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ABSTRACT

This paper reviews the current progress and
techniques in the context of hydrogen fue
efficient energy management system,
developments. Key research works o
discussed, including the use of th

art plications of machine learning
vehigleS. Emphasizing the importance of
ed comparative analysis of recent
ased energy management systems are

includes machine learning _ba ement systems approaches that account for fuel
cell degradation, an argg i ibg attention due to its impact on performance and
longevity. Notably, rei
economy of 5.7% uel cell degradation rates by 4.5%. In addition, robust
models are highlighted for their effectiveness in data-driven
a 13.9% reduction in fuel usage during the Federal Test
8l and a 14.32% reduction in the New European Driving Cycle, along
issions cut to less than 26.4%. Despite this progress, existing review
e use of machine learning for predictive maintenance in the automotive
adequately consider functional safety aspects. This dual gap underscores the
nce of the present study. Furthermore, this work uniquely explores the

hydrogen refueling infrastructure. The paper concludes by discussing major ongoing
all8hges and offering perspectives for future research in this transformative field.
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1. Introduction

The transportation industry stands as one of the primary contributors to the generation of detrimental
emissions. Indeed, the use of fossil fuels by Internal Combustion Engine vehicles (ICE) leads to significant
environmental impacts due to the emission of harmful pollutants and raises growing concerns about the depletion
of future resources [1], [2]. To address these issues, numerous automobile manufacturers, including Toyota,
Nissan, Fiat, and others, have been actively promoting recent electric automobiles powered by environmentally
friendly transportation innovations for several generations, as well as hydrogen-powered fuel cell electric vehicles
[3]. Indeed, fuel cell hybrid electric vehicles and hydrogen fuel cell vehicles (FCEVs and FCHEVs) make some
contributions to greenhouse gas emissions, making them a viable option for addressing environmental concerns

[4].

Fuel cell hybrid vehicles often have fuel cells (FC) as their primary energy source and ultracapacitors or
batteries as backup energy sources [5], [6], [7], [8]. Consequently, the function of supplemental p
remains essential. Ultracapacitor and battery can both be useful as auxiliary energy sources [6], [7].
a strong need for power, batteries can capture extra energy and use it to power the system alopgsi
[9], [10]. Ultracapacitors can provide prompt attention to sudden ‘variations in load requ1rem
features of quick dynamical response, rapid recuperation of energy, and enhanced spg
currently three basic system architectures for FC hybrid cars. The initial kind is a hyb
batteries and FC. The other type integrates ultracapacitors and fuel cells. The_last
ultracapacitors, batteries, and FC [11]. One of the more commonly used fog
integration of FC and batteries. This integration is driven by limitations in the ra

el cell system
ditery storage system
is frequently employed to exchange high dynamic power [12], [13], ] hybrid battery can

ci BOP) components[12],
[13], [14], [15], [16]. Therefore, it is not an optional add-on but a cORg i chnology for making FCEVs
efficient, dynamic, and competitive in real traffic conditions. .

appropriate power value, while to
is customized through acceleration and
regenerative braking periods. An energy manage at g@ordinates the interaction between both
systems (fuel cells and batterles) is able to op 1zation, respecting different component

addressing PEM fuel cell durability a
[17] while focused on microgrid
energy management. In [17], [
for the FCEV application.

ethodological framework directly transferable to FCEV
el control strategies is introduced in and explicitly designed

ctional safety throughout a product's lifecycle while managmg malntenance
gicnificant hurdle. An essential strategy to address this challenge involves the
carning (ML) for predictive maintenance (PdM) [21], [22]. Another trendy concept
large-scale vehicular traffic issues is the Intelligent Transportation System (ITS), which

@ provide real-time strategies for maintaining smooth traffic flow. Furthermore, various
ghniques have been developed for intelligent traffic police management and deployment [22], [23].

nt review paper deals with various applications of machine learning techniques in the context of
hydrogen fuel cell vehicles. To ensure comprehensive knowledge, several articles were inspected through
searches conducted on reputable publishers' search engines, encompassing a wide range of sources. Web of
Science, Scopus, and IEEE Xplore were among the primary electronic databases that were searched because of
their reputation for covering engineering fields. A combination of keywords and Boolean operators specific to
the syntax of each database was used in the search approach. Basic searches comprised ("[Fuel Cell Electric
Vehicle]", ("[Machine Learning Application]"), and ("[Energy Management System]"), combined with the AND
operator to refine the results. The search focused on peer-reviewed journal papers and conference proceedings
published in English between 2015 and 2025. An initial screening of titles and abstracts was conducted to find
relevant research, after which the full texts of shortlisted publications were retrieved and reviewed for final
inclusion based on their relevance to the study's objectives. This procedure resulted in the identification and
synthesis of 127 essential papers, which served as the foundation for this evaluation.



This review explores the applications and possibilities of ML in the context of cell modeling and
optimization, energy management, system control, and the durability and implementation of PEMFC. The paper
focuses also on key challenge areas in fuel cell hybrid electric vehicles (FCHEVs) to the specific Machine
Learning (ML) techniques being applied internationally to solve them.

For example, in the field of system health monitoring advanced deep learning architectures like
Convolutional Neural Networks paired with Long Short-Term Memory networks (CNN-LSTM) are used to
reliably anticipate and diagnose faults and voltage degradation [24]. Simultaneously, Deep Reinforcement
Learning (DRL) algorithms have outperformed conventional energy management techniques by adaptively
optimizing energy sharing between the battery and fuel cell to optimize hydrogen economy [25], with more
recent developments focusing on multi-objective optimization as well as degradation minimization [26]. Above
the vehicle level, machine learning is transforming basic materials research; high-throughput experiments are
being guided by neural network models and Bayesian optimization to find new, high-performancg catalyst

ages 0f 92%,
bining these three
t enables efficient

learning has emerged as a
successful method in FCEV EMSs. Significant progress has been achl gVsi ) algorithms were first used
in car EMS, and several researchers are working to alter algorithms to address underlying
problems. These changes have made it possible to use thgscRg
In [33] researchers combined Q-learning with double dg CABNI track the necessary SOC references and
achieve sufficient fuel efficiency in various drivi i ce [34], authors 1ntr0duced the deep Q

16.0 percent. Researchers proposed in [35]
reducing fuel economy by 0.53 percent; reaChes 88.73 percent. Compared to the dynamic
programming (DP)-based technique, c is increased by more than 70%. Scientists [36]
suggested in [30] an advanced DRL-, Delajd Deep Deterministic Policy Gradient (TD3) to maintain
minimal hydrogen usage while re on. TD3-EMS indicates an improvement in the overall
operational cost of up to 28%. devgloped in [31] a novel RL algorithm that can learn in "multi-
steps". Thus, the vehicle’s ener
same driving conditions, gfic t least 7.8% were achieved. In [38], researchers exposed a DRL
-based EMS's fuel economy improved by an average of 3.63%. The

g coged by 63.49 percent, and EMS's convergence rate has improved by an
average of 30.54 pd B, Scientists integrated a DRL-based twin delayed deep deterministic policy
gradient algorij Sfvehicle-driving costs. As a result, this approach allowed for an increased training
efficiency of

