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ABSTRACT 
This paper reviews the current progress and outlook of various applications of machine learning 
techniques in the context of hydrogen fuel cell electric vehicles. Emphasizing the importance of 
efficient energy management systems, it presents a detailed comparative analysis of recent 
developments. Key research works on machine learning-based energy management systems are 
discussed, including the use of the Twin Delayed Deep Deterministic Policy Gradient algorithm, 
which has demonstrated up to 28% reduction in overall operational costs. Moreover, the review 
includes machine learning -based energy management systems approaches that account for fuel 
cell degradation, an area receiving growing attention due to its impact on performance and 
longevity. Notably, reinforcement learning strategies have achieved improvements in fuel 
economy of 5.7% and reductions in fuel cell degradation rates by 4.5%. In addition, robust 
machine learning -based prediction models are highlighted for their effectiveness in data-driven 
fault diagnosis, contributing to a 13.9% reduction in fuel usage during the Federal Test 
Procedure 75 Driving Cycle and a 14.32% reduction in the New European Driving Cycle, along 
with carbon dioxide emissions cut to less than 26.4%. Despite this progress, existing review 
papers seldom address the use of machine learning for predictive maintenance in the automotive 
sector, nor do they adequately consider functional safety aspects. This dual gap underscores the 
novelty and relevance of the present study. Furthermore, this work uniquely explores the 
integration of machine learning with smart traffic management systems to optimize hydrogen 
fuel cell electric vehicle operations and critically examines the defies and potential solutions for 
advancing hydrogen refueling infrastructure. The paper concludes by discussing major ongoing 
challenges and offering perspectives for future research in this transformative field. 
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1. Introduction 
The transportation industry stands as one of the primary contributors to the generation of detrimental 

emissions. Indeed, the use of fossil fuels by Internal Combustion Engine vehicles (ICE) leads to significant 
environmental impacts due to the emission of harmful pollutants and raises growing concerns about the depletion 
of future resources [1], [2]. To address these issues, numerous automobile manufacturers, including Toyota, 
Nissan, Fiat, and others, have been actively promoting recent electric automobiles powered by environmentally 
friendly transportation innovations for several generations, as well as hydrogen-powered fuel cell electric vehicles 
[3]. Indeed, fuel cell hybrid electric vehicles and hydrogen fuel cell vehicles (FCEVs and FCHEVs) make some 
contributions to greenhouse gas emissions, making them a viable option for addressing environmental concerns 
[4].  

Fuel cell hybrid vehicles often have fuel cells (FC) as their primary energy source and ultracapacitors or 
batteries as backup energy sources [5], [6], [7], [8]. Consequently, the function of supplemental power supply 
remains essential. Ultracapacitor and battery can both be useful as auxiliary energy sources [6], [7]. When there’s 
a strong need for power, batteries can capture extra energy and use it to power the system alongside to fuel cell 
[9], [10]. Ultracapacitors can provide prompt attention to sudden ivariations in load requirements thanks to their 
features of quick dynamical response, rapid recuperation of energy, and enhanced specific power. There are 
currently three basic system architectures for FC hybrid cars. The initial kind is a hybrid system consisting of 
batteries and FC. The other type integrates ultracapacitors and fuel cells. The last one was comprised of 
ultracapacitors, batteries, and FC [11]. One of the more commonly used forms of FCHEVs involves the 
integration of FC and batteries. This integration is driven by limitations in the rate at which the fuel cell system 
can adjust its energy output and a need for regenerative braking. As a result, an additional battery storage system 
is frequently employed to exchange high dynamic power [12], [13], [14], [15], [16]. he hybrid battery can 
instantly supply the high power needed for the compressor and other Balance of Plant (BOP) components[12], 
[13], [14], [15], [16]. Therefore, it is not an optional add-on but a core enabling technology for making FCEVs 
efficient, dynamic, and competitive in real traffic conditions. [12], [13], [14], [15], [16]. 

Consequently, fuel cell system rated power was reduced to align with an appropriate power value, while to 
accommodate peak iipower demands, the rated power of the battery is customized through acceleration and 
regenerative braking periods. An energy management system that coordinates the interaction between both 
systems (fuel cells and batteries) is able to optimize hydrogen utilization, respecting different component 
restrictions [3], [6], [7].  

The issue of energy management is crucial. Therefore, it is imperative to employ suitable control strategies 
encompassing prediction, control, energy management, cell design enhancement and optimization, as well as 
addressing PEM fuel cell durability and performance in these vehicles [17], [18], [19], [20]. The two papers [16], 
[17] while focused on microgrids, provide a critical methodological framework directly transferable to FCEV 
energy management. In [17], [18], [19], [20], a novel control strategies is introduced in and explicitly designed 
for the FCEV application. 

To achieve these objectives, researchers are increasingly focusing on the application of machine learning 
techniques to enhance fuel cell durability, reduce hydrogen consumption, lower fuel economy costs, and achieve 
an optimal equilibrium between battery charging and discharging, among other objectives. Moreover, within the 
automotive sector, maintaining functional safety throughout a product's lifecycle while managing maintenance 
expenses has emerged as a significant hurdle. An essential strategy to address this challenge involves the 
implementation of machine learning (ML) for predictive maintenance (PdM) [21], [22]. Another trendy concept 
in the realm of managing large-scale vehicular traffic issues is the Intelligent Transportation System (ITS), which 
is designed to ensure safety, efficiency, and sustainability. Machine learning is used with current traffic control 
systems in ITS to provide real-time strategies for maintaining smooth traffic flow. Furthermore, various 
optimization techniques have been developed for intelligent traffic police management and deployment [22], [23].     

The present review paper deals with various applications of machine learning techniques in the context of 
hydrogen fuel cell vehicles. To ensure comprehensive knowledge, several articles were inspected through 
searches conducted on reputable publishers' search engines, encompassing a wide range of sources. Web of 
Science, Scopus, and IEEE Xplore were among the primary electronic databases that were searched because of 
their reputation for covering engineering fields. A combination of keywords and Boolean operators specific to 
the syntax of each database was used in the search approach. Basic searches comprised ("[Fuel Cell Electric 
Vehicle]", ("[Machine Learning Application]"), and ("[Energy Management System]"), combined with the AND 
operator to refine the results. The search focused on peer-reviewed journal papers and conference proceedings 
published in English between 2015 and 2025. An initial screening of titles and abstracts was conducted to find 
relevant research, after which the full texts of shortlisted publications were retrieved and reviewed for final 
inclusion based on their relevance to the study's objectives. This procedure resulted in the identification and 
synthesis of 127 essential papers, which served as the foundation for this evaluation. 
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This review explores the applications and possibilities of ML in the context of cell modeling and 
optimization, energy management, system control, and the durability and implementation of PEMFC. The paper 
focuses also on key challenge areas in fuel cell hybrid electric vehicles (FCHEVs) to the specific Machine 
Learning (ML) techniques being applied internationally to solve them. 

For example, in the field of system health monitoring advanced deep learning architectures like 
Convolutional Neural Networks paired with Long Short-Term Memory networks (CNN-LSTM) are used to 
reliably anticipate and diagnose faults and voltage degradation [24]. Simultaneously, Deep Reinforcement 
Learning (DRL) algorithms have outperformed conventional energy management techniques by adaptively 
optimizing energy sharing between the battery and fuel cell to optimize hydrogen economy [25], with more 
recent developments focusing on multi-objective optimization as well as degradation minimization [26]. Above 
the vehicle level, machine learning is transforming basic materials research; high-throughput experiments are 
being guided by neural network models and Bayesian optimization to find new, high-performance catalyst 
materials and membrane electrode assemblies with lower platinum loading [27], [28]. Lastly, enhanced control 
techniques for essential auxiliaries such as the air compressor and thermal management system are being made 
possible at the subsystem level by data-driven models [29]. 

In several studies, ML-based EMS for FCHEVs has been applied to enhance the efficiency of onboard power 
utilization by distributing energy more evenly, minimizing hydrogen consumption, and preventing fuel cell 
deterioration [30], [31]. For example, in [32] authors created an optimal energy management approach for 
FCHEVs based on a classifier fusion algorithm (KNN, SVM, and Naive Bayes) to achieve optimum 
performance. Individual classifiers, including KNN, Naïve Bayes, and SVM, give accuracy percentages of 92%, 
94%, and 96%, respectively. Finally, they reached a precision percentage of 98% after combining these three 
features. Specifically, RL-based EMS has quickly gained significant attention because it enables efficient 
solutions to challenging EMS issues by using methods like deterministic policy gradients and deep neural 
networks. With its adaptability and instantaneous capabilities, reinforcement learning has emerged as a 
successful method in FCEV EMSs. Significant progress has been achieved since RL algorithms were first used 
in car EMS, and several researchers are working to alter conventional RL algorithms to address underlying 
problems. These changes have made it possible to use these algorithms in automobile EMS more successfully. 
In [33] researchers combined Q-learning with double deep Q-learning to track the necessary SOC references and 
achieve sufficient fuel efficiency in various driving circumstances. In [34], authors introduced the deep Q 
network (DQN) algorithm and multiple objectives in the aim to improve the economy of the hybrid system by 
16.0 percent. Researchers proposed in [35] the Deep Q-Network with primarily experience with the aim of 
reducing fuel economy by 0.53 percent; FC degradation reaches 88.73 percent. Compared to the dynamic 
programming (DP)-based technique, computing efficiency is increased by more than 70%. Scientists [36] 
suggested in [30] an advanced DRL-based Twin Delay Deep Deterministic Policy Gradient (TD3) to maintain 
minimal hydrogen usage while reducing FC deterioration. TD3-EMS indicates an improvement in the overall 
operational cost of up to 28%. Authors [37] developed in [31] a novel RL algorithm that can learn in "multi-
steps". Thus, the vehicle’s energy efficiency improved from a starting level of 34 percent to 44 percent. For the 
same driving conditions, energy savings of at least 7.8% were achieved. In [38], researchers exposed a DRL 
algorithm. As results, the suggested DRL-based EMS's fuel economy improved by an average of 3.63%. The 
average FC deterioration rate is reduced by 63.49 percent, and EMS's convergence rate has improved by an 
average of 30.54 percent. In [39], Scientists integrated a DRL-based twin delayed deep deterministic policy 
gradient algorithm to optimize vehicle-driving costs. As a result, this approach allowed for an increased training 
efficiency of 54.69%, a greater learning capacity of 36.82%, and 2.45% less than the whole car. More recently, 
authors [40] presented an EMS based on scalable reinforcement learning in a novel environment (SLNE) to 
enhance the FC lifespan and reduce fuel consumption. The suggested SLNE-based EMS improves fuel efficiency 
by about 5%, reduces the rate of fuel cell degradation by around 4.5%, and increases the lifetime of the lithium-
ion battery compared to DQN-based EMS [41], [42]. 

