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ABSTRACT 

This study evaluates the energy and environmental performance of a cogeneration system 

operating simultaneously with bagasse and straw in a rankine cycle. Different process 

conditions, defined in terms of boiler operating pressure, moisture content and straw 

addition rate, were analyzed. The combination of these parameters led to the elaboration 

of one hundred and twenty-five analysis scenarios. The energy profile was based on the 

energy performance indicator, which is the ratio between the exported electricity and the 

intrinsic energy of biomass consumed for its generation, and the environmental 

assessment was performed in terms of climate change. Scenario modeling was developed 

according to the conceptual framework proposed by the life cycle assessment technique 

with a ‘from cradle-to-gate’ coverage. Results indicate that the best energy and 

environmental performances (energy performance indicator = 0.193 and  

688 kg CO2eq/MWh) were obtained with the highest pressure (100 bar) and addition rate 

(50%), and the lowest moisture content (10%). Moreover, straw moisture has more 

influence on the system environmental performance than its addition rate. 

KEYWORDS 

Sugarcane biomass, Cogeneration, Energy performance, Life cycle assessment, 

Bioelectricity. 

INTRODUCTION 

The sugar-alcohol industry stands out as one of Brazil’s most important productive 

sectors, currently accounting for 25% of the world’s sugar [1] and 20% of its ethanol 

production [2]. The sector is undergoing modernization and growth due to changes in the 
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national economic scenario. This movement seeks to expand positions in the international 

scenario, without, however, failing to supply domestic demands. 

The consolidation of ‘flex-fuel’ (gasoline-ethanol) technology in Otto-cycle engines for the 

internal market and the creation of mechanisms aiming at commercializing surplus electrical 

power are considered the main drivers concerning the opening of new business fronts for 

Brazilian ethanol abroad [3].  

Considering this context, companies operating in this field must always raise their level of 

competitiveness, increasing income and/or decreasing expenses. In order to do so, they strive 

to adopt practices aimed at improving agricultural productivity and industrial performance, and 

at reusing the waste discharged by industrial plants, i.e., vinasse, filter cake, and ashes, and in 

the field, as in the case of lignocellulosic material like bagasse and sugarcane straw [4]. 

Until some years ago, the use of bagasse generated during sugarcane milling was restricted 

to meeting the energy demands (steam and electricity) of the plants themselves [5]. However, 

the expansion of the Brazilian electrical sector, favoring the trading of surplus energy and 

providing interesting financing opportunities, has created conditions for industrial plants to 

invest in high potential cogeneration systems, capable of operating at up to 100 bar pressures 

[6]. This progress raised the rate of electricity export for energy providers, reduced the 

dominance of hydropower plants over the national grid and, thus, also decreased discontinued 

supply problems that this hegemony brings about during the dry season [7]. 

Moreover, when State Law 11.241/2002, determining straw burning phasing out and 

implementing mechanized harvesting in the state of Sao Paulo, the main sugarcane producer in 

Brazil, came effectively into force in 2017, large biomass volumes became liabilities in this 

production chain. The convergence of such circumstances, technological and in terms of 

available raw material, ended up enabling the reuse of this material as a complementary fuel 

for Rankine cogeneration cycles, raising the offer of electricity in the network [8]. 

Reusing straw may be interpreted as an adjustment of already existing conditions.  

In this context, the establishment of technical and economic factors, i.e., the availability of 

straw for energy use, rates and type of system for biomass recovery, physical features, 

optimized transport distances, and reuse technology, remain a great challenge for the sector [9]. 

Cardoso et al. [10] concluded that straw recovery through baling system results in higher costs 

for unit of recovered material compared to those associated with systems in which biomass is 

collected and transported with the sugarcane. Conversely, Franco et al. [11] observed that 

baling systems are suitable for high straw recovery rates and greater transport distances, due to 

the reduction of bulk load density for integral harvesting systems. Seabra [12] points out that 

the substitution of cogeneration units that operate at 22 bar for higher pressure systems (65, 90 

or even 120 bar) significantly raise the amount of electricity in power units. Gil et al. [13] share 

this point of view, especially in situations where a new concept of turbogeneration is adopted, 

replacing back-pressure turbines for the extraction turbines. 