EMS based on scalable reinforcement learning in a novel environment (SLNE) to
d reduce fuel consumption. The suggested SLNE-based EMS improves fuel efficiency
e rate of fuel cell degradation by around 4.5%, and increases the lifetime of the lithium-
to DQN-based EMS [41], [42].

indicate that SVR is beneficial for modeling fundamental regressions as it significantly reduces the
computational load without sacrificing accuracy and achieves an R-squared value of less than 0.99 for each
predicted variable. Concerning predictive maintenance using machine learning for fuel cell vehicles [21], [22],
the SVM model's accuracy ranged from 98.5% for the fuel system to 96.6% for the ignition and cooling systems,
with the fuel system showing the highest accuracy. Regarding the machine learning-based traffic management
system [23], [30], [31], simulation results showed OS-ELM performed better than the other approaches in
computational precision and effectiveness. In fact, it was predicted that daily energy savings of up to 12.2%
could be achieved. Finally, this paper critically discusses the perspectives of developing machine learning
strategy based on a hydrogen fueling stations for FCHEV production and storage.

While several studies have explored the applications of machine learning (ML) in fuel cell hybrid electric
vehicles (FCHEVs), focusing on cell modeling and optimization [37], energy management [39], system control
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[35], and the durability and implementation of PEMFC [36],[38], key areas remain underexplored. In particular,
the use of ML for predictive maintenance (PdM) of automotive components, as well as the integration of
functional safety considerations throughout the product lifecycle, are seldom addressed in literature. Yet,
managing maintenance costs while ensuring functional safety poses a significant challenge in FCHEV systems.
This paper offers a focused review of ML applications specifically tailored to FCHEVs, setting it apart from
broader reviews in the automotive domain. Key contributions include an in-depth analysis of reinforcement
learning (RL)-based energy management systems, ML-driven predictive maintenance strategies, and deep
learning approaches for processing complex datasets relevant to FCHEVs [44], [45]. In addition, this review
examines the role of ML in supporting the development and optimization of hydrogen fueling infrastructure,
outlining promising directions for future research and deployment in the FCHEV landscape [46], [47].

The importance of ML in various transport applications and more generally in Industry 4.0 is rising, due to
the ongoing energy transition; however, this implies novel hazards that are possibly faced by ML. I fact, the
ML models' sensitivity to adversarial assaults [48] poses serious safety issues, since malicious pe
cause severe system failures. Furthermore, the inherent opacity of complex models requires an

unpredictable character of real-world settings and recognize when they are unclear [50
energy transition necessitates the development of new technologies such as large-sca
battery systems, both of which pose previously unidentified safety challenges and

fault detection and diagnosis of induction motors [51], allowing autonomo
and therefore reducing the disadvantages of classic ML-based methods. Eg
systems raises issues about security and privacy in industrial IoT ec
federated learning to safeguard critical operational data [52]. There
intrinsically linked with the development of robust, interpretable, an
ensure trustworthy adoption.

To highlight the originality of this work, a comparati
review papers in the field. This comparison, summariz
studies and clearly emphasizes the exclusive contriba

was carried out against several existing
tifies the thematic areas treated in prior
review.
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Figure 1. Mapping of Addressed Topics in Prior Reviews and the Novelty of This Study

This comprehensive review is structured to provide a systematic analysis of the integration of machine
learning (ML) in fuel cell hybrid electric vehicles (FCHEVs). To guide the discussion and delineate the scope of
this work, the paper is designed to answer the following specific research questions (RQs):

RQ1: what is the current state-of-the-art in applying ml techniques for the core functions of FCHEVs, such as
energy management, fault diagnosis, FC modeling and performance and smart traffic management?

Journal of Sustainable Development of Energy, Water and Environment Systems 4
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RQ 2: what are the most significant technical and practical challenges hindering the widespread deployment
of ml in this domain?

RQ 3: based on the identified challenges, what are actionable recommendations for researchers and industry
practitioners to overcome these barriers?

RQ 4: what are the promising future research directions and prospects for next-generation ML algorithms
(e.g., deep reinforcement learning, transfer learning) to enhance the performance and durability of FCHEVs?

The paper is structured into three sections, beginning with an overview of machine learning applications in
fuel cell electric vehicles. It proceeds to provide a concise examination of ML methods in the context of FCHEVs,
and then an exposition of the exploration of ML applications for FCHEVs especially in energy management
system, fuel cell degradation, modeling and performance, FC vehicle diagnostics and maintenance, fuel efficiency
and emissions, advances in driver assistance systems, safety technologies and smart traffic management. Finally,
the paper concludes by offering remarks and outlining the future research scope.

2. Machine learning applications in Fuel Cell electric vehicles
After the preceding section's general review of machine learning's function in fuel cell h

it is crucial to examine the particular algorithmic techniques that make these applicatio
this section methodically analyzes the machine learning methods used in the area.

2.1. Searching on machine learning Methods
ML is an artificial intelligence (AI) whose its approaches can be categodficthy inct categories based

on the types of data that need to be forecasted, as seen in Figure 2 [53], [

Supervised Learning
( Classification ) ( Regression ) (Classiﬁcation) Clustering ) ( Association ) G)ecision-Making)

- K-Means Clustering

- K-Medoids

- Hierarchical Clustering

- Aggl ive Hi hical Clustering

- Mean Shift Clustering

- Logistic Regression

- K-Nearest Neighbor (K-NN)

- Support Vector Machine (SVM)
- Neural Network

- Lincar Regression - Factor Analyses

) R - Q-Learmning
- Non linear Regression -Self-Training - Principal components
Analyses (PCA)

- t-distributed stochastic
neighbor embedding (t-SNE)
- Non-negative matrix

factorization (NMF)

- R-Learning

- Lasso Regression -Self-Training Regression

- TD-Learning
- State-Action-Reward
-State-Action (SARSA)

- Ridge Regression
- Support Vector Regression (SVR). 4

- Decision Tree Regression

-Co-Training -Co-Training
- Discriminant Analysis . . R )
) Regression - Density based spatial clustering of
- Naive Byes - 5 q
applications with noise

(DBSCAN Clustering)
- Gaussian Mixture

goecisiontlices - Neural Network Regression

- Random Forest

2.1.1. Supervisg in Technique, the software's propensity to predict the output data relates to the
labeled data and sp&gi idfles. In this approach, the output, input, and data are defined. Regression and
classification (W0 mainfproblems under supervised learning. Some well-known regression methods in this

domain inglu s, polynomial regression, non-linear regression, and linear regression, among
others. Sev ethods for classification consist of K-Nearest Neighbor (KNN), Neural Network, Naive
Bayes, Decision Trees, Logistic Regression, Support Vector Machines (SVM), Linear
Discriwi is, and Linear Classifiers.

ervised learning. This technique develops tagged data by combing datasets for any significant
e preset output is derived from trained data that can forecast or suggest further data. Unlike
arning, unsupervised machine learning doesn't require a human to monitor the model in real time
[55]. Thus, it may be further divided into two categories: clustering and association. Algorithm examples include
autoencoders, PCA, DBSCAN, and K-means clustering. Applications include recommendation engines, anomaly
detection, and market segmentation.