For cell model and optimization, the prediction of fuel cell voltage, membrane hydration level, and 
membrane resistance is accomplished using support vector machine regressor (SVR) algorithms [43]. Results 
indicate that SVR is beneficial for modeling fundamental regressions as it significantly reduces the 
computational load without sacrificing accuracy and achieves an R-squared value of less than 0.99 for each 
predicted variable. Concerning predictive maintenance using machine learning for fuel cell vehicles [21], [22],  
the SVM model's accuracy ranged from 98.5% for the fuel system to 96.6% for the ignition and cooling systems, 
with the fuel system showing the highest accuracy. Regarding the machine learning-based traffic management 
system [23], [30], [31], simulation results showed OS-ELM performed better than the other approaches in 
computational precision and effectiveness. In fact, it was predicted that daily energy savings of up to 12.2% 
could be achieved. Finally, this paper critically discusses the perspectives of developing machine learning 
strategy based on a hydrogen fueling stations for FCHEV production and storage.  

While several studies have explored the applications of machine learning (ML) in fuel cell hybrid electric 
vehicles (FCHEVs), focusing on cell modeling and optimization [37], energy management [39], system control 
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[35], and the durability and implementation of PEMFC [36],[38], key areas remain underexplored. In particular, 
the use of ML for predictive maintenance (PdM) of automotive components, as well as the integration of 
functional safety considerations throughout the product lifecycle, are seldom addressed in literature. Yet, 
managing maintenance costs while ensuring functional safety poses a significant challenge in FCHEV systems. 
This paper offers a focused review of ML applications specifically tailored to FCHEVs, setting it apart from 
broader reviews in the automotive domain. Key contributions include an in-depth analysis of reinforcement 
learning (RL)-based energy management systems, ML-driven predictive maintenance strategies, and deep 
learning approaches for processing complex datasets relevant to FCHEVs [44], [45]. In addition, this review 
examines the role of ML in supporting the development and optimization of hydrogen fueling infrastructure, 
outlining promising directions for future research and deployment in the FCHEV landscape [46], [47]. 

The importance of ML in various transport applications and more generally in Industry 4.0 is rising, due to 
the ongoing energy transition; however, this implies novel hazards that are possibly faced by ML. In fact, the 
ML models' sensitivity to adversarial assaults [48] poses serious safety issues, since malicious perturbations can 
cause severe system failures. Furthermore, the inherent opacity of complex models requires an emphasis on 
explainability to foster confidence and enable debugging, particularly in safety-critical applications [49]. This is 
exacerbated by the issue of out-of-distribution detection, which needs models to consistently manage the 
unpredictable character of real-world settings and recognize when they are unclear [50]. On the other hand, the 
energy transition necessitates the development of new technologies such as large-scale hydrogen storage and 
battery systems, both of which pose previously unidentified safety challenges and hazards in their manufacturing, 
handling, and storage [50]. In recent years, several deep learning (DL)-based FD/D algorithms have evolved for 
fault detection and diagnosis of induction motors [51], allowing autonomous feature engineering and learning 
and therefore reducing the disadvantages of classic ML-based methods. Finally, the data-driven nature of these 
systems raises issues about security and privacy in industrial IoT ecosystems, necessitating solutions such as 
federated learning to safeguard critical operational data [52]. Therefore, the pursuit of ML performance must be 
intrinsically linked with the development of robust, interpretable, and secure systems to avoid these dangers and 
ensure trustworthy adoption. 

To highlight the originality of this work, a comparative analysis was carried out against several existing 
review papers in the field. This comparison, summarized in Figure 1, identifies the thematic areas treated in prior 
studies and clearly emphasizes the exclusive contributions of the present review. 

[69] [43] [81] [49] [52] [68] [46] [45] [44] [43] [42] [28] [41] [40][44][69][47][39][25][45][46][48][84][50][49][51]
This 

paper

 
Figure 1. Mapping of Addressed Topics in Prior Reviews and the Novelty of This Study 

This comprehensive review is structured to provide a systematic analysis of the integration of machine 
learning (ML) in fuel cell hybrid electric vehicles (FCHEVs). To guide the discussion and delineate the scope of 
this work, the paper is designed to answer the following specific research questions (RQs): 

RQ1: what is the current state-of-the-art in applying ml techniques for the core functions of FCHEVs, such as 
energy management, fault diagnosis, FC modeling and performance and smart traffic management? 
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RQ 2: what are the most significant technical and practical challenges hindering the widespread deployment 
of ml in this domain? 

RQ 3: based on the identified challenges, what are actionable recommendations for researchers and industry 
practitioners to overcome these barriers? 

RQ 4: what are the promising future research directions and prospects for next-generation ML algorithms 
(e.g., deep reinforcement learning, transfer learning) to enhance the performance and durability of FCHEVs? 

The paper is structured into three sections, beginning with an overview of machine learning applications in 
fuel cell electric vehicles. It proceeds to provide a concise examination of ML methods in the context of FCHEVs, 
and then an exposition of the exploration of ML applications for FCHEVs especially in energy management 
system, fuel cell degradation, modeling and performance, FC vehicle diagnostics and maintenance, fuel efficiency 
and emissions, advances in driver assistance systems, safety technologies and smart traffic management. Finally, 
the paper concludes by offering remarks and outlining the future research scope. 

2. Machine learning applications in Fuel Cell electric vehicles 

After the preceding section's general review of machine learning's function in fuel cell hybrid electric cars, 
it is crucial to examine the particular algorithmic techniques that make these applications possible. Therefore, 
this section methodically analyzes the machine learning methods used in the area. 

2.1. Searching on machine learning Methods 
ML is an artificial intelligence (AI) whose its approaches can be categorized into four distinct categories based 

on the types of data that need to be forecasted, as seen in Figure 2 [53], [54]. 

Supervised Learning Reinforcement 
Learning

Unsupervised Learning

Classification Regression Clustering Association Decision-Making

Semi-Supervised Learning

Classification Regression

Machine Learning

- Q-Learning
- R-Learning
- TD-Learning
- State-Action-Reward
-State-Action (SARSA)

- Factor Analyses
- Principal components 
Analyses (PCA)
- t-distributed stochastic 
neighbor embedding (t-SNE)
 - Non-negative matrix 
factorization (NMF)

- K-Means Clustering
- K-Medoids
- Hierarchical Clustering
- Agglomerative Hierarchical Clustering
- Mean Shift Clustering
- Density based spatial clustering of 
applications with noise
(DBSCAN Clustering)
- Gaussian Mixture

-Self-Training 
Regression
-Co-Training 
Regression

-Self-Training
-Co-Training

- Linear Regression
- Non linear Regression
- Lasso Regression
- Ridge Regression
- Support Vector Regression (SVR)
- Decision Tree Regression
- Neural Network Regression

- Logistic Regression
- K-Nearest Neighbor (K-NN)
- Support Vector Machine (SVM)
- Neural Network
- Discriminant Analysis
- Naive Byes
- Decision Trees
- Random Forest

 
Figure 2. Machine learning techniques 

2.1.1. Supervised learning.  In this technique, the software's propensity to predict the output data relates to the 
labeled data and specified variables. In this approach, the output, input, and data are defined. Regression and 
classification are the two main problems under supervised learning. Some well-known regression methods in this 
domain include regression trees, polynomial regression, non-linear regression, and linear regression, among 
others. Several popular methods for classification consist of K-Nearest Neighbor (KNN), Neural Network, Naive 
Bayes, Random Forest, Decision Trees, Logistic Regression, Support Vector Machines (SVM), Linear 
Discriminant Analysis, and Linear Classifiers. 

2.1.2. Unsupervised learning.  This technique develops tagged data by combing datasets for any significant 
relationships. The preset output is derived from trained data that can forecast or suggest further data. Unlike 
supervised learning, unsupervised machine learning doesn't require a human to monitor the model in real time 
[55]. Thus, it may be further divided into two categories: clustering and association. Algorithm examples include 
autoencoders, PCA, DBSCAN, and K-means clustering. Applications include recommendation engines, anomaly 
detection, and market segmentation. 

2.1.3. Semi-supervised learning.  Semi-supervised learning is an algorithm that combines the first two 
techniques. Although the algorithm may freely examine the information independently and gain more 
understanding of the data set, it labels training data [54].  

2.1.4. Reinforcement learning.  The Reinforcement learning (RL) methodology continuously improves its 
model by gathering feedback from past iterations in a loop, unlike supervised and unsupervised learning methods. 
As a result, after the model is created from training and test data, it does not approach an indefinite endpoint. In 
fact, Q-Learning, R-Learning and TD-Learning algorithms are employed in reinforcement learning. The method 
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will be detailed in the next section because it is frequently utilized in research papers for control and energy 
management systems in vehicles [21], [56].   

2.2. Machine learning applications for fuel cell electric vehicle energy management 
system 

A FC vehicle's energy management system (EMS) is a crucial operational necessity. As mentioned in [57], 
the FCEVs have a choice of two to three power sources, including FCs, batteries, and UCs. The best source for 
the time and amount of energy needed is chosen by the EMS. Because of its quick start-up, it may be presumed 
that the battery satisfies all short-duration pulse energy needs for quick acceleration. However, fuel cell systems 
offer a more reliable and long-lasting source of energy. These systems are operated gently to produce the energy 
required to prevent harm. The EMS must actually make quick decisions based on information from the car and 
the driver [58]. 