Kiatkitipong et al. [14] estimate that Rankine cycles capable of producing superheated 

steam at 525 °C and 105 bar from all available bagasse and 50% of the straw generated in the 

field could provide up to 158 kWh/tc of surplus electricity. Olivério and Ferreira [15] warned, 

however, that straw additions over this level may cause hazardous effects to the boiler, such as 

corrosion, given the presence of chlorides, and incrustation, due to accumulated silica.   

In addition to operational aspects, environmental factors are also relevant for straw reuse 

[16]. Experts agree that the consumption of agricultural assets in energy generation aids in 

addressing major challenges faced by the energy sector: high Greenhouse Gas (GHG) 

emissions from the use of fossil fuels [17], and the finite nature of fossil resources [18].  

Studies performed by Signor et al. [19] Carvalho et al. [20] and Menandro et al. [21] 

assessed effects on agricultural soil, stemming from different straw removal rates. Signor et al. 

[19] examined the relationship between type of soil, characteristics and degree of straw 

coverage (overlay), with consequent GHG emission rates. The authors concluded that, in this 

case, GHG releases are not affected by coverage rate. Signor et al. [19] warned, however, of 
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productivity losses during sugarcane harvests due to erosion, which may stem from surface 

straw removal. Carvalho et al. [20] forward the main impacts associated with straw removal 

from the soil for bioenergy production. The researchers verified that the use of straw as a cover 

agent has important and positive soil effects, such as water storage, nutrient recycling and 

accumulation of carbon, in addition to controlling soil erosion and curbing plague infestation. 

For its part, Menandro et al. [21] noted that Dinitrogen monoxide (N2O) emissions would 

be intensified when straw use is associated with N-fertilizers applications and vinasse. 

Following in the same line, Yin et al. [22] highlighted the importance of keeping straw in the 

field to meet, even partially, the sugarcane needs in terms of N-P-K, and to reduce air emissions 

and other environmental burdens associated with the manufacture, transport and application of 

inorganic fertilizers that provide these macronutrients. 

Environmental impacts associated with the use of sugarcane biomass for bioelectricity 

generation have also been systematically analyzed, based on the Life Cycle Assessment (LCA) 

approach. By applying LCA from ‘cradle-to-grave’ to measure the environmental performance 

of electrical cogeneration from bagasse, Gil et al. [13] noted that particulate matter emissions 

derived from the combustion of bagasse are the most significant impact precursors in terms of 

Human Health and Photochemical Ozone Formation associated with cogeneration processes 

carried out in the Cuban sugar industry. Silva et al. [23] reached the same conclusions by 

exploring a similar system in which the bioelectricity is produced from the average conditions 

practiced in Brazil. The authors also add that, in the Brazilian case, the particulates from the 

biomass burning are even more intense than those provided by sugarcane, ashes, filter cake and 

vinasse transport, for systems that harvest sugarcane in mechanized form. 

Following another path, Guerra et al. [24] assessed environmental effects for boiler exit 

steam pressures from 20 to 100 bar, for systems operated with cane biomass and taking into 

account different energy recovery alternatives (regenerative and reheating cycles). The authors 

also examined impacts provided by scaling up units driven by bagasse and straw to enhance 

power exports [25]. In both cases, the LCA-based diagnosis stated that the combined use of 

straw and bagasse reduces impacts related to Climate Change (CC) and particulate matter 

potential, but increases system inputs regarding water and fossil depletion, despite the thermal 

integration technology applied in cogeneration. 

Strategies aiming the reuse of waste from the sugarcane industry for the production of 

bioelectricity were developed by Barrera et al. [26] and Longati et al. [27]. Barrera et al. [26] 

assessed scenarios for obtaining methane from the anaerobic digestion of vinasse for the 

production of electricity, once again in Cuban sugarcane refineries. LCA was applied to 

quantify the impacts associated with this process. The best environmental results were obtained 

using crude vinasse as raw-material, and with the electricity being produced in spark ignition 

engines. The study performed by Longati et al. [27] adopted LCA in order to verify impacts of 

biogas production from vinasse and its use in a different biorefinery. The findings obtained in 

this case showed that the use of biogas as a complementary fuel in the boiler slightly decreases 

the environmental impacts compared to processes in which only bagasse is used for this 

purpose. 