2.1.3. Semi-supervised learning. Semi-supervised learning is an algorithm that combines the first two
techniques. Although the algorithm may freely examine the information independently and gain more
understanding of the data set, it labels training data [54].

2.1.4. Reinforcement learning. The Reinforcement learning (RL) methodology continuously improves its
model by gathering feedback from past iterations in a loop, unlike supervised and unsupervised learning methods.
As a result, after the model is created from training and test data, it does not approach an indefinite endpoint. In
fact, Q-Learning, R-Learning and TD-Learning algorithms are employed in reinforcement learning. The method

Journal of Sustainable Development of Energy, Water and Environment Systems 5



will be detailed in the next section because it is frequently utilized in research papers for control and energy
management systems in vehicles [21], [56].

2.2.  Machine learning applications for fuel cell electric vehicle energy management
system

A FC vehicle's energy management system (EMS) is a crucial operational necessity. As mentioned in [57],
the FCEVs have a choice of two to three power sources, including FCs, batteries, and UCs. The best source for
the time and amount of energy needed is chosen by the EMS. Because of its quick start-up, it may be presumed
that the battery satisfies all short-duration pulse energy needs for quick acceleration. However, fuel cell systems
offer a more reliable and long-lasting source of energy. These systems are operated gently to produce the energy
required to prevent harm. The EMS must actually make quick decisions based on information from the car and
the driver [58].

effectiveness enhancement that was put to the test in an experiment. Results havg cSuedd hydrogen and
fuel consumption. Then, a hierarchical energy management approach @ta-driven FCHEV is
suggested in [59]. An association of both Q-learning and Markov decisid

The results demonstrate optimum FC efficiency, reduced computa; uel consumption savings
which were evaluated under experimental conditions. After that, 4§ enQ-learning-based reinforcement
learning technique is analyzed in, which takes into account the FC hfet MgdPhe method's performance time proved
its adaptability for real-time EMS, especially with three diffg 8lc sources under variable conditions.

- The Q-network algorithm, designed for energy m . ol in FC hybrid automobiles, is proposed
in some papers in order to minimize hydrogen usage i S cell lifetime [60], [61], [62]. In [62], the
authors introduced a multi-objective DQN algorit usage and enhance fuel cell lifetime. The
results of the proposed DQN algorithm dem i improvements in convergence speed, fuel

consumpt10n and durablhty When compare algorithm. Additionally, the DQN algorithm is

ared to d1fferent1al privacy (DP) -based methods which
present an increasingly important to n [61], the authors aimed to minimize hydrogen usage
and assess the adaptability of the ¥ Furthermore, FC Hybrid buses adopt a deep reinforcement learning

The algorithm enhanced the control effect by utilizing the FCs' efficiency
ttempted to increase the computational effectiveness of DDPG. The outcome
¢ energy management method with stable convergence. In [65], DQL (Deep Q-

mto account fuel economy and energy fluctuation. The DDPG approach proves that it is
ycle usage compared to deep reinforcement learning. Further, in [36], a DDPG algorithm is
im of regulating the battery SOC and assisting with energy consumption in various drive cycle
], authors suggested a DDPG approach for energy allocation according to acceleration, the battery’s

R 1 speed to enhance fuel consumption. Increased FC durability and reduced hydrogen consumption are
revealed by the results. It's also important to remember that the DDPG strategy is affected by unsteady training
compared to the other mentioned.

- The Twin Delayed DDPG TD3 algorithm, applied to fuel cell cars, is proposed in several research papers.
For example, in (Habib, 2024), this approach is more reliable and economical. The disadvantage of this algorithm
is its lengthy learning period, which makes it unsuitable in real-time vehicle EMS. In addition, the TD3 algorithm
for intelligent transportation systems is recommended for various automobile configurations to offer agents other
beneficial signals related to the environment.

To conclude, DQN operates more effectively than Q-learning algorithms. Despite DQN's tendency to
overestimate Q-function values, the results demonstrate superior convergence compared to Q-learning. The



outcomes show that the energy management system based on DQN is more flexible than the other mentioned. The
TD3 technique is necessary to maximize hydrogen use using an RL-based approach.

Table 1 provides a list of machine learning-based EMS algorithms employed in FCHE Vs where reinforcement
learning, including deep RL, Q-learning, and deep reinforcement learning (DRL), is the most often employed
machine learning approach in EMS. Each cited study in this table has been divided into one of the three groups
listed below : i) Real Driving Conditions (RDC) for research utilizing data from on-road vehicle tests, ii)
Laboratory/Test Bench (Lab) for research projects that use data from component test benches, and iii)
Simulation/Model (Sim) for research projects that do not use physical hardware validation and instead depend
solely on simulation models (such as Simulink). The same applies to the following tables (Table 2 and Table 3).

Researchers are employing RL approach in EMS in order to achieve minimal computing costs, optimum fuel
cell efficiency, and economical energy use.

use and maintain continuous battery operation. In various publications [33], [34
recommended as a way to lower fuel usage in FCHEVs. The suggested technj

algorithm, in the same setting. Its goal is to decrease the amount of Ii
of charge (SOC). The generalization and fault-safe operating capabilitit

reinforcement learning with the goal of reducing the t
deterioration.

DDPG [34], [38], [64], [65
degradation.

More recently,
cars in a new area
efficiency by
battery's lifeti

ement learning-based energy management approach for fuel cell electric
created in this study [40]. The suggested SLNE-based EMS improves fuel
the rate of fuel cell degradation by around 4.5%, and increases the lithium-ion
to the DQN-based EMS. In contrast to current learning algorithms and improved

le 1. Overview of the works considered for the FCHEV's energy management strategy based on
machine learning techniques

Validation
Ref Application ML Method Objectives Approach Data Set Environment Results and
research Performance
New hybrid Comprehensive
degradation simulations on a
model of Real-data ~ modeled fuel cell PEMFC APE
PEMFC : -build each PEMFC analysis hybrid vehicle  (Absolute
38] FCEV -Extreme sub-waveform wavelet from three  system over Percent
Learning degradation analysis PEMFCs various  driving  Error)
Machine (ELM)  model. y from three  cycles. degradation
-Genetic FCEVs model < 2%.