In this context, one of the learning-based energy management systems for FC cars is reinforcement learning. 
For FC vehicles, RL algorithms with modest or large data inputs are frequently used in EMS, which are:  

- The Q-Learning method for fuel cell hybrid automobiles is proposed in several research papers [58], [59] 
with the aim of reducing hydrogen and fuel consumption and obtaining optimum FC efficiency while taking into 
account the FC lifetime. In [59], a Q-learning algorithm with dual reward functions is exposed in order to lessen 
the strain on the system and ensure secure and steady FCHEV operation. This approach makes use of a three-level 
effectiveness enhancement that was put to the test in an experiment. Results have shown reduced hydrogen and 
fuel consumption. Then, a hierarchical energy management approach based on RL data-driven FCHEV is 
suggested in [59]. An association of both Q-learning and Markov decision algorithms is developed in this study. 
The results demonstrate optimum FC efficiency, reduced computational time, and fuel consumption savings, 
which were evaluated under experimental conditions. After that, an efficient Q-learning-based reinforcement 
learning technique is analyzed in, which takes into account the FC lifetime. The method's performance time proved 
its adaptability for real-time EMS, especially with three different drive cycle sources under variable conditions. 

- The Q-network algorithm, designed for energy management control in FC hybrid automobiles, is proposed 
in some papers in order to minimize hydrogen usage and improve fuel cell lifetime [60], [61], [62]. In [62], the 
authors introduced a multi-objective DQN algorithm to reduce hydrogen usage and enhance fuel cell lifetime. The 
results of the proposed DQN algorithm demonstrate significant improvements in convergence speed, fuel 
consumption, and durability when compared with the Q-learning algorithm. Additionally, the DQN algorithm is 
utilized in [60] in untrained situations and unknown driving environments. The outcomes reveal a substantial 
decrease in the amount of hydrogen consumption compared to differential privacy (DP) -based methods which 
present an increasingly important tool in deep learning. In [61], the authors aimed to minimize hydrogen usage 
and assess the adaptability of the algorithm. Furthermore, FC Hybrid buses adopt a deep reinforcement learning 
(DRL) technique based on DQN, as developed in [63]. The results show around 3.7 percent and 5.7 percent rise 
in the usage of hydrogen compared to EMSs, whose methods are DP- and RL, respectively.  

- The DDPG method for energy management is proposed in the context of fuel cell hybrid cars in order to 
reduce fuel consumption and extend FC lifetime in FCHEVs. In [64], a DDPG is developed in order to achieve 
control over energy management. The algorithm enhanced the control effect by utilizing the FCs' efficiency 
features. In this work, the authors attempted to increase the computational effectiveness of DDPG. The outcome 
demonstrates an optimal adaptive energy management method with stable convergence. In [65], DQL (Deep Q-
Learning) and DDPG methods are designed to reduce fuel consumption and extend FC lifetime in FCHEVs. In 
this study, the DDPG algorithm was assessed for four different drive cycle sources using a multi-objective reward 
operation that took into account fuel economy and energy fluctuation. The DDPG approach proves that it is 
adaptable for multi-cycle usage compared to deep reinforcement learning. Further, in [36], a DDPG algorithm is 
applied with the aim of regulating the battery SOC and assisting with energy consumption in various drive cycle 
sources. In [37], authors suggested a DDPG approach for energy allocation according to acceleration, the battery’s 
SOC, and car speed to enhance fuel consumption. Increased FC durability and reduced hydrogen consumption are 
revealed by the results. It's also important to remember that the DDPG strategy is affected by unsteady training 
compared to the other mentioned. 

- The Twin Delayed DDPG TD3 algorithm, applied to fuel cell cars, is proposed in several research papers. 
For example, in (Habib, 2024), this approach is more reliable and economical. The disadvantage of this algorithm 
is its lengthy learning period, which makes it unsuitable in real-time vehicle EMS. In addition, the TD3 algorithm 
for intelligent transportation systems is recommended for various automobile configurations to offer agents other 
beneficial signals related to the environment.  

To conclude, DQN operates more effectively than Q-learning algorithms. Despite DQN's tendency to 
overestimate Q-function values, the results demonstrate superior convergence compared to Q-learning. The 
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outcomes show that the energy management system based on DQN is more flexible than the other mentioned. The 
TD3 technique is necessary to maximize hydrogen use using an RL-based approach. 

Table 1 provides a list of machine learning-based EMS algorithms employed in FCHEVs where reinforcement 
learning, including deep RL, Q-learning, and deep reinforcement learning (DRL), is the most often employed 
machine learning approach in EMS. Each cited study in this table has been divided into one of the three groups 
listed below : i) Real Driving Conditions (RDC) for research utilizing data from on-road vehicle tests, ii) 
Laboratory/Test Bench (Lab) for research projects that use data from component test benches, and iii) 
Simulation/Model (Sim) for research projects that do not use physical hardware validation and instead depend 
solely on simulation models (such as Simulink). The same applies to the following tables (Table 2 and Table 3). 

Researchers are employing RL approach in EMS in order to achieve minimal computing costs, optimum fuel 
cell efficiency, and economical energy use. 

For example, in [67], a new learning-based robust model predictive control (LRMPC) energy management 
system according to ML approaches for a 4WD FCEV is introduced. The state observer built within the LRMPC 
can accurately reflect SOC changes using the fundamental ML techniques in the supposed LRMPC. In [68], 
model-based reinforcement learning was applied to fuel cell electric car energy management to minimize hydrogen 
fuel use. The results of the fuel consumption simulations demonstrate that the suggested method uses less fuel 
than the rule-based approach. Then, in [69], a novel learning approach by enhancing the value of fuzzy rules-based 
energy management approaches for hybrid electric cars  supplied by fuel cells is presented to decrease hydrogen 
use and maintain continuous battery operation. In various publications [33], [34], [38], [70], [71], Q-learning is 
recommended as a way to lower fuel usage in FCHEVs. The suggested technique tracks the related SOC references 
and delivers acceptable fuel efficiency in a variety of driving situations. 

The study [71] reveals an independent Q-learning (IQL)-based EMS, a multi-agent reinforcement learning 
algorithm, in the same setting. Its goal is to decrease the amount of hydrogen used and preserve the battery’s state 
of charge (SOC). The generalization and fault-safe operating capabilities of this method are other advantages. 

The deep reinforcement learning approach for EMS is largely used in the literature to mainly optimize vehicle 
driving costs and suppress system degradation. These papers propose optimum power control using deep 
reinforcement learning with the goal of reducing the total amount of hydrogen consumed and battery and fuel cell 
deterioration. 

The DRL algorithms used in these papers are Deep Q-Networks [34], [34], [35], [38], TD3 [36], [39] and 
DDPG [34], [38], [64], [65], which are applied in EMS to reduce hydrogen consumption and suppress system 
degradation. 

After that, an efficient energy management approach by combining SVM, KNN, and the Naive Bayes 
technique is created in this work [32]. By combining these proposed techniques, the performance accuracy of the 
optimization approach is improved. Moreover, these individual classifiers, including KNN, Naïve Bayes, and 
SVM, give accuracy percentages of 92%, 94%, and 96%, respectively. An accurate percentage of 98% was 
achieved after combining these three features. 

More recently, a scalable reinforcement learning-based energy management approach for fuel cell electric 
cars in a new area (SLNE) was created in this study [40]. The suggested SLNE-based EMS improves fuel 
efficiency by about 5%, reduces the rate of fuel cell degradation by around 4.5%, and increases the lithium-ion 
battery's lifetime in comparison to the DQN-based EMS. In contrast to current learning algorithms and improved 
methodologies, suggested energy management techniques based on RL may attain high computational 
effectiveness, decreased fuel cell energy changes, and optimal FCHEV fuel economy.  

 
Table 1. Overview of the works considered for the FCHEV's energy management strategy based on 

machine learning techniques 

Ref Application ML Method 
research Objectives Approach Data Set 

Validation 
Environment Results and 

Performance 

[38] FCEV 

New hybrid 
degradation 
model of 
PEMFC : 
-Extreme 
Learning 
Machine (ELM)  
-Genetic 
Algorithm 
(GA). 

 -build each 
sub-waveform 
degradation 
model. 

PEMFC 
wavelet 
analysis 

Real-data 
analysis 
from three 
PEMFCs 
from three 
FCEVs 

Comprehensive 
simulations on a 
modeled fuel cell 
hybrid vehicle 
system over 
various driving 
cycles. 

PEMFC APE 
(Absolute 
Percent 
Error) 
degradation 
model < 2%. 



Slouma, S., Ben Said, M., et al. 
Recommendations and Prospects of Machine Learning…  

Year 2026 
Volume 14, Issue 1, 1130641 

 
 

Journal of Sustainable Development of Energy, Water and Environment Systems 8 

 

[74] Transportation 
Electrification 

A specific 
PEMFC failure 
detection 
technique 
combines: 
Evidence theory 
of Dempster-
Shafer (D-S) 
and the Extreme 
Learning 
Machine (ELM) 

-improve test 
accuracy and 
running speed  
- reduce the 
duration of the 
training 
-solve data-
driven 
diagnosis of 
failures 
problems 

The 
PEMFCs 
model of 
failure 
diagnosis is 
created using 
both of: 
-online 
sequential 
ELM 
method. 
-kernel ELM 
algorithm  

Real data 
from 3 
PEMFCs 
in 3 
FCEVs -
data 
fusion 

Software 
simulation on a 
modeled fuel cell 
hybrid vehicle 
system, using 
standard driving 
cycles for 
validation. 

-average 
recognition 
rate 98.70% 
-operation 
time 0.2011 s 

[75] FCEV 

FC degradation 
model based on 
ML machine 
learning 
techniques 

-evaluate the 
degradation 
MODEL 
impacts in FC 
stack about the 
fuel usage of the 
hydrogen fuel-
cell buses 

 

a real 
driving 
cycle for 
Victoria 
City in 
Canada's 
British 
Columbia  
- dynamic 
simulatio
n since 
operating 
condition  

Simulation 
environment 
under various 
driving cycles. 

-The other 
buses' fuel 
use is the 
lowest, but 
this one has 
increased by 
more than 
24%. 

[76] 
hydrogen 
passenger 
vehicles 

degradation 
PEMFC model 
based on 
machine 
learning 
algorithms 

 
 

-solve FC 
degradation  

by robust 
prediction 
techniques  
-reduce fuel 
consumption 
and total 
emission 

 

Simcenter 
Amesim 
software 
with real-
time 
dynamic 
simulation 
capability is 
used to 
calculate: 
-fuel use and 
FC 
deterioration  
-engine 
efficiency 

- 
FTP-75, a 
new 
European 
driving 
cycle 

Hardware-in-the-
Loop (HiL) / 
Laboratory (Lab) 

-In FTP-75 
and New 
European 
Driving 
Cycles, fuel 
consumption 
increased by 
14.32% and 
13.9%, 
respectively, 
with 
deteriorated 
PEMFC. 
-When 
compared to 
PEMFC 
without 
degradation, 
FC is 
expected to 
generate 
26.4% 
greater CO2 
emissions. 