Although these alternatives for vinasse reuse are promising, in the current Brazilian 

agricultural context this residue of ethanol processing should continue to be reused in sugarcane 

crops, due to: its high content of nutrients (especially potassium) which, in theory, save on 

expenditure associated with chemical fertilizers, and the low costs of implementing and 

operating fertigation practices [28]. Furthermore, the use of straw in electricity cogeneration 

has become an economically attractive possibility for Brazilian farmers, at least for short-term 

management. 

In that sense, and even though the environmental impact derived from the use of straw in 

cogeneration has been explored under distinct perspectives, no records of analysis in which 

such effects are related to the use conditions of this biomass by the same systems in the 

literature are available. The present study aims to contribute, if only in part, to fill this gap by 
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investigating the effect of process parameter variations on the environmental and energy 

performance of electricity cogeneration from bagasse and sugarcane straw burning in Brazil.  

Attributional, ‘cradle-to-gate’ LCA was applied to a manufacturing facility, in which 

cogeneration is attached to an autonomous, anhydrous ethanol-producing distillery.  

The findings from this initiative are expected to help determine trends concerning system 

responses under different operational situations and contribute to future development in 

bioelectricity production, especially in the framework of its participation in the Brazilian 

energy matrix. 

MATERIALS AND METHODS 

The method established to perform this study encompasses five steps:  

• Identification of the most influential parameters in the technical-environmental 

performance of the cogeneration plant and developing the analysis scenarios;  

• Characterization of an electricity cogeneration process powered by sugarcane biomass 

(bagasse and straw) attached to an autonomous anhydrous ethanol distillery, in terms of 

average technology, operational conditions, resource consumption and emissions;  

• Design of mathematical models able to represent each scenario, from the data and 

information collected in the previous step;  

• Application of the LCA methodology to establish an environmental and energy 

performance diagnosis for each scenario;  

• Carry out a critical analysis of the obtained results. 

Scenario definition 

A survey of technical literature [4, 5, 11, 20, 24, 25] indicated straw addition rate (A), straw 

moisture (µ), and pressure of boiler-generated superheated steam (p) as the most influential 

parameters in the thermodynamic performance of cogeneration systems operating in sugar and 

alcohol distilleries. The variation range p was defined based on technical (as a domain of 

cogeneration technology at high pressures) and economic-strategic (future perspectives for the 

bioelectricity market) criteria, specific for the São Paulo sugar and alcohol sector. Reports by 

Guerra et al. [24] and Moore et al. [29] were used for this purpose. 

The upper limit of A was set at 50%w/w of the straw generated in the field because of two 

factors: additions over this level might compromise the physical integrity of the boiler due to 

fouling and corrosion, and avoid damage to the soil. According to Kiatkitipong et al. [14], the 

fouling arises from the silicates existing in the straw, whereas corrosion may be caused from 

chlorides that are also part of its composition. Specialists in sugarcane cultivation suggest that 

at least half of the sugar straw should remain in the field to protect the arable land from actions 

such as erosion, wear and compaction, which can affect crop yield [30]. The lower end of the 

range (A = 10%) refers to the minimum amount of biomass capable of being transported without 

economic losses along the average displacement distance between the crop and the industrial 

plant in the state of São Paulo (32 km) [25]. 

The application of µ = 50% was an attempt to study the thermodynamic behavior of the 

Rankine cycle in situations in which straw moisture equaled the standard value of the bagasse 

parameter (µb = 50%). The other situations, at μ < 50%, were tested with the aim of verifying 

energy and environmental effects where straw was dried prior to use. In these cases, water 

evaporation from the biomass was assumed as occurring naturally without any auxiliary 

consumption energy source. 

Table 1 exhibits the values (and ranges) for each parameter selected for the study.  

The analysis scenarios were established by the combination of the system operating conditions. 