Algorithm
(GA).
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The Software
A specific  -improve test PEMFCs simulation on a
PEMFC failure accuracy and model of modeled fuel cell
detection running speed failure Real data hybrid  vehicle
technique - reduce the diagnosis is from 3  system, using  -average
Transportation combines: duration of the created using PEMFCs standard driving recognition
[74] Electrification Evidence theory training both of: in 3 cycles for rate 98.70%
of  Dempster- -solve data-  -online FCEVs - validation. -operation
Shafer  (D-S) driven sequential data time 0.2011 s
and the Extreme  diagnosis of ELM fusion
Learning failures method.
Machine (ELM)  problems -kernel ELM
algorithm
Simulation
a real environment
driving under various
cycle for driving cycles.

-evaluate  the

deeradati Victoria
FC degradation I\/T(%rSEaLlon City in
model based on . . Canada's
[75] FCEV ML  machine mPacts in FC British
learnin stack about the Columbia
g
techniques fuel usage of the - dynamic
hydrogen fuel- . .
cell buses 51mulgt10
n since
operating
co
-in-the-  -In  FTP-75
(HiL) / and New
Laboratory (Lab)  European
Driving
Cycles, fuel
consumption
increased by
14.32% and
degradation 13.9%,
PEMFC model - respectively,
hydrogen base}(ll_ on FTP-75, a Zvith_ .
machine new eteriorate
(761 leslsigiier learning European PEMEFC.
algorithms cnlculate: driving -When
—fuel use‘an d cycle compared to
FC PEMFC
deterioration without .
-engine degradatlonz
efficiency FC 18
expected to
generate
26.4%

greater CO2
emissions.

From theffevicwed sibresented in Table 1, it can be observed that the primarily commonly employed
ML technt is R, particularly deep RL, employing various approaches. Generally, in the different
i 1 irfthe review, machine learning-based EMS is applied to enhance the efficiency of onboard
ibuting energy more evenly, minimizing hydrogen consumption, and preventing fuel cell

e are paying increased attention to RL-based EMS due to its advantages over competing methods,
ing, which is suggested as a means to reduce fuel consumption in FCHE Vs, and deep reinforcement
learning 0ptimizes vehicle driving costs and mainly suppresses system degradation based on algorithms as follows:
DQN, TD3, and DDPG. In order to enhance fuel cell efficiency, the reinforcement learning algorithm is currently
experiencing a number of improvements in algorithm development.

2.3.  Fuel cell degradation model-based machine learning techniques

One of the major issues concerning hydrogen FC cars is FC degradation, a problem that can be addressed
through reliable prediction methods such as machine learning. Models of fuel cell degradation developed in the
literature can effectively solve databased fault diagnosis problems. These models have a significant impact on fuel
efficiency and overall emissions. In [38], a novel hybrid PEMFC degradation model utilizing an Extreme Learning
Machine (ELM) and Genetic Algorithm (GA) for FCEV is proposed. In [74], ELM and Dempster-Shafer evidence
theory are used to create a new failure diagnosis approach for PEMFC systems to improve test accuracy and

Journal of Sustainable Development of Energy, Water and Environment Systems 8
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shorten the training time. Then, in [75], Fuel cell degradation model is applied to enhance the performance of the
bus. The effects of the FC stack's deterioration model on the fuel consumption of hydrogen-fueled buses are
assessed using machine learning techniques. In [76], the evaluation of a deteriorated PEMFC stack for hydrogen-
powered passenger automobiles using ML techniques in actual driving situations is introduced by the authors. An
overview of the studied publications relating to using machine learning techniques-based fuel cell degradation
models for FCHEVs is presented in Table 2.

Table 2. List of the reviewed works that utilize machine learning techniques-based fuel cell degradation models for FCHEVs.

Journal of Sustainable Development of Energy, Water and Environment Systems 9
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Ref ML Objectives Applicati Approach Data  Results and ;E,zhi(:?)tl:(l):en
Method Jectv on pp Set Performance ¢ v
Suitable - ML techniques with -Optimal Real Driving
Learning- ower high regression control effect in  Conditions (RDC) as it
based robust gistribution 4w accuracy and potential energy  utilizes real-world
model outstanding savings operational data for
[67] C between D (Wheel .2 - .
predictive several D) FCEV generalization ability - LRMPC has validation.
control ener are taught offline: significant real-
(LRMPC) souers -To build the precise time application
) state observer for SOC. capabilities.
Model do not present primary
developed validation
- ?jamin the -Average fuel
Reduce Internal . . . g usage decreased
- RL is carried out in  process o
hydrogen FC by 5.7%
Model- . the context of the proceeds
fuel electric - ST compared to the
[68] based RL consumption vehicle driving cycle profile to  using input rule-based
(MBRL) . improve the control from .
—ensure FC  powertrai . . technique.
and battery n policy. experiences
efficiency through
standard
driving
cycles
R simulated hybrid
Achieve electric vehicle model
power in a software
allocation environment
F.C. and Application of Q-
lithium PP
RL: . FC/Battery  Learning to: -Reduce New .
i batteries . Effectiveness of
[70]  -Q-Learning HEV Fuel Consumption angd ropean
-python ) Ensure Batig®¥ Proposed
P reduce fuel R < ethod verified
usage Sustainability
-keep
battery
SOC
constant.
-Improve simulated "rough
batteries pavement constraints"
lifetime Energy system within a software-
[72] RL -Minimizing efficiency defined environment
the battery improved
SOC
variation.
Btablishing the speed Simulation
predictor using the Q- environment
leamlpg (QL) “The suggested (Slrpul{nk) for
technique . validation
solution tracked
-Double QL approach
. the necessary
to develop an efficient
. SOC references
offline controller that —while
[33] . achieves the ideal ..
transmiss s achieving
. power distribution .
ion type SOC sufficient  fuel
efficiency in
a novel speed various drivin,
predictor is proposed, circumstances &
to create the bi-level ’
energy  management
method.
) -The proposed Validated on a
Consider method simulated fuel cell
reducin effectiveness to  hybrid electric vehicle
hvdro egn Using a fuzzy solve  energy model running
uza eg inference system, it is management standard driving
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24.

using machine learning techniques

Modeling and performance for Fuel cells with a Polymer Electrolyte Membrane

Machine learning techniques are widely employed in the fields of chemistry and materials science to explore
novel material characteristics and create materials for future generations [77], [78], [79]. Concurrently,
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understanding the basic principles of PEMFCs is vital for advancing technologies that enhance fuel cell
performance and reduce costs. This understanding is crucial in the development of various aspects of FC design,
including durability, and dynamic operation. This section delves into these components and discusses their
significance in fuel cell technology. This section consider recent trend toward the development of physics-
informed Machine-Learning model to predict performance and aging of fuel cells, prevent anomalies and possible
hydrogen leakage and implement automated safe-operation system with Al-Driven Early Warning.

2.4.1. Machine learning for durability and performance. The application of ML in this domain primarily
focuses on two critical, interconnected aspects:

ML for Performance Prediction: The utilization of PEMFC modeling, driven by machine learning and
requiring no prior expertise, offers a range of significant advantages, particularly in understanding the intricate
interplay of linked electrochemical and transport processes within PEMFC function. This approach simplifies the

mechanisms are not fully elucidated. Despite these advantages, there is a concern: since it ope
physical representation, its effectiveness in scenarios beyond the scope of the test data set mightdag

both physical processes and ML techniques. By embedding physical processes into ML,
in complex conditions, can be substantially enhanced. A recent proposal in the literatu
of physics-informed neural networks, as demonstrated by the authors in [40].
fundamental physics into each component of PEMFC through deep learning reg#e
but it holds the key to achieving the desired design objectives.