From the reviewed works presented in Table 1, it can be observed that the primarily commonly employed 
ML technique in EMS is RL, particularly deep RL, employing various approaches. Generally, in the different 
applications discussed in the review, machine learning-based EMS is applied to enhance the efficiency of onboard 
power utilization by distributing energy more evenly, minimizing hydrogen consumption, and preventing fuel cell 
deterioration. 

Researchers are paying increased attention to RL-based EMS due to its advantages over competing methods, 
such as Q-learning, which is suggested as a means to reduce fuel consumption in FCHEVs, and deep reinforcement 
learning optimizes vehicle driving costs and mainly suppresses system degradation based on algorithms as follows: 
DQN, TD3, and DDPG. In order to enhance fuel cell efficiency, the reinforcement learning algorithm is currently 
experiencing a number of improvements in algorithm development. 

2.3.  Fuel cell degradation model-based machine learning techniques 
One of the major issues concerning hydrogen FC cars is FC degradation, a problem that can be addressed 

through reliable prediction methods such as machine learning. Models of fuel cell degradation developed in the 
literature can effectively solve databased fault diagnosis problems. These models have a significant impact on fuel 
efficiency and overall emissions. In [38], a novel hybrid PEMFC degradation model utilizing an Extreme Learning 
Machine (ELM) and Genetic Algorithm (GA) for FCEV is proposed. In [74], ELM and Dempster-Shafer evidence 
theory are used to create a new failure diagnosis approach for PEMFC systems to improve test accuracy and 
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shorten the training time. Then, in [75], Fuel cell degradation model is applied to enhance the performance of the 
bus. The effects of the FC stack's deterioration model on the fuel consumption of hydrogen-fueled buses are 
assessed using machine learning techniques. In [76], the evaluation of a deteriorated PEMFC stack for hydrogen-
powered passenger automobiles using ML techniques in actual driving situations is introduced by the authors. An 
overview of the studied publications relating to using machine learning techniques-based fuel cell degradation 
models for FCHEVs is presented in Table 2. 

Table 2. List of the reviewed works that utilize machine learning techniques-based fuel cell degradation models for FCHEVs. 
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Ref ML 
Method  Objectives Applicati

on Approach Data 
Set 

Results and 
Performance 

Validation 
Environmen
t 

[67] 

Learning-
based robust 
model 
predictive 
control 
(LRMPC)  

Suitable 
power 
distribution 
between 
several 
energy 
sources. 

4W
D (Wheel 
D) FCEV 

- ML techniques with 
high regression 
accuracy and 
outstanding 
generalization ability 
are taught offline: 
-To build the precise 
state observer for SOC. 

 

-Optimal 
control effect in 
potential energy 
savings 
- LRMPC has 
significant real-
time application 
capabilities. 

Real Driving 
Conditions (RDC) as it 
utilizes real-world 
operational data for 
validation. 

 

[68] 
Model-
based RL 
(MBRL) 

- 
Reduce 
hydrogen 
fuel 
consumption  
–ensure FC 
and battery 
efficiency 

Internal 
FC 
electric 
vehicle 
powertrai
n  

- RL is carried out in 
the context of the 
driving cycle profile to 
improve the control 
policy. 

Model 
developed 
as the 
learning 
process 
proceeds 
using input 
from 
experiences 
through  
standard 
driving 
cycles 

-Average fuel 
usage decreased 
by 5.7% 
compared to the 
rule-based 
technique. 

 
 

do not present primary 
validation 

[70] 
RL : 

-Q-Learning  
-python 

- 
Achieve 
power 
allocation 
FC and 
lithium 
batteries  

-
reduce fuel 
usage  

-keep 
battery 
SOC 
constant. 

FC/Battery 
HEV 

 

Application of Q-
Learning to: -Reduce 
Fuel Consumption and 
Ensure Battery 
Sustainability 

New 
European 
drive cycle 

- 
Effectiveness of  
Proposed 
method verified 

simulated hybrid 
electric vehicle model 
in a software 
environment 

[72] RL 

-Improve 
batteries 
lifetime  
-Minimizing 
the battery 
SOC 
variation. 

 

Fuel 
Cell/Batt
ery 
Hybrid 
Electric 
Vehicle 

Autonomously learn 
the optimal policy in 
real time through 
interaction with the on-
board hybrid energy 
system. 

 

Energy system 
efficiency 
improved 

 

simulated "rough 
pavement constraints" 
within a software-
defined environment 

[33] 

RL : 
- Q-

learning 
(QL) 

- 
Double QL 
algorithm 
(DQL) 

Optim
ization plan 
for PHEVs' 
internal 
energy 
distribution
.  

Pow
ertrain 
transmiss
ion type 

-Establishing the speed 
predictor using the Q-
learning (QL) 
technique 
-Double QL approach 
to develop an efficient 
offline controller that 
achieves the ideal 
power distribution 
SOC 
-a novel speed 
predictor is proposed, 
to create the bi-level 
energy management 
method. 

 

-The suggested 
solution tracked 
the necessary 
SOC references  
-while 
achieving 
sufficient fuel 
efficiency in 
various driving 
circumstances. 

Simulation 
environment 
(Simulink) for 
validation 

[73] 

Fuzzy rule 
value 
reinforceme
nt learning 

- 
Consider 
reducing 
hydrogen 
usage 
-continue 
running on 
battery 
power. 
- respond to 
changes in 
driving 
conditions 
and FC 

 

Using a fuzzy 
inference system, it is 
possible to: 
 -approximate the 
state-action value 
function. 
-allows the creation of 
a continuous state 
and/or action space. 

 

-The proposed 
method 
effectiveness to 
solve energy 
management 
issues is 
verified.  
-Faste and 
smooth 
convergence as 
well as strong 
environment 
change 
resistance are 
confirmed 

Validated on a 
simulated fuel cell 
hybrid electric vehicle 
model running 
standard driving 
cycles. 
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degradation
. 

[71] 

Multi-agent 
RL : 
Independent 
Q-learning 
algorithm 

-Maintain 
battery 
SOC  
-Minimize 
hydrogen 
consumptio
n 

 

FCHEV 

Fuel cell system with 
multiple stacks 
(MFCS) algorithm 
using numerous fuel 
cell stacks with low 
power (FCSs). 

 
(IQLS) 
learned 
offline in a 
well-
established 
model 
setting, 

-Good 
generalization 
and the capacity 
for fault-tolerant 
operation. 

 

Simulation (Sim) due 
to validation within 
software models using 
standard driving 
cycles. 

 

[59] RL 

Realize:  
-a low cost 
ofcomputati
on  
-a 
maximum 
FC 
efficiency 
-economics 
of energy 
usage. 

FC/batter
y/UC 
hybrid 
electric 
cars 

Structure of 
hierarchical power 
splitting used:  
- to reduce the size of a 
huge state-action range 
using an adaptive fuzzy 
filter. 

Based on 
testing data 
for 
numerous 
driving 
cycles and 
traffic 
scenarios, a 
power 
splitting 
scheme was 
developed. 

-High 
computing 
effectiveness, 
-Low power 
fluctuation, 
-Optimal fuel 
economy of 
FCHEV are 
achieved. 

 

do not present primary 
validation 

[34] 

DRL : 
- Using the 
deep Q 
network 
algorithm 
and multiple 
objectives 

-Reduce 
your use of 
hydrogen 
-suppress 
system 
deterioratio
n 

Fuel 
Cell/batte
ry Hybrid 
Powertrai
n 

Synergistic approach:  
-Compares optimal 
power management 
and battery size at the 
same time. 

 

- The most cost-
effective sizing 
parameters are 
found. 
-The economy 
of the hybrid 
system is 
increased by 
16.0 percent 
using a 
synergistic 
method. 

Sim: fuel cell hybrid 
powertrain model built 
in MATLAB/Simulink. 

[35] DRL : Deep 
Q-Network  

Achieve: 
-fuel 
economy  
-FCs 
degradation  
-hydrogen 
consumptio
n reduction 

 

Fuel cell 
hybrid 
electric 
car 

Deep Q-Network with 
first and foremost 
experience Replay is 
intended to minimize 
hydrogen consumption  
-The objective function 
incorporates the 
deterioration of FCs. 

 

UDDS 
driving 
cycle  

-Fuel economy 
reduces by 0.53 
percent.  
-FCs 
degradation 
reaches 88.73 
percent. 
-Degradation of 
FCs is 
effectively 
suppressed. 
-Compared to 
the DP-based 
technique, the 
computing 
efficiency is 
increased by 
more than 70%. 

FCHEV longevity is 
developed and tested 
using a high-fidelity 
simulation model of 
the vehicle powertrain. 

[34], 
[38] 

RL with  
-Three main 
RL 
algorithms 
are applied 
Q-learning, 
deep 
Qnetwork 
and deep 
deterministi
c policy 
gradient 
-Multi-
objective 
control 

Achieve: 
-fuel 
economy 
-fuel cell 
longevity 
according 
to the FC 
deterioratio
n theory 

FC 
hybrid 
vehicles 

Three common RL 
algorithms are used in 
order to enhance 
EMS's functionality. 

 

-The 
performances of 
RL-based EMS 
were assessed 
and achieved. 
-FCHV fuel 
economy, FC 
durability, and 
the EMS 
adaptability are 
verified. 

 

Comprehensive 
simulations on a 
modeled fuel cell 
hybrid vehicle system 
over various driving 
cycles. 
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[64], 
[65] 

DRL: 
DDPG 

-Reduce 
overall 
travel 
expenses  
-Increase 
the DFC's 
durability. 

Dual-
stack fuel 
cell 
(DFC) 
and 
battery 
logistics 
vehicle 

EMS working with the 
DDPG and APF 
function: 
–artificial potential 
field (APF) to ensure 
the upkeep of SOC and 
the effectiveness of 
DFC 
-DDPG, leveraged to 
support the distribution 
of power among 
different energy 
sources 

 

-Efficient at 
adjusting to the 
dynamic price 
changes of 
different energy 
sources 
-Advantageous 
to lower overall 
travel expenses 
and prolong the 
life of the DFC 

Laboratory (Lab) 
based on its focus on 
experimental PEMFC 
optimization. 

