Journal of Sustainable Development of Energy, Water and Environment Systems 348 

reducing polarisation of the electrodes and allowing diffusion as well as convection of 

ions to the electrode surface. The term duty cycle is being used for a factor of the applied 

current TON vs. the total pulse duration TTOT as shown in eq. (3): 

 

!"#" =  !#$ + !#%% + !&'() (2)

 

Duty cycle =  
!#$

!"#"

[%] (3)

 

As local ionic depletions are one of the major causes for dendritic growth [16], giving 

the solution time to replenish in between short charge pulses is a promising approach for 

dendrite inhibition. However, it has to be borne in mind that pulse charging is electrically 

much more demanding than a constant current charge as much more sophisticated charge 

algorithms and electrical components are being utilized. Another factor to consider is that 

the same overall capacity still is to be applied within the same timeframe in order to have 

a beneficial effect. Thus, the pulse currents need to be a multiple of the currents applied 

for a constant charge. For example, a pulse with TON = 100 ms and TOFF = 200 ms and a 

corresponding duty cycle of 33.3% needs to be at least three times the current of the 

equivalent constant charge current. There is also the opportunity of a short polarity 

reverse, called TDISC during which the electrodes are discharged during a very short time 

interval. This strategy may be beneficial for electrode structures that are very prone to 

dendrite formation, as it increases the anti-dendrite effect. Since dendritic crystals are 

usually closer to the counter electrode, they generally have a lower ionic resistance than 

the bulk electrode and thus they can be discharged preferably to the bulk electrode.  

Such discharge pulses usually smooth out very dendritic structures, but also further lower 

the duty cycle and increase pulse current demands. The duty cycle calculated from a 

pulse algorithm including a discharge, may be described by eq. (4), given that the current 

of TDISC is equivalent to TON but only reversed in polarity: 

 

Duty cycle =  
!#$ − !&'()

!"#"

[%] (4)

 

Cell efficiency.  For electrochemical cells, efficiency is one of the most important 

factors. Efficiency not only directly affects the amount of energy that can be stored and 

retrieved from a battery, but also any loss in efficiency is usually emitted by the system in 

terms of heat. While an increasing temperature of the battery can negatively affect 

performance, it can, for some systems, even create a hazard of thermal runaway.  

This may be the case when an increase in temperature lowers efficiency and thus emits 

more heat that cannot be removed from the system, until a critical temperature is reached 

and the system catches fire or even explodes. Efficiencies of electrochemical cells are 

usually calculated using three different characteristics. Coulombic efficiency takes into 

account charge transfer ratio between discharge (Q) and charge (Q0) reaction: 
 

5) =
6

6�

 (5)

 

Voltaic efficiency, which takes into account potential ratio between discharge (U) and 

charge (U0) reaction: 

 

57 =
8

8�

 (6)
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and energy efficiency, which is a combination of coulombic and voltaic efficiency, 

resulting in the relation of overall energy between the discharge (W) and charge (W0) 

reaction: 

 

59 =
:

:�

 (7)

RESULTS AND DISCUSSION 

It has been shown by Hull-cell experiments (Figure 3), that without the use of 

additives, lead coatings may be deposited up to a current density of approx. 75 mA cm−2 

in a non-dendritic way. Above these current densities, clearly dendritic crystals were 

observed. The addition of 5 mmol/L HDTMA to the electrolyte increases the 

non-dendritic current density to more than 250 mA cm−2. Dendritic growth then is only 

seen on the very edge of the Hull-cell sheet, where not only extremely high current 

densities are achieved, but also edge effects play an increasing role. In addition, the 

deposit quality seems to be considerably enhanced, even at lower current densities, 

leading to a matte and uniform lead deposit. This leads to the conclusion that HDTMA is 

a very suitable brightener for the use in SLFB cells. 

 

 
 

Figure 3. Comparison of Hull-cell experiments where: is a cell without (a) additives and is a cell 

with 5 mmol/L HDTMA added to the electrolyte (b) (the shown scale is in A dm−2 as usual  

for electroplating) 

 

In full cells, according to Hull-cell experiments, uniform deposits should be obtained 

without the need of any additives at current densities of up to 40 mA cm−2 (Figure 3a). 

Full cell experiments, however, showed that it was impossible to run a cell at 40 mA cm−2 

as dendrites would short the cell within the first few cycles. Even at 20 mA cm−2 which 

was chosen as an alternative, dendritic structures were formed very early during cycling 

experiments. Usually, these dendritic structures would accumulate over as few as 20 

cycles and short the cell, leading to a cell failure. It can be seen from the cycle diagram of 

a full cell at 20 mA cm−2 with charge duration of 1 h and discharge to 1.1 V (Figure 4) 

that dendrites develop starting in cycle 16 (29 h), creating shorts and discharge periods 

getting significantly shorter after cycle 22 (40 h). The relation of the charge capacity vs. 

the very short discharge capacity shows that most of the charge energy is consumed by 
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the current flowing through the dendrites shorting the cell, and that there is only very 

little energy being converted to Pb and PbO2, as it is shorted out. Analysis of the cell after 

cycling [Post Mortem Analysis (PMA)] shows heavily dendritic lead deposits leading to 

shorts (Figure 5). The fact that dendritic growth within the full cell develops, despite the 

Hull-cell experiments predicting non-dendritic deposits, is being attributed to the 

non-optimized flow pattern within the test cells being used. Possibly the very basic 

inlet/outlet design in combination with the cylindrical cell used, promotes stationary areas 

within the cell where depletion of electrolyte occurs, leading to dendritic growth. 
 