ML for durability: PEMFC that remains reliable throughout its lif
Therefore, it is necessary to estimate the state of health (SoH), regaai
durability by analyzing the data generated by control units [43], [80 > FC cell voltage presents
a crucial indicator of the output parameter in machine learning beca® es an essential measure of FC
performance. Recently, machine learning has been used for pragicting SoH and durability, which can mostly

RUL), and PEMFCs

The former approach is computationally costly
research, both types of methods are studied for RU
different algorithms. The following paragraph wi
for PEMFC's features and prognostics. In
moving average (ARIMA) with an LST
combined with ARIMA, LSTM enable
degradation trends. The model is e
showing promise in aiding the desjg

0f various machine learning approaches used
that combines an auto-regressive integrated
for predicting fuel cell state of health. When
degradation prediction, allowing for the tracking of
erimental datasets from two PEMFCs that have aged,
rategies and predicting performance prior to experimental
ique based on deep neural networks (DNN) and sparse auto

YWgata, a Gaussian-weighted moving average filter is chosen. Compared
gl prediction shows an accuracy of up to 99.68%. Moreover, the model is

ing. Several machine learning approaches are employed to create
b internal states and performance aspects. For example, in [83], machine learning
density of high-temperature PEMFCs (HT-PEMFC) through its tools for fast and
ide search areas. The ML framework is predicated on a methodology for data analysis
3W0”D model of HT-PEMFC polarization behavior, leading to dimension reduction and
ensity. This study demonstrates pathways surpassing 1 W cm? in HT-PEMFC. Then, in [84],

r machine regressor (SVR) algorithms and artificial neural networks under various operating
he authors consider two different sets of data: a 1-D computational fluid dynamics model with
reduced dimensions and a physics-based semi-empirical model. Results indicate that SVR is beneficial for
modeling fundamental regressions as it significantly reduces the computational load without sacrificing accuracy.
As for the artificial neural network with the dropout strategy, it achieves an R-squared value of less than 0.99 for
each predicted variable.

2.4.3. The Emergence of Physics-Informed Machine Learning for Robust Modeling. The development of
Physics-Informed Machine Learning (PIML) is a noteworthy and promising trend to overcome the limits of purely

data-driven models [85]. Through physics-based loss functions or specialized network architectures, this paradigm
integrates fundamental physical laws (such as conservation laws, thermodynamics, and electrochemical
principles) into a data-driven algorithmic model based on a computational model of the SOFC system and a
gradient-boosted decision tree. This method improves predicted accuracy in situations when data is noisy or
limited, enforces physical consistency, and increases model generalizability beyond training data conditions all of



which are especially beneficial for complicated fuel cell systems [86]. For safety-centric predictive tasks, such as
the precise prediction of performance decline (aging) and the deployment of reliable Al-driven early warning
systems, PIML application is essential. For example, by identifying patterns that defy established physical
limitations, PIML models may be taught to identify abnormalities and stop dangerous operational deviations,
including those that result in hydrogen leaking [85]. As recent research has shown, this is crucial for building
automated safe-operation systems in critical applications like as marine transport [85] and serves as a foundation
for the next generation of predictive health management in FCHEVs [86].

2.5.  Machine learning for fuel cell Vehicle Diagnostics and Maintenance

In the automobile sector, maintaining functional safety while minimizing maintenance costs has become a
significant concern. Predictive maintenance (PdM) has emerged as a key strategy to achieve this goal. Maintenance
efforts, which include fixing errors or implementing preventive steps, are aimed at keeping a system ggerating in
its designated mode. There are various methods to categorize maintenance strategies; however, the
are frequently used: PdM, or predictive maintenance, as well as corrective and preventive main
review focuses on predictive maintenance.

Industrial equipment reliability and health are shown in real time through predicf

to develop this maintenance strategy: rece1v1ng information from the syste R sensors, then
preprocessing the data, followed by the diagnosis and prognosis of faults, and fi sion about the
maintenance plan. Diagnostics and the prognosis of faults are two areas of stud, the interest of

of the health stage (HS), and health indicator (HI).

Data collected from the physical world may now
artificial intelligence methods [21]. Several methg r predictive maintenance [22]: physical

> and digital twin approach. Regarding the

methods as potent instruments for predictiv ine learning algorithms that are powered by data
must effectively analyze enormous amoynt§aof both histOgcal and real-time data coming from various sources

preparation. The key ML concepts th e summarized in the following paragraph
The two primary approachg®that¥ key machine learning techniques for predictive maintenance
are the supervised learning, w1 e g data set contains information about the occurrence of failures;

the unsupervised learnin
available; and the semi

mployed instead of data that is connected to a single automobile's state. Big data techniques are also
discussed. Examples involve details on preceding maintenance, age, driving distance, and kind of automobile
features, as well as fleet feedback data.

- Condition-based predictive maintenance: Condition-based PdM, in contrast to statistical PdM, employs
operational data from individual cars to determine the overall system state or the status of one or more components.
According to this approach, a maintenance decision associated with the component may be made [88]. Fault
detection is an essential method for failure prediction. Early fault detection can prevent it from spreading, enabling
actions to be taken before failures occur. Thus, anomaly detection or classification is a common method for
achieving condition-based PdM. Generally speaking, depending on data and label availability, supervised, semi-
supervised, and unsupervised learning methods can be applied.

The essential vehicle parts for which conditional based PAM has been performed are presented in Figure 3.
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Electric power steering
issues

Detection of sensor errorD

Monitoring of tires and fuel
cell cars

Braking system issues )

Electric motor, generator,
and starter faults

Autonomous or automated
vehicle health

Fuel cell vehicles

notive systems.

The

sed in [90], the authors developed LSTM
nal voltage as a function of load current
Aoility to sustain long-term dynamic loads.

simulated cells with defects related to drying and floodif¥e.

networks and Gated Recurrent Units (GRUs) to fore the

and degradation. To achieve this, the authors test for

During the last test stage, the attention-based yidded best prediction results, with an estimation
coefficient reaching up to 0.89.

tegiaince for automobile components using machine learning
rized 1nto several subfields based on their primary application cases,

ve C onent predictive maintenance research using machine learning: top use cases

Validation

Machine learning

Referen nvironment Use case method
. ANN revision
do not present primary — -
[ validation Logistic regression and
residual selection.
Laboratory (Lab): test LSTM and CNN, SVM
bench in a laboratory of one class, random
9 ) . .
setting, with Faults in engines forest, and logistic
experimental results regression
Simulation (Sim)
through software
[93] simulation in ANN
MATLAB/Simulink. and
Laboratory (Lab)
Batteries for SoH EVs ELM vs. ANN
LSTM
Battery issues with EVs -random forests
[94] Laboratory (Lab) k-NN, SVM, ANN

EV powertrain issues

variation

Detection of all car
faults

Ensemble of classifiers
for one and two classes
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Air pressure system

ANN, CNN, LSTM
flaws

Physical fuel cell test
station using a Scribner

[95] Associates test station,
making this a laboratory-
based study.

do not present primary
validation

Problems with Deep hybrid belief
gearboxes networks

ANN, CNN, NARX

. " Suspension system
Real Driving Conditions

. flaws
[97] (RDC) 'pr0V1ded by an SVM
automotive
manufacturer.
SVM, ANN, Hoeffding
Brake system errors trees, and best inj

Real Driving Conditions
[97] (RDC) provided by an
automotivemanufacturer.