The independent character of the variables led to 125 possibilities. However, a prior analysis 

of the energy-environmental performance of that collection regrouped the alternatives, giving 

rise to the twelve scenarios indicated in Table 2.  
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Table 1. Process parameters for energy and environmental analyses 

 

p [bar] A [%] µ [%] 

20 10 15 

45 20 25 

67 30 35 

80 40 40 

100 50 50 

 

Table 2. Scenarios established for the present study 

 

Scenario 
Process parameters 

µ i [%] Ai [%] pi [bar] 

S1 10 10 20 � 100 

S2 10 50 20 � 100 

S3 50 10 20 � 100 

S4 50 50 20 � 100 

S5 10 10 � 50 20 

S6 10 10 � 50 100 

S7 50 10 � 50 20 

S8 50 10 � 50 100 

S9 10 � 50 10 20 

S10 10 � 50 10 100 

S11 10 � 50 50 20 

S12 10 � 50 50 100 

 

In this new conception, each scenario considers maximum and/or minimum values of two 

of the analyzed parameters, at the same time as the third variable was explored to the full extent 

of its variation levels. This approach allowed for the more precise identification of the effect of 

each parameter on the final result, since the others parameters are always considered in limit 

situations. 

Electricity cogeneration system 

Regarding the thermodynamic behavior it was admitted, for any of the scenarios under 

analysis, that the cogeneration unit operates according to Rankine cycle with reheating, 

producing superheated steam, which expands in an extraction-condensing turbine. The system 

consumes all the bagasse obtained from sugarcane milling activities, in addition to straw, which 

is baled in the field and taken to the plant. 

A Rankine cycle consists of main equipment (boiler, turbine, condenser, and electric 

generation) and auxiliary equipment (deaerator, pumps, desuperheater, pipes and steam trap). 

Modeling of this equipment was assisted by the Engineering Equation Solver (EES)® software, 

which takes into account the principles of mass and energy conservation and is based on the 1st 

and 2nd Laws of Thermodynamics and provides solutions for an extensive set of linear equations 

with a high degree of precision. 

The mass and energy balances for a steady-state system are expressed by eq. (1) and eq. (2), 

respectively: 
 

� �� � = � �� �
��

 (1)

 

� �� + 	� = � ��� + 
�
��

 (2)
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where variables �� � and �� � are the mass flow rates of the working fluid entering and leaving 

the system, ��� and ��� are the energy rates that also cross the boundaries from control volume, 

	�  expresses the heat rate provided to the system, and 
� refers to the work transferring rate. 

The entropy balance concerning a steady-state system is indicated in eq. (3): 
 

� 	�
��

+ � �� ��  +  �����  = � �� ��
���

 (3)

 

where ����� is the entropy generation rate and �� is the temperature of the control volume, � and 

� are the specific entropy rates of input and output flows circulating throughout the boundaries 

of the system. 

Energy balances corresponding to the auxiliary equipment did not consider the energy 

losses originated in these units, since previous analyses on Rankine cycles with reheating and 

straw reuse indicate that these parameters remained below 1.2% [24].  
 

Table 3. Parameters used for modeling the scenarios 

 

Parameters Value 

Rankine cycle 

Thermal efficiency in boiler [%] [24] ηb = f (scenario) 

Isentropic efficiency in turbine [%] [24] ηt = f (scenario) 

Efficiency in the electric generator [%] [24] 95 

Isentropic efficiency in pump [%] [24] 85 

Temperature in deaerator [°C] [24] 110 

Utilities 

Steam consumption [kg/tc] [31] 400 

Steam pressure [bar] [31] 2.5 (saturated) 

Electricity in distillery [kWh/tc] [31] 30 

Electricity for straw milling [kWh/tc] [9] Esm = f (scenario) 

Biomass 

Bagasse 

Production [kg/tc, dry basis] [32] 140 

Moisture [%w/w] [32] 50 

Lower Heating Value (LHV) [kJ/kg, wet basis] [32] 7,565 

Straw 

Production [kg/tc, dry basis] [9] 140 

Straw moisture [%w/w] [9] Sm = f (scenario) 

LHV [kJ/kg] [9] LHV = f (Sm) 

 

Consumption and emission estimates have been performed for anhydrous ethanol 

production (99.5%w/w) in autonomous distilleries with milling capacities of 2.5 Mt sugarcane 

per crop [33]. Table 3 depicts others technical indexes for that process, which were adopted for 

designing the models applied herein 

Energy performance indicator (Ie,i) 

Energy performance is depicted by the eq. (4): 
 