 
 

Figure 4. Cycle diagram of cell cycled at 20 mA cm−2 with 1 h charge and discharge to 1.1 V, after 

22 cycles (40 h), discharge periods get significantly shorter and charge potentials show 

micro-shorts (visible as drop in potential), leading to the conclusion that the cell is shorted due to 

dendrites (cycling was performed over a period of 58 hours) 

 

 
 

Figure 5. Dendritic structures on negative electrode after 33 charge and discharge cycles  

(shown in Figure 4) 
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An equivalent cell with the addition of HDTMA as an additive, was cycled for a 

period of more than 4,000 hours and efficiencies were calculated for each cycle. The cell 

shown was cycled for more than 7,000 cycles at a current density of 40 mA cm−2 but with 

the same capacity, so charge duration was 30 minutes. After an initial formation phase of 

approx. six cycles, voltaic and energy efficiencies for the cell are usually between 70% 

and 80%, whereas coulombic efficiencies are usually above 90%. Once the cell has 

stabilized after approx. 40-50 cycles, coulombic efficiencies rise to even more than 97% 

(Figure 6). This is especially notable, as Pletcher et al. [11] have determined the 

coulombic efficiency of a cell with HDTMA to be at 93% for a current density of  

20 mA cm−2. However, it is still unclear what happens during that initial stabilisation 

phase. The pronounced spikes in voltaic efficiency every 100 cycles are due to electrode 

stripping and reconditioning in order to remove accumulated deposits from the electrode 

surfaces by deep-discharging the cell to 0 V. There is one additional spike in energy and 

coulombic efficiency visible at 290 cycles, which most likely is related to an operating 

error during testing. The strategy of stripping the cell after a specified number of cycles 

allows the cell to theoretically run for an infinite time, as the electrode surfaces are 

renewed each time a stripping reaction is performed and the cell restarts from its initial 

configuration. From a diagram showing a selection of the individual cycles (Figure 7), it 

can be seen that there is virtually no change in charge potential once the cell has 

stabilized to cycle 7,000. There is a slight deviation in discharge behaviour from cycles 

prior to 1,000 and cycles after 1,000. This also explains the shift in potential- and energy 

efficiency, observed in Figure 6. The cell had to be eventually stopped after 7,012 cycles, 

as one of the electrodes was not completely inert and subject to corrosion. In order to 

achieve the highest possible adhesion of anode active mass onto the electrode substrate, 

antimonial lead was chosen for an electrode material, as adhesion of lead on lead is 

expected to be superior to most other materials. However, antimonial lead is not fully 

corrosion resistant to MSA electrolyte and this has led to some corrosion effects, leading 

to penetration of electrolyte through the electrode and thus a leakage of the flow-cell. 
 

 
 

Figure 6. Calculated efficiencies for each cycle from 1 to 7,000, Coulombic efficiencies are 

usually beyond 90%, whereas voltaic and energy efficiencies are usually greater than 70%  

[eq. (5-7)] 
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While this cell does not include pulse plating yet, it is expected that the performance 

can be further improved by utilizing pulses of 60 mA cm−2 at a duty cycle of 1/3 

(TON/TOFF = 100 ms/200 ms). Experiments on pulse plating have shown that this is a 

favorable pattern for lead electrodeposition. While Constant Current (CC) experiments 

yielded a high degree of crystallinity on the microscale (face-centered cubic crystals of 

1-2 µm diameter), the overall structure of the electrode is rather amorphously arranged in 

lumps of 20 to 30 µm diameter (Figure 8). Notably, there are flake-like structures above 

the mentioned structures, covering approximately 50% of the entire surface. It can be 

seen that the layers deposited with CC are rather thick, and thus have a high degree of 

porosity. Pulse Current (PC) experiments, however, showed a very high degree of 

crystallinity. These crystals are in the range of 20-30 µm, whereas the flake like 

structures are not evident at all. With larger magnification, it can be seen that the single 

crystals also are more pronounced and up to three times the size of crystals deposited with 

CC (Figure 9). The needle-like crystals seen in these pictures are related to insufficient 

flushing of the prepared samples and are very characteristic of lead methanesulfonate. 

Adhesion tests showed that these structures show a better adhesion to the electrode 

substrate and thus increased mechanical stability. 
 

 
 

Figure 7. Overlay of cycle patterns, showing very constant potential behaviour over a wide range 

of cycles 

 

 
 

Figure 8. SEM pictures of a cell charged at a constant current density of 20 mA cm−2, left hand 

picture is at 400× magnification, right hand at 9,000× magnification, total charge capacity is  

20 mAh cm−2 
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Figure 9. SEM pictures of a cell charged with pulse current algorithm of 60 mA cm−2 for 100 ms, 

followed by 200 ms rest for equilibration, resulting in an averaged current density of 20 mA cm−2, 

left hand picture is at 400× magnification, right hand at 9,000× magnification, total charge 

capacity is 20 mAh cm−2 

CONCLUSION 

It has been shown that SLFB flow-cells with HDTMA as an anti-dendrite additive 

show a high cycle life of more than 7,000 cycles at 40 mA cm−2 with high efficiencies and 

without intervention to the system. These experimental setups included a periodic 

electrode renewal by shorting both electrodes to 0 V and thus fully discharge the cell, 

leading to fresh electrode substrates for successive cycles. Pulse plating algorithms are 

expected to further increase the time span between electrode reconditioning as it has been 

shown that they can further increase plating qualities for electrodeposited active masses, 

particularly for the anode. These characteristics combined with the inherent safety of the 

system make SLFB a very promising candidate for energy storage applications. 

However, the limiting factor is still the electrode substrate, which has been a sheet of 

antimonial lead for the experiments presented in this publication. This material was 

subject to corrosion effects when cycled for a prolonged time and thus alternative 

materials are still a subject of research. 
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