 

[36] 
DRL-

TD3 
 

-Reduce the 
amount of 
hydrogen 
used and 
the expense 
of FC aging 
-Achieve a 
good 
balance 
between 
battery 
charging 
and 
discharging 

FC 
hybrid 
railway 
vehicles 

Advanced DRL 
method based TD3 to 
obtain a promising 
EMS 

 
 
 

-Model for 
online 
aging 
estimation 
of fuel cells. 
-Real 
measured 
speed 
profiles  

Battery 
charging is 
achieved by 
TD3-EMS. 
-Maintaining 
minimal 
hydrogen usage 
whereas 
reducing FC 
deterioration. 
-TD3-EMS 
indicates an 
improvement in 
the overall 
operational cost 
of up to 28%. 

The validation is 
performed on a 
detailed simulation 
model of a railway 
vehicle powertrain. 

[37] 

RL 
-‘model-
free’ 
predictive 
EMS  

 

- 
Allows the 
energy 
managemen
t control 
policy to be 
continuousl
y improved 
online. 

Off-
highway 
linked 
electric 
vehicle 

A novel RL algorithm 
that can learn in "multi-
steps" (Sum-to 
Terminal, Average-to-
Neighbor Recurrent-
to-Terminal) to permit 
the EMS online 
optimization and 
control policy for the 
rest of one's life. 

Online 
optimizatio
n 

-Vehicle’s 
energy 
efficiency 
improved, 
which, after 5 
hours of 35-step 
instruction, 
went from a 
starting level of 
34 percent to 44 
percent. 
-The forecast 
horizon length 
was extended by 
71% (in real-
time computing, 
from 35 to 65 
steps with a 1-
second 
interval);  
-For the same 
driving 
conditions, 
energy savings 
of at least 7.8% 
were achieved. 

Real Driving 
Conditions (RDC) 
collected from an 
electrified off-highway 
vehicle. 

[38] DRL 

-To 
improve FC 
durability 
ased on a 
FC 
degradation 
model. 
-optimize 
the control's 
real-time 
performanc
e 
-improving 
fuel 
economy  

FC 
hybrid 
buses 
(FCHBs)  

-DRL algorithm is 
limited to increase fuel 
economy  
-Experience Replay 
with Prioritization 
(PER) use to enhance 
DRL algorithm's 
convergence 
performance. 

 

-An 
improvement of 
suggested DRL-
based EMS's 
fuel economy by 
an average of 
3.63% 
-The average FC 
deterioration 
rate is reduced 
by 63.49 
percent. 
-The suggested 
DRL-based 
EMS's 
convergence 
rate has 
improved by an 
average of 30.54 
percent. 
-The suggested 
DRL-based 
EMS's 

Comprehensive 
simulations on a 
modeled fuel cell 
hybrid vehicle system 
over various driving 
cycles. 
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2.4.  Modeling and performance for Fuel cells with a Polymer Electrolyte Membrane 
using machine learning techniques 

Machine learning techniques are widely employed in the fields of chemistry and materials science to explore 
novel material characteristics and create materials for future generations [77], [78], [79]. Concurrently, 

adaptability is 
validated On a 
novel driving 
cycle. 

[39] 
 

DRL -twin 
delayed 
deep 
deterministi
c policy 
gradient 
algorithm- 
based (TD3) 

 

-Optimize 
vehicle 
driving cost  

FC 
hybrid 
electric 
bus 
(FCHEB) 

A novel EMS  
- To properly make use 
of the FCHEB's 
economic potential, the 
strategy framework 
must incorporate the 
restrictions of battery 
aging and FC power 
variance. 

Actual 
driving 
conditions 
gathered as 
training 
data. 

TD3-based 
EMS compared 
(DDPG)-based 
EMS has :  
-increased 
training 
efficiency by 
54.69%, 
-36.82% greater 
capacity for 
learning, 
-2.45% less than 
the whole car 
 -Operating 
expenses 
validating the 
effectiveness of 
the proposed 
strategy. 

Fuel cell hybrid buses 
is developed and tested 
using a simulation 
platform (ADVISOR, 
Simulink). 

[32] 

Classifier 
Fusion 
Technique: 
SVM, KNN, 
and the 
Naive Bayes  

Achieving 
optimal 
performanc
e 

FCHEV 

- To create an efficient 
energy management 
approach 
- To develop a better 
performing EMS 

 

- Individual 
classifiers 
including KNN, 
Naïve Bayes, 
and SVM, give 
accuracy 
percentage of 
92%, 94% & 
96% 
respectively.  
- Finally,  an 
accurate 
percentage of 
98% was 
achieved after 
combining these 
three features. 

Energy management is 
developed and 
validated through 
simulations conducted 
in MATLAB/Simulink 
using standard driving 
cycles. 

[43] 

Scalable 
reinforceme
nt learning 
in novel 
environmen
t (SLNE) 

Enhancing 
the FC 
lifespan and 
reducing  
The fuel 
consumptio
n 

FCEVs 

- To improve fuel 
efficiency -- To reduce 
the rate of fuel cell 
degradation increase 
the lifetime of the 
lithium-ion battery  

 

The suggested 
SLNE-based 
EMS improves 
fuel efficiency 
by about 5%, 
reduces the rate 
of fuel cell 
degradation by 
around 4.5%, 
and increases 
the lifetime of 
the lithium-ion 
battery 
compared to 
DQN-based 
EMS. 

Laboratory (Lab), the 
model is developed 
and validated using 
extensive experimental 
data obtained from a 
laboratory test bench 
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understanding the basic principles of PEMFCs is vital for advancing technologies that enhance fuel cell 
performance and reduce costs. This understanding is crucial in the development of various aspects of FC design, 
including durability, and dynamic operation. This section delves into these components and discusses their 
significance in fuel cell technology. This section consider recent trend toward the development of physics-
informed Machine-Learning model to predict performance and aging of fuel cells, prevent anomalies and possible 
hydrogen leakage and implement automated safe-operation system with AI-Driven Early Warning. 

2.4.1. Machine learning for durability and performance.  The application of ML in this domain primarily 
focuses on two critical, interconnected aspects: 

ML for Performance Prediction: The utilization of PEMFC modeling, driven by machine learning and 
requiring no prior expertise, offers a range of significant advantages, particularly in understanding the intricate 
interplay of linked electrochemical and transport processes within PEMFC function. This approach simplifies the 
simulation process substantially, accommodating even those processes for which the underlying physical 
mechanisms are not fully elucidated. Despite these advantages, there is a concern: since it operates without a 
physical representation, its effectiveness in scenarios beyond the scope of the test data set might be compromised. 
To address this limitation, a promising solution involves the development of a combination of models, integrating 
both physical processes and ML techniques. By embedding physical processes into ML, FC efficiency, especially 
in complex conditions, can be substantially enhanced. A recent proposal in the literature suggests the integration 
of physics-informed neural networks, as demonstrated by the authors in [40]. Successfully incorporating 
fundamental physics into each component of PEMFC through deep learning represents a significant challenge, 
but it holds the key to achieving the desired design objectives. 

ML for durability: PEMFC that remains reliable throughout its lifetime is essential to industrialization. 
Therefore, it is necessary to estimate the state of health (SoH), remaining useful life (RUL), and PEMFCs 
durability by analyzing the data generated by control units [43], [80]. In this context, the FC cell voltage presents 
a crucial indicator of the output parameter in machine learning because it provides an essential measure of FC 
performance. Recently, machine learning has been used for predicting FCs SoH and durability, which can mostly 
be categorized as model-driven and database-driven approaches. 

The former approach is computationally costly since it relies on physical or semi-empirical models. In 
research, both types of methods are studied for RUL and SoH prediction, encompassing several studies comparing 
different algorithms. The following paragraph will provide examples of various machine learning approaches used 
for PEMFC's features and prognostics. In [81], a hybrid method that combines an auto-regressive integrated 
moving average (ARIMA) with an LSTM-RNN is introduced for predicting fuel cell state of health. When 
combined with ARIMA, LSTM enables effective long-term degradation prediction, allowing for the tracking of 
degradation trends. The model is evaluated using experimental datasets from two PEMFCs that have aged, 
showing promise in aiding the design of management strategies and predicting performance prior to experimental 
testing. In [82], a PEMFC RUL prediction technique based on deep neural networks (DNN) and sparse auto 
encoders (SAE) is proposed. SAE is employed to automatically extract prediction characteristics, while the DNN 
is used for RUL prediction. To reduce noisy data, a Gaussian-weighted moving average filter is chosen. Compared 
with experimental data points, this model prediction shows an accuracy of up to 99.68%. Moreover, the model is 
able to predict RUL under dynamic conditions.  

2.4.2. Machine learning for fuel cell modeling.  Several machine learning approaches are employed to create 
models using data for PEMFC’s internal states and performance aspects. For example, in [83], machine learning 
is applied to improve the power density of high-temperature PEMFCs (HT-PEMFC) through its tools for fast and 
efficient exploration of wide search areas. The ML framework is predicated on a methodology for data analysis 
and a semi-empirical 0-D model of HT-PEMFC polarization behavior, leading to dimension reduction and 
clustering based on density. This study demonstrates pathways surpassing 1 W cm² in HT-PEMFC. Then, in [84], 
the prediction of fuel cell voltage, membrane hydration level, and membrane resistance is accomplished using 
support vector machine regressor (SVR) algorithms and artificial neural networks under various operating 
conditions. The authors consider two different sets of data: a 1-D computational fluid dynamics model with 
reduced dimensions and a physics-based semi-empirical model. Results indicate that SVR is beneficial for 
modeling fundamental regressions as it significantly reduces the computational load without sacrificing accuracy. 
As for the artificial neural network with the dropout strategy, it achieves an R-squared value of less than 0.99 for 
each predicted variable. 