��,� =  �����
�� �

�
 (4)

 

where ���� is the total of electricity exported, and �� is the intrinsic energy of the biomass 

(both bagasse and straw) consumed in the cogeneration. The specific amount of ��  is 

calculated for each scenario from eq. (5): 
 

��� = ��� ×  !��" + #�$,� × %� ×  !�$,�& (5)

 

where �� concerns the mass of bagasse delivered into the boiler,  !�� represents the LHV for 

this biomass for a moisture content µb = 50% (Table 2), �$,�  is the amount of straw 
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corresponding to the total sugarcane to be converted into anhydrous ethanol in the distillery, 

and  !�$,�is the LHV of straw, whose values were calculated for each scenario by eq. (6) [34]: 

 

 !�$,� 'Jg*1, � - !�$ . /600 � 23� 1004 � 9 � #6 1004 &78
91 � #3� 1004 &: ; � 4.18  (6)

 

where  !�� is the high heat value of straw and makes up 4,060 cal g−1 in the circumstances to 

be verified in the study [5], 3� [%] is the moisture of the straw for each scenario, and H [%] is 

the hydrogen content in the elemental composition of the straw to be burned. For the analyzed 

situation, [34] suggests assuming H = 6.4% !�$,� , and �$,�  values for the range of straw 

moisture variation applied in the study are given in Table 4. 
 

Table 4. Parameters associated with straw and used for RB estimation 

 3�[%]  !�$,� [MJ/kg] �$,� [t] 
10 13.9 27.5 

15 13.2 29.2 

25 11.9 33.0 

35 10.9 38.1 

50 9.53 49.6 

Life cycle modelling 

This study follows the guidelines and requirements described in ISO 14040 [35] and 14044 

standards [36]. The product system encompasses the stages described in Figure 1.  

The agricultural model considers the application of chemical fertilizers – ammonia, urea, 

ammonium nitrate, Monoammonium Phosphate (MAP), Single Superphosphate (SSP) and 

potassium chloride, to supply macronutrient needs (N, P and K). The use of limestone to correct 

soil acidity and agrochemicals to control plagues and crop diseases is also carried out in this 

same system. Moreover, the dosage of industrial by-products (vinasse, filter cake, and ashes) 

complements sugarcane nutritional requirements. The use of machinery is also considered, with 

consequent diesel consumption, in soil preparation, sowing, treatment and harvesting. The 

sugarcane harvest is fully mechanized, eliminating any action of biomass burning in the field. 

 

 
 

Figure 1. Scheme of anhydrous ethanol production linked to bioelectricity cogeneration 

(superheated steam production at 67 bar) 
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A productivity of 83.3 L C2H6O/tc is obtained by fermenting sugar juice at controlled 

temperature (26-32 °C) and acidity (4.5 < pH < 5.5). The ethanol generated by this process is 

distilled, rectified, and dehydrated to reach 99.5%v/v [33]. 

Life Cycle Assessment: Scope definition 

The environmental analysis was carried out by applying an attributional LCA with a ‘cradle-

to-gate’ approach for a Reference Flow (RF) of 10 t anhydrous ethanol (99.5%v/v). The setting 

of this parameter renders sugarcane consumption and bagasse generation for cogeneration in 

the distillery invariable, thus eliminating any interference from this biomass source on the 

results. 

Primary data are used to represent industrial processes, whereas agricultural activities were 

modeled from secondary data. Data collection considered the technological pattern practiced 

in the state of São Paulo between 2008 and 2016 [12, 15, 24, 25]. 

All the detected multifunctionality situations were treated by the allocation procedure. The 

first, which occurs in the agricultural stage between sugarcane and straw, was addressed by 

mass criterion. This methodological decision conditioned the energy and environmental load 

estimates for each one of these products to the figures set in the scenario for Ai and µ i of straw 

(Table 1).  

The second situation, also addressed by mass criterion, takes place in the distillery, for 

ethanol (4.9%), returning condensate (26%), vinasse (67%) and cake filter (1.9%). The last of 

the multifunctionality approaches concerns cogeneration among the exported electricity and 

the electricity consumed for ethanol synthesis, low-pressure steam and ashes. In this case, an 

allocation based on the energy criterion was performed. Hence, ashes do not accumulate 

environmental loads, whereas the allocation factors for the other coproducts were determined 

based on electricity rates exported and used by the process. 