Steering system flaws

[89] Simulation (Sim) / Computational Defect detection for
Screening Sensors

[90] do .not. present. primary Fuel cell automobiles
validation

[98] Laboratory environment. Mechanism of starti

Odecls combined

Simulation (Sim) via
[99] FASTSim and
Laboratory (Lab)

CNN

In general, selecting the best machine learning algorit intenance requires conducting tests,
al parameters, considering the particular

problem, the data’s nature, and appropriate settings palsons between different machine learning

vector machine, linear regression, Gaussian,
this comparison, the suggested ANN ang

GPR), and artificial neural networks. Following
monstrated high performance, outperforming other
of SoC projections, ANN and GPR could contribute to

developing an optimal battery manag@geni® electric cars. In [100], Random Forest, SVM, Decision
Trees, and k-Nearest Neighbors g€t f@Ur claggifiers compared. The SVM classification exhibited the greatest
efficiency across four function3 i igfPresults indicating high accuracy. The SVM model's accuracy

the highest accuracy. ACHg operating systems, the SVM classifier consistently performed the best,
achieving accuracie 96 D3 M 98%0, and 96.6%. Additionally, a study in [101] demonstrated the viability
of applying various i
Artificial Neu
identification

R¥ndom Forest, as classifying predictions for fault identification jobs. For defect
gine systems, the authors used datasets for training and testing obtained from
es produced using a simulation testbed. The Random Forest approach yielded the best
ccuracy, 0.88539, was greater than the Support Vector Machine approach's second-

Energy usage is significantly influenced by transportation, and driving habits have a significant impact on
how much gasoline cars consume. In the literature, there are many articles dealing with fuel consumption
prediction, engine performance optimization for better fuel efficiency, and emissions control using machine
learning. For example, in [102] authors present a Multi-Linear Regression (MLR) in machine learning to
demonstrate the weighted effect of independent variables. According to [103], a reinforcement learning algorithm
is proposed to utilize road altitude data for the intended route, training deep neural networks with the aim of
creating a fuel-efficient speed profile for autonomous cars. This demonstrated technique, based on neural
networks, can be trained to develop effective strategies for improving fuel efficiency even on uncharted routes.
Consequently, it increased fuel efficiency by 8% over a straightforward grid search method. In [104], to maximize
fuel efficiency across the fleet, the model proposed by the authors can be quickly tailored for every single car and
connected to the group. The method employed is a data synthesis strategy applied to a distance approach as
opposed to the usual time frame. The results suggest that, for routes comprising both bicycle paths on city streets



and highways, fuel consumption may be predicted with a coefficient of 0.91 and a peak-to-peak percentage error
of less than 4% within a 1-kilometer window. In [105], the effectiveness of experimental results for a dual fuel
compression ignition (CI) engine running on hydrogen and diesel was assessed using machine learning regression
models. In this work, in order to assess different emissions such as hydrocarbons (HC), oxides of nitrogen (NO),
carbon dioxide (CO), and smoke, factors such as hydrogen concentration, engine load, diesel intake, speed, and
equivalency ratio were taken into account. The following performance measures were used: coefficient of
correlation, relative absolute error, mean absolute error, root mean squared error, and root relative squared error.
In [106], the authors introduced two types of ML methods to evaluate the use of naturalistic driving data in
determining how fuel-efficient a driver performs. The results show that the suggested approach can successfully
establish a link between driving style and fuel usage at the macro and micro levels, making it possible to forecast
the features of fuel consumption from beginning to end. These predictions could subsequently be used in
innovative driver assistance technologies. Additionally, in [107], fuel economy maxima in NEDCs (New European

machine learning are effectively blended in a novel way to accelerate the delivery and analyst
precisely estimates the peak fuel usage in FC electric cars. The findings from the trained and vgii
extremely precise, with less than 1% inaccuracy.

And in [108], two machine learning models were created and used for two light car g
a truck Real Driving Emissions (RDE) test. The methodology presented in the resea
twins’ model accurately predicted immediate and cumulative fuel usage, even fo,
from those used to train the model.

2.77. Advances in driver assistance systems, autoq
technologies

Automated vehicles represent a significant advancement in road
cause of accidents: human error. Advanced Driver Assistance
shift. ADAS, encompassing features such as automated pg

situational awareness [109].

In parallel, the development of auto underpinned by sophisticated infrastructure. A
multifaceted architecture, as outlined i layer processing, cloud computing, fog computing,
and machine learning. This framew supp@rts the operation of autonomous cars but also forms the
foundation for their intelligence ang i

Furthermore, in the domadg
emerged as a promising me; 3 ning perceptual planning with reinforcement learning techniques,
the movement of auto
networks, augmenting ine learning methods, amplify the benefits of these advancements,

afer and more efficient [109].

the project presented in [110] aims to develop a prototype of a machine learning-based Variable
(VMS) reading system, a technology that is currently underutilized, particularly in this area. As a
result of the research, a prototype Advanced Driver Assistance System for interpreting various message signs has
been acquired. The system operates using RetinaNet, a neural network built on ResNet50, with an average
accuracy of 0.703. On the other hand, the authors in [111] propose the implementation of Advanced Driver
Assistance Systems using a combination of machine and deep learning algorithms. As a result, this approach
reduces the complexity and size of the vehicle's sensors.

e For Safety requirements and challenges with autonomous automobiles, accidents and deaths can be the
consequence of human error elements like poor judgment, distractions, and fatigue. Thus, autonomous vehicles
(AVs) have the potential to increase vehicle safety by lowering the number of traffic accidents and driving errors
caused by people. To minimize human errors in driving, enhance security, and optimize the movement of traffic,
modern technologies are used by AV, including GPS, Electronic Control Units, 3D mapping, path planning, and
LiDAR sensors [23]. The challenging assignments for AV, in which security and safety require major research



efforts. Security for AV focuses on protecting the automobile from intentional incidents, whereas safety for AV
guards against unintentional collisions [63]. A multisensory AV system can anticipate potential threats and
respond appropriately. In such situations, AV could evade the incident or accident by altering course. The
integration of modern technologies like AI/ML, IoT, and big data analysis makes these capabilities feasible. In
[23], [63], the authors discussed accident problems identified through machine learning techniques and highlighted
the detrimental and unanticipated behavior of insufficient artificial intelligence systems. The authors listed several
research issues and categorized them specifically under unintended risks. Several critical challenges related to
autonomous vehicles have been classified as open issues, including the treatment of data as the equivalent of oil
in AVs. AVs often accumulate petabytes of data, posing challenges in parallelizing training procedures with
storage resources.