2.4.3. The Emergence of Physics-Informed Machine Learning for Robust Modeling.  The development of 
Physics-Informed Machine Learning (PIML) is a noteworthy and promising trend to overcome the limits of purely 
data-driven models [85]. Through physics-based loss functions or specialized network architectures, this paradigm 
integrates fundamental physical laws (such as conservation laws, thermodynamics, and electrochemical 
principles) into a data-driven algorithmic model based on a computational model of the SOFC system and a 
gradient-boosted decision tree. This method improves predicted accuracy in situations when data is noisy or 
limited, enforces physical consistency, and increases model generalizability beyond training data conditions all of 
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which are especially beneficial for complicated fuel cell systems [86]. For safety-centric predictive tasks, such as 
the precise prediction of performance decline (aging) and the deployment of reliable AI-driven early warning 
systems, PIML application is essential. For example, by identifying patterns that defy established physical 
limitations, PIML models may be taught to identify abnormalities and stop dangerous operational deviations, 
including those that result in hydrogen leaking [85]. As recent research has shown, this is crucial for building 
automated safe-operation systems in critical applications like as marine transport [85] and serves as a foundation 
for the next generation of predictive health management in FCHEVs [86]. 

2.5.  Machine learning for fuel cell Vehicle Diagnostics and Maintenance 
In the automobile sector, maintaining functional safety while minimizing maintenance costs has become a 

significant concern. Predictive maintenance (PdM) has emerged as a key strategy to achieve this goal. Maintenance 
efforts, which include fixing errors or implementing preventive steps, are aimed at keeping a system operating in 
its designated mode. There are various methods to categorize maintenance strategies; however, the following three 
are frequently used: PdM, or predictive maintenance, as well as corrective and preventive maintenance [87]. This 
review focuses on predictive maintenance. 

Industrial equipment reliability and health are shown in real time through predictive maintenance, which 
gathers information from a range of system sensors, adding to the complexity of the process. Four phases are used 
to develop this maintenance strategy: receiving information from the system's numerous sensors, then 
preprocessing the data, followed by the diagnosis and prognosis of faults, and finally making a decision about the 
maintenance plan. Diagnostics and the prognosis of faults are two areas of study that have caught the interest of 
both academia and industry. The main objective of diagnostics is to locate, recognize, and separate a defect that 
has occurred. Typically, there are two essential processes in error diagnosis: the selection and extraction of features 
and the classification of faults. Prognostics are focused on tracking changes in a system's operating characteristics 
during its typical operational cycle. It enables us to calculate the RUL of the equipment and anticipate failures 
before they happen. Typically, it is carried out in three major steps: prediction of the machinery RUL, distinction 
of the health stage (HS), and health indicator (HI).  

Data collected from the physical world may now be gathered and analyzed thanks to machine learning and 
artificial intelligence methods [21]. Several methods are identified for predictive maintenance [22]: physical 
modeling strategy, knowledge-based approach, data-driven approach, and digital twin approach. Regarding the 
automotive and transportation sectors, this section attempts to give a survey of the literature on recently developed 
methods as potent instruments for predictive maintenance. Machine learning algorithms that are powered by data 
must effectively analyze enormous amounts of both historical and real-time data coming from various sources 
(sensors and computers). Therefore, a machine learning algorithm's performance is significantly impacted by data 
preparation. The key ML concepts that apply to PdM are summarized in the following paragraph. 

The two primary approaches that make up the key machine learning techniques for predictive maintenance 
are the supervised learning, in which the modeling data set contains information about the occurrence of failures; 
the unsupervised learning, in which only process information is available and no historical maintenance data is 
available; and the semi-supervised learning. Predictive maintenance uses the following tried-and-true machine 
learning approaches in an operational setting: 

- Classification algorithms that reflect groupings of the item under observation with normal and bad health 
status 

- Regression algorithms 
- Clustering techniques utilizing anomaly detection algorithms 

2.5.1. Condition-based predictive maintenance using statistics.  A key development of this approach is 
condition-based predictive maintenance, which relies on statistical analysis of real-time data. 

- Statistical predictive maintenance: In statistical PdM, as exposed in [88], data from several cars in a shared 
backend is employed instead of data that is connected to a single automobile's state. Big data techniques are also 
discussed. Examples involve details on preceding maintenance, age, driving distance, and kind of automobile 
features, as well as fleet feedback data. 

- Condition-based predictive maintenance: Condition-based PdM, in contrast to statistical PdM, employs 
operational data from individual cars to determine the overall system state or the status of one or more components. 
According to this approach, a maintenance decision associated with the component may be made [88]. Fault 
detection is an essential method for failure prediction. Early fault detection can prevent it from spreading, enabling 
actions to be taken before failures occur. Thus, anomaly detection or classification is a common method for 
achieving condition-based PdM. Generally speaking, depending on data and label availability, supervised, semi-
supervised, and unsupervised learning methods can be applied. 

The essential vehicle parts for which conditional based PdM has been performed are presented in Figure 3. 
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Figure 3. Automotive component predictive maintenance research using Machine Learning 

2.5.2. Primary use case for machine learning-based predictive maintenance in automotive systems.  The 
automotive applications for ML-based PdM are primarily categorized into two key domains: 

- Application for Fuel Cell vehicles  

Predictive maintenance using machine learning for fuel cell vehicles is discussed in [89], where the authors 
utilized an Artificial Neural Network (ANN) to categorize water management faults. The authors developed a 
mathematically designed Artificial Neural Network system. These ANNs successfully classified and located 9 
simulated cells with defects related to drying and flooding. As discussed in [90], the authors developed LSTM 
networks and Gated Recurrent Units (GRUs) to forecast the FC's terminal voltage as a function of load current 
and degradation. To achieve this, the authors tested a PEMFC for its ability to sustain long-term dynamic loads. 
During the last test stage, the attention-based LSTM yielded the best prediction results, with an estimation 
coefficient reaching up to 0.89. 

- Application for automobile components  

In this section, the focus is on predictive maintenance for automobile components using machine learning 
techniques. The research in this area is categorized into several subfields based on their primary application cases, 
as outlined in Table 3.  

 
Table 3. Overview of automotive component predictive maintenance research using machine learning: top use cases 

 

References Validation 
Environment Use case Machine learning 

method 

[91] do not present primary 
validation 

Faults in engines 

ANN revision 
Logistic regression and 

residual selection. 

[92] 

Laboratory (Lab): test 
bench in a laboratory 
setting, with 
experimental results 

LSTM and CNN, SVM 
of one class, random 
forest, and logistic 

regression 

[93] 

Simulation (Sim) 
through software 
simulation in 
MATLAB/Simulink. and 
Laboratory (Lab) 

ANN 

[94] Laboratory (Lab) 

Batteries for SoH EVs 
 

ELM vs. ANN 
LSTM 

Battery issues with EVs -random forests 

EV powertrain issues k-NN, SVM, ANN 
variation 

Detection of all car 
faults 

Ensemble of classifiers 
for one and two classes 
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Air pressure system 
flaws ANN, CNN, LSTM 

[95] 

Physical fuel cell test 
station using a Scribner 
Associates test station, 
making this a laboratory-
based study. 

Problems with 
gearboxes 

Deep hybrid belief 
networks 

[96] do not present primary 
validation 

Suspension system 
flaws 

 

ANN, CNN, NARX 

[97] 

Real Driving Conditions 
(RDC) provided by an 
automotive 
manufacturer. 

SVM 

[97] 
Real Driving Conditions 
(RDC) provided by an 
automotivemanufacturer. 

Brake system errors 
SVM, ANN, Hoeffding 

trees, and best initial 
trees 

Steering system flaws 

Rough set theory, 
deciduous trees, SVM, 

k-NN, and an ANN 
variation 

[89] Simulation (Sim) / Computational 
Screening 

Defect detection for 
sensors 

ANN and ELM-based 
autoencoders 

[90] do not present primary 
validation Fuel cell automobiles 

LSTM with attention 
and GRU (gated 
recurrent unit) 

[98] Laboratory environment. Mechanism of starting 
an engine 

Multinomial regression 
models combined 

[99] 
Simulation (Sim) via 
FASTSim and 
Laboratory (Lab) 

Automated SoH 
vehicles CNN 

In general, selecting the best machine learning algorithm for predictive maintenance requires conducting tests, 
considering various options, and adjusting parameters. It relies on several parameters, considering the particular 
problem, the data’s nature, and appropriate settings. Numerous comparisons between different machine learning 
techniques can be found in the literature. For example, researchers in [100] estimated the SoC of lithium-ion 
batteries using the following six machine learning algorithms: ensemble boosting, ensemble bagging, support 
vector machine, linear regression, Gaussian process regression (GPR), and artificial neural networks. Following 
this comparison, the suggested ANN and GPR strategies demonstrated high performance, outperforming other 
methods with a mean absolute error of 85%. In terms of SoC projections, ANN and GPR could contribute to 
developing an optimal battery management system for electric cars. In [100], Random Forest, SVM, Decision 
Trees, and k-Nearest Neighbors were the four classifiers compared. The SVM classification exhibited the greatest 
efficiency across four functional systems, with results indicating high accuracy. The SVM model's accuracy 
ranged from 98.5% for the fuel system to 96.6% for the ignition and cooling systems, with the fuel system showing 
the highest accuracy. Across the four operating systems, the SVM classifier consistently performed the best, 
achieving accuracies of 96.6%, 98.7%, 98%, and 96.6%. Additionally, a study in [101] demonstrated the viability 
of applying various ML techniques, such as Gaussian Processes (GP), Support Vector Machines, several kinds of 
Artificial Neural Networks, and Random Forest, as classifying predictions for fault identification jobs. For defect 
identification in turbo petrol engine systems, the authors used datasets for training and testing obtained from 
standardized driving cycles produced using a simulation testbed. The Random Forest approach yielded the best 
results, as its minimum accuracy, 0.88539, was greater than the Support Vector Machine approach's second-
highest accuracy of 0.806120. Furthermore, the accuracy of all techniques can be improved by applying a low 
pass filter to the outputs.  