In contrast to what occurred with the energetic dimension, the environmental performances 

for the assorted operational conditions of the system were assessed directly, by the application 

of ReCiPe, midpoint (H), v 1.12 method [37]. Those analyses were restricted to the CC impact 

category. This decision was made because of energy planning reasons. In recent years, the 

profile of the Brazilian electrical matrix (grid BR) has been changing, with hydropower being 

replaced by thermoelectricity from non-renewable sources such as natural gas and coal [38]. In 

this context, the generation of ‘low carbon’ electricity ‒ as in principle must occur with biomass 

‒ represents a strategic differential, especially in view of the commitments assumed by the 

Brazilian government during COP 21, to reduce GHG emissions by 43% by 2030, compared 

to 2005 [29]. Thus, holding low impacts of CC is a fundamental condition to consolidate the 

participation of bioelectricity in the grid BR. Under this perspective, the other environmental 

impacts associated with it, mainly due to the cultivation of sugar cane, become essential 

elements for the next level of the decision-making process where this issue will converge. 

The LCA’s were assisted by SimaPro®, a software commonly used in analyzes of this 

nature. Secondary data that supported the modeling of agricultural stage were collected from 

the Ecoinvent Database®, v 3.2 [39]. However, even in this situation, the life cycle inventory 

‘sugarcane, at farm/BR U’ was remodeled to reflect one of the most important conditions of 

the study, which, as mentioned in Section ‘Life cycle modelling’, consider exclusively 

mechanized harvesting of sugarcane. 

RESULTS AND DISCUSSIONS 

Energy performance 

Figures 2-4 describe the effects of p, A and µ  variations on the energy performance of the 

system, expressed in terms of (Ie,i), for the analysis conditions. In the S1 � S4 scenarios where 

Ie,i = f(ln p) for the sake of scale, it has been generally noted that increases in superheated steam 



Sanchez Moore, C. C., et al. 

Effect of Process Parameters on Bioelectricity ... 

Year 2019 

Volume 7, Issue 4, pp 567-583 
 

575 Journal of Sustainable Development of Energy, Water and Environment Systems 

output pressure improve system energy performance, despite the moisture content and straw 

addition rates considered (Figure 2). 

As might be assumed beforehand, scenarios considering minimum moisture rates (S1 and 

S2) projected Ie,i values higher than those in which the amount of water in the biomass was at 

maximum (S3 and S4). It is also not surprising that S2 accumulates the best energetic 

performances of the whole series, ranging from 0.111 < Ie,S2 < 0.193 as the pressure increases 

from 20 � 100 bar. This effect can be explained because the scenario simultaneously evaluates 

together μmin and Amax values. It should be noted, however, that as the operating pressure of the 

boiler rises the advantage of S2 over S1 tends to decrease, remaining at around 6.0% from 80 

bar. This suggests that the gain by increasing the straw addition rate becomes secondary in 

cases where the Rankine cycle is subjected to extreme pressures. 
 

 
 

Figure 2. Effect of pressure variation (Δp) on the energy performance of the system (Ie,i) 

 

Another way of identifying this same effect is at the pressure level to be reached by a 

scenario in order to compare Ie to the next value. In situations where straw is at maximum 

moisture, Ie,S3 at 20 bar will be equated with S4 only when the boiler operates at about  

30 bar.  

If the same analysis were to be performed between S3 and S1, with the latter operating once 

again at 20 bar, the dichotomies imposed by μ and A in each situation would lead to superheated 

steam leaving the boiler in S3 at 26 bar. On the other hand, it has been noted that the Ie,S2 

measured at 20 bar is equal to Ie,S1 if pS1 = 28 bar at the boiler outlet. This indicates that, at 

lower pressure levels, S1 distances itself from S2 enough to reverse the p-reduction trends 

established previously. 