2.8. Smart traffic management

Urban traffic congestion has become a significant issue. Traditional traffic management tech@#ques do not
effectively regulate traffic and lack proper human resource management, leading to increased estion
and road infractions.

For addressing serious vehicle, traffic issues on a large scale, Intelligent Transporta
solutions that enhance safety, effectiveness, and sustainability. ITS utilizes machine leat
existing traffic control systems to create real-time plans and ensure a smooth floy of ¥

guidance, weather reporting systems, early collision te
alarm systems, pollution controls, automated tra

variable speed limits, emergency vehicle
d even dynamic bridge management,

faster traffic clearance. These integrated t
transportation systems, ensuring a smoother

ely enhance the efficiency and safety of urban
experience for commuters.

on machine learning is analyzed, aiming to ensure the
d fuel to create sustainable smart cities [ 113]. For instance,
tegies for optimizing signal processes, with Reinforcement
. Gradient Boosting Regression Tree (GBRT) and reinforcement
plexity and latency, respectively. The results demonstrated that the
educes waiting delays and state-space complexity. Additionally, authors

In this section, a traffic manage
efficient utilization of human resoyus
in [114] researchers have foc
Learning being a major appiea

e case study compared four different neural network architectures: long short-term
g, online sequential extreme learning machine (OS-ELM), and recurrent neural
howed OS-ELM performed better than the other networks in computational precision
eal traffic data in a simulation, it was predicted that daily energy savings of up to 12.2%

the many obstacles to the integration of Machine Learning in FCHEVs, data concerns stand out as
the most important. The following subsections delves into the core of these barriers, beginning with a critical
evaluation of the data requirements, with a particular emphasis on the dimensionality and reliability of the input
data.

3.1. Data Requirements and Challenges for machine learning for fuel cell electric
vehicle

The selection of input variables is a crucial design factor that presents two constraints. First, the number
directly determines model complexity and computational load and kind of features, thus dimensionality reduction
is frequently necessary to lessen the curse of dimensionality. Second, the precision, sampling rate, and signal-to-
noise ratio of the source data—which is frequently obtained from automotive-grade sensors functioning in



challenging conditions—determine the model's predicted accuracy and dependability in the actual world.
Therefore, an ideal framework must strike a compromise between the practical limitations of data collection and
computational complexity. A list of common input variables and related data challenges for machine learning in
FCHEVs is shown in Table 4.

Table 4. Common Input Variables and related data challenges for machine learning in FCHEVs

Application field Typical Input Variables Source of data Important Data Challenges
Fuel cell efficiency map, GPS/traffic Variety of data; dependability of outside data (traffic
Energy Cloud, , Sensor, .
data, battery SOC, power demand, and forecasts, for example); and requirement for real-
Management Maps . .
H, tank level time processing.
Sensor noise, linked features, high dimensionality,
Fuel Cell Temperature, pressure, voltage, current, . . S
. . L : Physical Sensor  and the necessity of feature selection to prevent over
Prognostics H, purity, and historical loading

fitting.

Class imbalance (limited examples of faults); high-
frequency data necessitates substantial processing
and storage.

Microphone,
Sensor

Voltage/current ripple, acoustic data,

Fault Diagnosis . -
temperature gradients, gas composition

3.2. Dimensionality and Reliability of Input Data

health management
ditions. This means

eir influence on system
itical area where model-based

Impact on System P

Unmeasurable Variable Common Estimation Techniques

+ Data-driven soft sensors employing stack
voltage, current and temperature

PEMF(.: Membrane . High-Frequency Resistance (HFR)
Hydrations
Measurement
* Adaptive Kalman Filter
State of Hea * The combination of model-based and data-
(SOH) driven methodologies
d residual energy capacity, *  Machine Learning  regression  on
ich has”a direct effect on lifetime and impedance/voltage properties
n management strategy (EMS). * Coulomb counting and differential voltage
analysis
Battery
tage of Challge  Vital for controlling high-power transients * Hybrid models that combine electrical and

and maximizing the effectiveness of
regenerative braking. Temperature and
current have a significant influence on
voltage-based SOC.

thermal dynamics

* Recursive Least Squares (RLS) for parameter
identification

* Adaptive Kalman Filter

Increases activation losses and causes
irreversible voltage decline by decreasing
electrochemical active surface area
(ECSA).

Catalyst Degradation State

* Machine learning models trained on voltage
transient data

* Voltage loss decomposition mrthods

* Model-based observers (Extended Kalman
Filter)

Degradation of the battery and FC is
accelerated by local hot areas. Effective
thermal control is essential for longevity
and safety.

Precise Internal
Temperature Gradients

* Neural networks trained on surface temperature
data

* Nonlinear observers

* Distributed thermal models with lumped
parameter inputs

Therefore, the accuracy and resilience of the underlying estimating techniques inextricably link to the
performance of any ML-based application. Future research should thus concentrate on the co-development of
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integrated frameworks that combine robust state estimation with sophisticated ML control and diagnostics,
assuring dependability under the noise, uncertainty, and dynamic situations of real-world driving.

4. Perspectives

As remarks, regarding the EMS area, reinforcement learning-based EMS is suggested due to its benefits over
other techniques as mentioned above, in particular deep RL, using various approaches. In general, in the different
applications exposed in the review, machine learning based EMS is performed to increase the efficiency of all
onboard power utilization by distributing energy more evenly, using less H,, and avoiding FC deterioration.
Reinforcement learning-based EMS is receiving greater attention from researchers due to its benefits over other
techniques, such as: 1) Q-learning is suggested to reduce FCHEV's fuel usage; 2) DQN suppresses system
degradation; 3) DRL optimizes the vehicle driving cost.

As to the use of machine learning for predicting performance, it may be extended to deep learni
performance by including pertinent physics.

Respecting FC vehicle diagnostics and maintenance, attention-based LSTM could providg
results for predicting FC’s output voltage based on load current and degradation. In addition,
strategies outperformed previous approaches and produced high performance. With rg
GPR and ANN may support creating an ideal battery management system for electrical
and Safety, basic ML methods are not immediately used due to the geographical
A complicated and nonlinear dataset is appropriate for deep learning-based algo

re of the data.

t ) for fuel cell hybrid

he P »ed station based on

As perspectives, a machine learning strategy based on a hydrogen fug
electric vehicle (FCHEV) production and storage is proposed [116
renewable energy sources (REs) is composed of four primary b

electrolyze, and grid-connected component, as seen in Figure 4.