2.6.  Machine learning for fuel efficiency and emissions 
Energy usage is significantly influenced by transportation, and driving habits have a significant impact on 

how much gasoline cars consume. In the literature, there are many articles dealing with fuel consumption 
prediction, engine performance optimization for better fuel efficiency, and emissions control using machine 
learning. For example, in [102] authors present a Multi-Linear Regression (MLR) in machine learning to 
demonstrate the weighted effect of independent variables. According to [103], a reinforcement learning algorithm 
is proposed to utilize road altitude data for the intended route, training deep neural networks with the aim of 
creating a fuel-efficient speed profile for autonomous cars. This demonstrated technique, based on neural 
networks, can be trained to develop effective strategies for improving fuel efficiency even on uncharted routes. 
Consequently, it increased fuel efficiency by 8% over a straightforward grid search method. In [104], to maximize 
fuel efficiency across the fleet, the model proposed by the authors can be quickly tailored for every single car and 
connected to the group. The method employed is a data synthesis strategy applied to a distance approach as 
opposed to the usual time frame. The results suggest that, for routes comprising both bicycle paths on city streets 
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and highways, fuel consumption may be predicted with a coefficient of 0.91 and a peak-to-peak percentage error 
of less than 4% within a 1-kilometer window. In [105], the effectiveness of experimental results for a dual fuel 
compression ignition (CI) engine running on hydrogen and diesel was assessed using machine learning regression 
models. In this work, in order to assess different emissions such as hydrocarbons (HC), oxides of nitrogen (NO), 
carbon dioxide (CO), and smoke, factors such as hydrogen concentration, engine load, diesel intake, speed, and 
equivalency ratio were taken into account. The following performance measures were used: coefficient of 
correlation, relative absolute error, mean absolute error, root mean squared error, and root relative squared error. 
In [106], the authors introduced two types of ML methods to evaluate the use of naturalistic driving data in 
determining how fuel-efficient a driver performs. The results show that the suggested approach can successfully 
establish a link between driving style and fuel usage at the macro and micro levels, making it possible to forecast 
the features of fuel consumption from beginning to end. These predictions could subsequently be used in 
innovative driver assistance technologies. Additionally, in [107], fuel economy maxima in NEDCs (New European 
Driving Cycles) for FC electrical cars were examined. Traditional Multiphysics analysis, experiment design, and 
machine learning are effectively blended in a novel way to accelerate the delivery and analysis of data that 
precisely estimates the peak fuel usage in FC electric cars. The findings from the trained and verified models are 
extremely precise, with less than 1% inaccuracy.  

And in [108], two machine learning models were created and used for two light car chassis emission tests and 
a truck Real Driving Emissions (RDE) test. The methodology presented in the research and the created digital 
twins’ model accurately predicted immediate and cumulative fuel usage, even for test cycles that were different 
from those used to train the model. 

2.7.  Advances in driver assistance systems, autonomous vehicles, and safety 
technologies 

Automated vehicles represent a significant advancement in road safety, aiming to mitigate the predominant 
cause of accidents: human error. Advanced Driver Assistance Systems (ADAS) have a crucial role in this paradigm 
shift. ADAS, encompassing features such as automated park assistance systems, adaptive cruise control, lane 
departure warning, front collision warning, automotive night vision, driver monitoring systems, and anti-lock 
brake systems, significantly enhances driver safety. These systems leverage data from diverse sources, including 
Light Detection and Ranging (LIDAR) technology, radar systems, and cameras, to provide comprehensive 
situational awareness [109]. 

In parallel, the development of autonomous vehicles is underpinned by sophisticated infrastructure. A 
multifaceted architecture, as outlined in [59], integrates IoT layer processing, cloud computing, fog computing, 
and machine learning. This framework not only supports the operation of autonomous cars but also forms the 
foundation for their intelligence and connectivity. 

Furthermore, in the domain of automated vehicle movement and operation, reinforcement learning has 
emerged as a promising methodology. By combining perceptual planning with reinforcement learning techniques, 
the movement of automated vehicles becomes more nuanced and contextually aware. Deep learning neural 
networks, augmenting traditional machine learning methods, amplify the benefits of these advancements, 
heralding a future where travel is both safer and more efficient [109] . 

Distractions are a common cause of auto accidents, often exacerbated by factors such as variable message 
signs (VMSs) that demand extra attention, leading to distraction on the road. This section explores developments 
in autonomous vehicle technology and safety measures implemented through machine and reinforcement learning, 
as discussed in the literature:  

• For Autonomous Vehicles (AV) safety, authors in [109] build machine learning models utilizing data 
from the European HyTunnel project's tests for predicting the effects of hydrogen emissions in enclosed spaces. 
Additionally, the project presented in [110] aims to develop a prototype of a machine learning-based Variable 
Message Sign (VMS) reading system, a technology that is currently underutilized, particularly in this area. As a 
result of the research, a prototype Advanced Driver Assistance System for interpreting various message signs has 
been acquired. The system operates using RetinaNet, a neural network built on ResNet50, with an average 
accuracy of 0.703. On the other hand, the authors in [111] propose the implementation of Advanced Driver 
Assistance Systems using a combination of machine and deep learning algorithms. As a result, this approach 
reduces the complexity and size of the vehicle's sensors. 

• For Safety requirements and challenges with autonomous automobiles, accidents and deaths can be the 
consequence of human error elements like poor judgment, distractions, and fatigue. Thus, autonomous vehicles 
(AVs) have the potential to increase vehicle safety by lowering the number of traffic accidents and driving errors 
caused by people. To minimize human errors in driving, enhance security, and optimize the movement of traffic, 
modern technologies are used by AV, including GPS, Electronic Control Units, 3D mapping, path planning, and 
LiDAR sensors [23]. The challenging assignments for AV, in which security and safety require major research 
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efforts. Security for AV focuses on protecting the automobile from intentional incidents, whereas safety for AV 
guards against unintentional collisions [63]. A multisensory AV system can anticipate potential threats and 
respond appropriately. In such situations, AV could evade the incident or accident by altering course. The 
integration of modern technologies like AI/ML, IoT, and big data analysis makes these capabilities feasible. In 
[23], [63], the authors discussed accident problems identified through machine learning techniques and highlighted 
the detrimental and unanticipated behavior of insufficient artificial intelligence systems. The authors listed several 
research issues and categorized them specifically under unintended risks. Several critical challenges related to 
autonomous vehicles have been classified as open issues, including the treatment of data as the equivalent of oil 
in AVs. AVs often accumulate petabytes of data, posing challenges in parallelizing training procedures with 
storage resources. 

2.8. Smart traffic management 
Urban traffic congestion has become a significant issue. Traditional traffic management techniques do not 

effectively regulate traffic and lack proper human resource management, leading to increased traffic congestion 
and road infractions. 

For addressing serious vehicle, traffic issues on a large scale, Intelligent Transportation Systems (ITS) offer 
solutions that enhance safety, effectiveness, and sustainability. ITS utilizes machine learning in collaboration with 
existing traffic control systems to create real-time plans and ensure a smooth flow of traffic. Many researchers 
have achieved outstanding results by employing various optimization strategies for the deployment and control of 
intelligent traffic systems. 

In the realm of intelligent transportation systems, a comprehensive classification of the areas of application 
as: smart cities (Emergency vehicle, Pollution prevention, Navigation, Smart parking, Traffic optimization), traffic 
management (Traffic optimization, Police scheduling, Traffic Light control) and safety (Vehicle tracking Accident 
prevention) where in ITS is actively employed. In significant smart cities, ITS plays a pivotal role, offering diverse 
functions, most notably in traffic management and safety. These components, supported by research [112], form 
the backbone of seamless vehicular movement in urban landscapes. A range of ITS applications, including parking 
guidance, weather reporting systems, early collision termination systems, variable speed limits, emergency vehicle 
alarm systems, pollution controls, automated traffic enforcement, and even dynamic bridge management, 
facilitates this seamless movement. Additionally, the traffic management applications within the ITS framework 
encompass vital aspects such as emergency vehicle routing, ensuring traffic regulations, accident prevention, and 
faster traffic clearance. These integrated technologies collectively enhance the efficiency and safety of urban 
transportation systems, ensuring a smoother and more secure experience for commuters. 

In this section, a traffic management system based on machine learning is analyzed, aiming to ensure the 
efficient utilization of human resources, time, money, and fuel to create sustainable smart cities [113]. For instance, 
in [114] researchers have focused on modern strategies for optimizing signal processes, with Reinforcement 
Learning being a major approach under scrutiny. Gradient Boosting Regression Tree (GBRT) and reinforcement 
learning were integrated to decrease state complexity and latency, respectively. The results demonstrated that the 
suggested control technique significantly reduces waiting delays and state-space complexity. Additionally, authors 
in [115] introduced a systematic approach to address challenging prediction issues, emphasizing energy efficiency. 
In order to determine which recurrent and sequential neural network was the most efficient in terms of computation 
time and prediction accuracy, the case study compared four different neural network architectures: long short-term 
memory, gated recurrent units, online sequential extreme learning machine (OS-ELM), and recurrent neural 
networks. The outcomes showed OS-ELM performed better than the other networks in computational precision 
and effectiveness. Using real traffic data in a simulation, it was predicted that daily energy savings of up to 12.2% 
could be achieved. 

3. Challenges in Applying machine learning for fuel cell electric vehicle 
Among the many obstacles to the integration of Machine Learning in FCHEVs, data concerns stand out as 

the most important. The following subsections delves into the core of these barriers, beginning with a critical 
evaluation of the data requirements, with a particular emphasis on the dimensionality and reliability of the input 
data. 

3.1. Data Requirements and Challenges for machine learning for fuel cell electric 
vehicle 

The selection of input variables is a crucial design factor that presents two constraints. First, the number 
directly determines model complexity and computational load and kind of features, thus dimensionality reduction 
is frequently necessary to lessen the curse of dimensionality. Second, the precision, sampling rate, and signal-to-
noise ratio of the source data—which is frequently obtained from automotive-grade sensors functioning in 
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challenging conditions—determine the model's predicted accuracy and dependability in the actual world. 
Therefore, an ideal framework must strike a compromise between the practical limitations of data collection and 
computational complexity. A list of common input variables and related data challenges for machine learning in 
FCHEVs is shown in Table 4. 

Table 4. Common Input Variables and related data challenges for machine learning in FCHEVs 

Application field Typical Input Variables Source of data Important Data Challenges 

Energy 
Management 

Fuel cell efficiency map, GPS/traffic 
data, battery SOC, power demand, and 
H2 tank level 

Cloud, , Sensor, 
Maps 

Variety of data; dependability of outside data (traffic 
forecasts, for example); and requirement for real-
time processing. 

Fuel Cell 
Prognostics 

Temperature, pressure, voltage, current, 
H2 purity, and historical loading Physical Sensor 

Sensor noise, linked features, high dimensionality, 
and the necessity of feature selection to prevent over 
fitting. 

Fault Diagnosis Voltage/current ripple, acoustic data, 
temperature gradients, gas composition 

Microphone, 
Sensor 

Class imbalance (limited examples of faults); high-
frequency data necessitates substantial processing 
and storage. 