When carrying out a similar check for the upper p limits, however, another trend is 

observed. S3 should operate at 53 bar so that its energy performance equals that achieved by 

S4 at 100 bar ( ��,?@ABB �C� = ��,?DED �C� ). Following the same trend, ��,?DABB �C� = ��,?AFD �C�  and 

 ��,?AABB �C� = ��,?GHG �C� . Therefore, at this extreme of the p-scale the better energy performance 

scenarios must be subjected to increasing pressures so that their Ie are similar to those of their 

immediate predecessors operating at 100 bar, as the difference between the pressures from 

consecutive scenarios is always shrinking. 

Figure 3 associates Ie,i = g(Ai) obtaining, as in previous cases, linear relations for all 

evaluated scenarios. S5 and S6 exhibited gains in terms of energy performance with increasing 

straw addition, motivated by the fact that straw moisture contents in these cases were minimal. 

S7 and S8, on the other hand, displayed inverse trends, since biomass in those cases presented 

μmax. If Ie,S6 always exceeded its counterparts in any of the analysis situations, the effects of Ai 
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on such a performance were discrete. This is justified by the fact that the trend line that guides 

the relationship between Ie,i and Ai presented the lowest angular coefficient [tg(φS6) = 0.0003] 

within all representations of this set.  

A comparison between this value and its corresponding for S5 [tg(φS5) = 0.0004] 

corroborates the previous conclusion that straw addition does not significantly affect the energy 

performance of the system, to the extent that this effect becomes secondary at pressures higher 

than 80 bar. 
 

 
 

Figure 3. Effect of straw addition variation (ΔA) on the energy performance of the system (Ie,i) 

 

In scenarios were Ai had a negative effect on Ie, the alternative of using high vapor pressures 

resulted in gains, some significant, in energy performance with Ie,S8 > Ie,S7. In fact, as Ie,S8 was 

always higher than Ie,S5 for any Ai value, it can be concluded that pressure oscillations influence 

the energy efficiency of the system more than the moisture introduced by the straw. According 

to Figure 4, the relationship Ie,i = h(μi) also presents linear profiles for all evaluated scenarios. 

However, it is worth noting that the ordering of energy performance-based scenarios is 

conditioned by μi, to the point that two preference inversions are observed as moisture evolves 

from minimum to maximum values. 
 

 
 
 

Figure 4. Effect of straw moisture variation (Δµ) on the energy performance of the system (Ie,i) 

 

For μ = 10%, it became apparent that Ie,S12 > Ie,S10 > Ie,S11 > Ie,S9, a condition which only 
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μ  = 50%, as the high moisture content, albeit at this extreme of the scale, favors smaller straw 

dosages, and pressure remains a decisive parameter in energy performance composition. 

By verifying the equations describing the trend lines for each scenario, it was possible to 

notice that a position inversion between S12 and S10 occurred at a level where  

μ = 21.4%, whereas the substitution of S11 by S9 was confirmed at μ = 30.1%.  

With regard to S12 and S10, the results indicate that, in systems where steam leaves the boiler 

at 100 bar, it is favorable in terms of energy performance to carry out straw additions of the 

order of 50% if this biomass comprises regulated moisture content lower than 21.4%. From this 

limit, reducing the rate of straw administration to 10% of the total volume generated in the field 

becomes a more conservative option. A similar reflection allows explaining the inversion 

between S11 and S9 for moisture content of 30.1% in the case where the cogeneration plant 

operates at 20 bar. 

Environmental performance 

Figures 5-7 depict the environmental consequences of varying p, A and µ  with regard to 

CC. An overview of the obtained results pointed out that the main contributions to this 

dimension come from losses of fossil carbon dioxide (CO2,f) from diesel combustion by 

agricultural machines during the soil preparation and treatment and sugarcane harvest, and in 

transport activities throughout the production chain. The set of precursors is completed by air 

Dinitrogen monoxide (N2O) emissions from land-use changes and Methane (CH4) releases also 

from incomplete diesel burning in agricultural machinery. 

Emissions from the decomposition of straw left in the field, mainly as biogenic methane 

(CH4,b), did not represent a significant portion of the total impact for CC. On the other hand, 

releases of biogenic carbon dioxide (CO2,b) that are derived from biomass burning in the boiler 

were disregarded. This is because the impact accounting model applied by ReCiPe follows 

strictly the guidelines established by the Intergovernmental Panel on Climate Change [40] of 

disregarding, the portions relating to air CO2 fixation (CO2,fix) and the emissions of CO2,b. 