Renewable energy sources

Electrolyzer

Pre-cooling un

:
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Locate refueling stations

Figure 4. Renewable energy sources powered the hydrogen refueling station

The principal elements employed when transitioning from producing to delivering hydrogen are as follows:
An on-grid photovoltaic and wind power system is designed to drive water electrolysis plant to produce hydrogen
for an improved FC electric vehicle. The purification unit, compressor, storage tank, gas boosters, cooling unit,
safety devices, mechanical and electrical systems, and dispensers are all parts of the hydrogen production chamber
that are also implemented [53], [116]. Then, a compressor is utilized to raise the station's tanks' hydrogen gas
pressure from low to high in order to prevent overheating and overfilling while recharging the quick storage [117].
Besides, pre-cooling unit and dispenser are integrated. Hydrogen needs to cool down before being refueled since
it can overheat if it is refueled directly [117].

This proposed study offers an attractive solution to reduce hydrocarbon fuel consumption. Therefore, in order
to reduce cost and enhance system reliability, an efficient operation algorithm based on hydrogen energy demand
estimate is investigated for directly hydrogen fueling stations [118], [119]. For instance, an optimization technique
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based on harmony search for the most efficient possible size of a hydrogen storage system-based solar/wind power
generating system is needed in order to optimize reliability and decrease cost. This paper shows that the proposed
method can first decrease the storage tank [102], electrolyze ratings configuration for HRS [103], and second
decrease the hydrogen energy unit [120], [121], [122].

HRS and their optimal location strategies can be discussed in upcoming works [109]. In fact, optimization
strategies and methods based on machine learning approaches can be used to locate hydrogen fuel refueling
stations [110]. A machine learning model can be employed for urban areas by simulating and forecasting refueling
behavior using data (Figure 4). The model gap is significantly dependent on big data sets, which can be improved
in future projects [123], [124], [125], [126].

Machine learning techniques are recommended for process categorization and prediction. Monitoring
hydrogen refueling stations guarantees both operational safety and compliance with the necessary refueling
performance standards. The fueling process was traditionally controlled by table-based or dynasf#ic control
techniques. The primary performance goal of the mechanism for fueling and the state of charge (S@C) age to be
predicted using machine learning techniques, according to this study.

Finally, numerous researchers have explored reinforcement learning techniques in vari ctric
powertrain applications. However, their applicability to FCHEV is still evolving. A profifiSig jor future
research is to conduct in-depth examinations of energy management systems utilizing ing.

and machine learning methods designed to meticulously monitor the car alfg
future advancements and innovations.

5. Conclusion

This research explores the use of machine learning i ybridelectric vehicles applications. This
research’s highlights and conclusions can be synthesi lesign of cells and enhancement, system

Bted for meeting load requirements while
optimizing power sources in FCHEVs. A compr i arative study is provided, highlighting the
advantages and challenges. In literature, at
competing methods. In the reviewed works,

n based on the following algorithms: 7/) Deep Q-Networks
by 16.0%, the FC degradation reached 88.73%, and the
% and i7) TD3-based EMS indicates an improvement in overall

aind overall emissions. These models play a pivotal role in reducing fuel usage by
edure FTP-75 Driving Cycle and 14.32% in the NEDCs, and overall emissions by
o CO2 emissions. For driver assistance and safety, a complicated and nonlinear dataset
rning-based algorithms.

per has identified several challenges and suggested future research directions. This
verview has delineated the significant potential of ML in advancing FCHEV technology;

cployment. The most prominent experimental gap is the scarcity of high-quality, publicly available
datasets encompassing diverse driving conditions, fuel cell aging profiles, and fault scenarios, which severely
limits the training robustness and benchmarking of ML models. Furthermore, a significant knowledge gap exists
in the integration of physics-based models with data-driven ML, particularly for explaining the 'black-box'
decisions of complex algorithms and ensuring their predictions adhere to thermodynamic and electrochemical
principles. This is crucial for safety-critical applications like predicting hydrogen leakage or cell failure. Finally,
there is a pronounced gap in standardized validation protocols for comparing the real-time performance,
computational efficiency, and durability of different ML strategies under identical conditions. To address these
gaps, future research must prioritize: (1) the creation of open-source data initiatives and digital twins for robust
testing; (2) the development of explainable Al (XAI) and hybrid physics-informed ML models to enhance trust
and generalizability; and (3) the establishment of universal benchmarking standards to evaluate the real-world
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viability and longevity of ML-driven energy management and prognostic systems. Pursuing these directions will
be pivotal in achieving the safe, efficient, and widespread commercialization of Al-enhanced fuel cell vehicles.
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ADAS Advanced Driver FCs Fuel Cell system
Assistance Systems FTP Federal Test Procedure
AE Autoencoder G
Al artificial intelligence GBRT Gradient Boosting
AFCs alkaline fuel cell Regression Tree
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APF artificial potential field Regression
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DC direct current

DDPG Deep Deterministic
Policy Gradient

DFC Dual-stack fuel cell
DFT density functional theory

DL Deep learning Lab Laboratory/Test Bench
DMSC dual metal site Li Light Detection and
DNN deep neural networks ging

DP Differential privacy LRMPC learning-based robust
DQL Deep Q-Learning model predictive control

DQL double QL algorit LR Linear regression

DQN Deep Q-network LSTM Long short-term
DRL Deep Reinforcem: memory
learning LSTM-RNN long-short-term
D-S Dempster-Sliafer memory recurrent neutral
DT Decisi Ba Ensegb network
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MBRL model-based RL
MCFCs Molten carbonate fuel
cell

gement MFCs multi-stack fuel cell
system

Network MLR Multi-Linear Regression
i ML Machine Learning

F N

FCHEVs fuel cell hybrid NARNN nonlinear

electric vehicles autoregressive neural network
FCEVs fuel cell electric NEDCs New European
vehicles Driving Cycle

NMF non-negative matrix
factorization

(0]

ORR Oxygen Reduction
Reaction

OS-ELM online sequential
extreme learning machine

Experience

orosulfonic Acid
reventive maintenance

Q-Learning

RD The data types are Real
Data

RDC Real Driving Conditions
RDE Real Driving Emissions
RQ Research Question

RF Random Forest

RL Reinforcement learning
R&D research and
development

RNN Recurrent neural
network

RtF Run-to-failure

RUL remaining useful life
REs Renewable energy
sources

S

SAE sparse autoencoders
SARSA State Action-
Reward-State-Action

SD Synthetic Data

Sim Simulation/Model

SOC state of charge

SOFCs Solid oxide fuel cell
SOH state of health

SVM Support vector machine
SVR vector machine
regressor

T

TD3 Twin Delay Deep
Deterministic Policy Gradient
t-SNE t-distributed stochastic
neighbor embedding

U

UAYV Unmanned Aerial
Vehicle

UC ultracapacitors

UDC unidirectional converter
(buck or boost converter)
UDDS Urban Dynamometer
Driving Schedule

V,W

VMSs variable message signs
WD wheel D
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