3.2. Dimensionality and Reliability of Input Data 
The practical limitations of direct sensor readings for important system states provide a substantial barrier to 

real-world deployment of machine learning models in FCHEVs. Due to sensor cost, reliability, or the intrusive 
nature of measurement, many factors that are crucial for optimum control, prognostics, and health management 
are either impossible or prohibitively expensive to monitor directly under actual driving conditions. This means 
that inferring these values from existing, correlated data requires the use of soft sensors and state estimation 
techniques. The table below (Table 5) outlines significant unmeasurable variables, their influence on system 
functioning, and the principal methodologies used for their estimate, showing a critical area where model-based 
and data-driven approaches must work together for successful application.  

Table 5. Key Unmeasurable Variables and Estimation Approaches in FCHEVs 

Unmeasurable Variable Impact on System Performance and 
Health Common Estimation Techniques 

PEMFC Membrane 
Hydrations 

-Directly affects durability, efficiency, and 
proton conductivity.  
-Flood and dehydration both significantly 
decrease performance. 

• Data-driven soft sensors employing stack 
voltage, current and temperature 
• High-Frequency Resistance (HFR) 
Measurement 
• Adaptive Kalman Filter 

Battery 

State of Health 
(SOH) Vital for estimating the maximum power 

limitations and residual energy capacity, 
which has a direct effect on lifetime and 
energy management strategy (EMS). 

• The combination of model-based and data-
driven methodologies 
• Machine Learning regression on 
impedance/voltage properties 
• Coulomb counting and differential voltage 
analysis 

State of Charge 
(SOC) 

Vital for controlling high-power transients 
and maximizing the effectiveness of 
regenerative braking.  Temperature and 
current have a significant influence on 
voltage-based SOC. 

• Hybrid models that combine electrical and 
thermal dynamics 
• Recursive Least Squares (RLS) for parameter 
identification 
• Adaptive Kalman Filter 

Catalyst Degradation State 

Increases activation losses and causes 
irreversible voltage decline by decreasing 
electrochemical active surface area 
(ECSA). 

• Machine learning models trained on voltage 
transient data 
• Voltage loss decomposition mrthods 
• Model-based observers (Extended Kalman 
Filter) 

Precise Internal 
Temperature Gradients 

Degradation of the battery and FC is 
accelerated by local hot areas. Effective 
thermal control is essential for longevity 
and safety. 

• Neural networks trained on surface temperature 
data 
• Nonlinear observers 
• Distributed thermal models with lumped 
parameter inputs 

Therefore, the accuracy and resilience of the underlying estimating techniques inextricably link to the 
performance of any ML-based application. Future research should thus concentrate on the co-development of 
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integrated frameworks that combine robust state estimation with sophisticated ML control and diagnostics, 
assuring dependability under the noise, uncertainty, and dynamic situations of real-world driving. 

4. Perspectives 
As remarks, regarding the EMS area, reinforcement learning-based EMS is suggested due to its benefits over 

other techniques as mentioned above, in particular deep RL, using various approaches. In general, in the different 
applications exposed in the review, machine learning based EMS is performed to increase the efficiency of all 
onboard power utilization by distributing energy more evenly, using less H2, and avoiding FC deterioration. 
Reinforcement learning-based EMS is receiving greater attention from researchers due to its benefits over other 
techniques, such as: 1) Q-learning is suggested to reduce FCHEV's fuel usage; 2) DQN suppresses system 
degradation; 3) DRL optimizes the vehicle driving cost. 

As to the use of machine learning for predicting performance, it may be extended to deep learning to fuel cell 
performance by including pertinent physics. 

Respecting FC vehicle diagnostics and maintenance, attention-based LSTM could provide the best prediction 
results for predicting FC’s output voltage based on load current and degradation. In addition, the ANN and GPR 
strategies outperformed previous approaches and produced high performance. With regard to SoC projections, 
GPR and ANN may support creating an ideal battery management system for electrical cars. For Driver Assistance 
and Safety, basic ML methods are not immediately used due to the geographical and temporal nature of the data. 
A complicated and nonlinear dataset is appropriate for deep learning-based algorithms. 

As perspectives, a machine learning strategy based on a hydrogen fueling stations (HRS) for fuel cell hybrid 
electric vehicle (FCHEV) production and storage is proposed [116], [117]. The proposed station based on 
renewable energy sources (REs) is composed of four primary blocs: REs, hydrogen storage tank, alkaline 
electrolyze, and grid-connected component, as seen in Figure 4.  
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Figure 4. Renewable energy sources powered the hydrogen refueling station 

The principal elements employed when transitioning from producing to delivering hydrogen are as follows: 
An on-grid photovoltaic and wind power system is designed to drive water electrolysis plant to produce hydrogen 
for an improved FC electric vehicle. The purification unit, compressor, storage tank, gas boosters, cooling unit, 
safety devices, mechanical and electrical systems, and dispensers are all parts of the hydrogen production chamber 
that are also implemented [53], [116]. Then, a compressor is utilized to raise the station's tanks' hydrogen gas 
pressure from low to high in order to prevent overheating and overfilling while recharging the quick storage [117]. 
Besides, pre-cooling unit and dispenser are integrated. Hydrogen needs to cool down before being refueled since 
it can overheat if it is refueled directly [117].  

This proposed study offers an attractive solution to reduce hydrocarbon fuel consumption. Therefore, in order 
to reduce cost and enhance system reliability, an efficient operation algorithm based on hydrogen energy demand 
estimate is investigated for directly hydrogen fueling stations [118], [119]. For instance, an optimization technique 
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based on harmony search for the most efficient possible size of a hydrogen storage system-based solar/wind power 
generating system is needed in order to optimize reliability and decrease cost. This paper shows that the proposed 
method can first decrease the storage tank [102], electrolyze ratings configuration for HRS [103], and second 
decrease the hydrogen energy unit [120], [121], [122].  

HRS and their optimal location strategies can be discussed in upcoming works [109]. In fact, optimization 
strategies and methods based on machine learning approaches can be used to locate hydrogen fuel refueling 
stations [110]. A machine learning model can be employed for urban areas by simulating and forecasting refueling 
behavior using data (Figure 4). The model gap is significantly dependent on big data sets, which can be improved 
in future projects [123], [124], [125], [126]. 

Machine learning techniques are recommended for process categorization and prediction. Monitoring 
hydrogen refueling stations guarantees both operational safety and compliance with the necessary refueling 
performance standards. The fueling process was traditionally controlled by table-based or dynamic control 
techniques. The primary performance goal of the mechanism for fueling and the state of charge (SOC) are to be 
predicted using machine learning techniques, according to this study. 

Finally, numerous researchers have explored reinforcement learning techniques in various hybrid electric 
powertrain applications. However, their applicability to FCHEV is still evolving. A promising avenue for future 
research is to conduct in-depth examinations of energy management systems utilizing reinforcement learning. 

FCHEV's machine learning system will be able to analyze vehicle behavior to predict potential failures, 
providing a solution that minimizes costs associated with unscheduled downtime, increases asset longevity, and 
improves efficiency during operations. To achieve these goals, it is imperative to explore cutting-edge algorithms 
and machine learning methods designed to meticulously monitor the car and its operations. This opens the door to 
future advancements and innovations. 

5. Conclusion 
This research explores the use of machine learning in fuel cell hybrid electric vehicles applications. This 

research’s highlights and conclusions can be synthesized as follows: design of cells and enhancement, system 
management, and operation health monitoring are developed to ensure both durability and performance. Then, the 
integration of an effective Energy Management System is suggested for meeting load requirements while 
optimizing power sources in FCHEVs. A comprehensive comparative study is provided, highlighting the 
advantages and challenges. In literature, attention has been given in RL-based EMS due to its advantages over 
competing methods. In the reviewed works, RL is proposed to reduce fuel consumption in FCHEVs. The average 
fuel usage decreased by 5.7% compared to the rule-based technique. On the other hand, it optimizes the vehicle 
driving cost and mainly suppresses the system degradation based on the following algorithms: i) Deep Q-Networks 
presents an increasing economy of hybrid system by 16.0%, the FC degradation reached 88.73%, and the 
computational efficiency increased by more than 70% and ii) TD3-based EMS indicates an improvement in overall 
operational cost up to 28%. 

Solutions for these challenges are explored, paving the way for future research endeavors. In fact, fuel cell 
degradation is a significant challenge faced by hydrogen FC vehicles. Robust prediction techniques based on 
machine learning are presented as effective solutions for data-based fault diagnosis. These models have significant 
influence on fuel consumption and overall emissions. These models play a pivotal role in reducing fuel usage by 
13.9% in the Federal Test Procedure FTP-75 Driving Cycle and 14.32% in the NEDCs, and overall emissions by 
generating less than 26.4% CO2 emissions. For driver assistance and safety, a complicated and nonlinear dataset 
is appropriate for deep learning-based algorithms. 

Finally, this paper has identified several challenges and suggested future research directions. This 
comprehensive overview has delineated the significant potential of ML in advancing FCHEV technology; 
however, it also unveils critical research gaps that must be bridged to transition from laboratory simulations to 
real-world deployment. The most prominent experimental gap is the scarcity of high-quality, publicly available 
datasets encompassing diverse driving conditions, fuel cell aging profiles, and fault scenarios, which severely 
limits the training robustness and benchmarking of ML models. Furthermore, a significant knowledge gap exists 
in the integration of physics-based models with data-driven ML, particularly for explaining the 'black-box' 
decisions of complex algorithms and ensuring their predictions adhere to thermodynamic and electrochemical 
principles. This is crucial for safety-critical applications like predicting hydrogen leakage or cell failure. Finally, 
there is a pronounced gap in standardized validation protocols for comparing the real-time performance, 
computational efficiency, and durability of different ML strategies under identical conditions. To address these 
gaps, future research must prioritize: (1) the creation of open-source data initiatives and digital twins for robust 
testing; (2) the development of explainable AI (XAI) and hybrid physics-informed ML models to enhance trust 
and generalizability; and (3) the establishment of universal benchmarking standards to evaluate the real-world 
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viability and longevity of ML-driven energy management and prognostic systems. Pursuing these directions will 
be pivotal in achieving the safe, efficient, and widespread commercialization of AI-enhanced fuel cell vehicles. 
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