The results from Figure 5 indicate that S2 repeated the performance achieved in the energy 

dimension by registering the most expressive results from the entire series also in 

environmental terms (688 kg CO2eq/MWh). 

Regardless, S2 performance was always higher than its counterparts in all the analyzed 

pressures, as CC impacts are evaluated in specific terms (per MWh of exported electricity) and 

thus, the total electric energy generated when μS2 = 10% and AS2 = 50% is able to cushion all 

GHG emissions that occur in the system, even if it operates at 20 bar, when energy production 

reaches minimum values. In addition, as the boiler operating pressure (p) rises, differences 

between the impacts generated by the scenarios for the same pi value are reduced to the lowest 

values at 100 bar. 
 

 
 

 

Figure 5. Effect of pressure variation (Δp) on the environmental performance of the system 
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Such behavior confirms the expectation that the amount of energy contributed by the system 

at high pressures is even more significant than the GHG emissions that will be added due to 

increasing straw additions. Other evidence of this phenomenon lies in the pseudo-overlap 

between S1 (μS1 = 10%, AS1 = 10%) and S4 (μS4 = 50%, AS4 = 50%) performances for all 

evaluated pressures.  

The worst performance achieved by the system was in S3. In this case, which accommodates 

low levels of electricity exports due to unfavorable relationships between straw moisture rates 

and biomass addition (μS3 = 50%, AS3 = 10%), the successive increases in the Rankine cycle 

operating pressure did not go beyond reducing their differences in the other scenarios. 

Figure 6 depicts an important aspect of system environmental performance. Although S5 

achieves sufficient results only in terms of energy performance, the CC profile of that scenario 

appears as the best of the series that verifies the consequences of adding straw to the 

environmental bias. This divergence can be explained by the sharp interference that μ and A 

variations exercise on GHG emissions. The successive use of straw in the boiler raises the 

emission rates of CO2,f, N2O and CH4 associated with this scenario, which originates from the 

agricultural stage. It should be noted that, in the logic practiced by the LCA, the straw left in 

the field is not characterized as a product of that specific processing and is therefore free of 

environmental loads. 
 

 
Figure 6. Effect of straw addition variation (ΔA) on the environmental performance of the system 
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impact increases motivated by the same process conditions. The high operating pressures and 

high intake straw rates were shown to be more effective in terms of environmental performance 

than their procedural variants. In addition, unlike in the case of energy performance, no trend 

reversals associated with increased straw moisture were observed. 

On the other hand, S12 and S11 are more sensitive to μ increments than their counterparts 

S10 and S9, from two circumstances: as straw addition rates increase, the amount of water 

introduced into the system with the biomass tends to reduce its potential for energy generation, 

as observed between S12 and S11, and if the Rankine cycle operates at low pressures, such as 

in S9 and S11, a situation in which production capacity is more restricted. 
 

 
 

Figure 7. Effect of straw moisture variation (Δµ) on the environmental performance of the system 
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This study aimed to evaluate the effects of parameter oscillations in a cogeneration process 
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itself. On the other hand, for the adopted metrics, the cogeneration energy profile is mainly 

conditioned by boiler output vapor pressure, followed by straw moisture content, with the 

biomass addition rate only a complementary effect. 

Regarding environmental performance, the main precursors are fossil carbon dioxide 
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obtained for the operation conditions mentioned above. However, unlike previous energy 
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The LCA technique was decisive for obtaining the results that support this analysis.  

It is hoped that this development may bring other subsidies so that plant design and operation 
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processes dedicated to the generation of bioelectricity are effectively guided by the 

environmental variable. 

This research should proceed in different directions, but always within the context of 

assessing the effects of an increase in bioelectricity participation in the BR grid.  

In addition to technical analyses – aimed at identifying other potential alternatives that help 

reduce impacts associated with the national matrix, economic analyses should also be carried 

out to verify the costs from such processes. In the environmental sphere the natural step is to 

evaluate the magnitude of the other impacts that straw use can provide, thus providing subsidies 

that support short and medium-term energy planning actions for the country. 

NOMENCLATURE 

Ai straw addition rate 

Ie,i energy performance indicator 

p pressure of the superheated steam 

tc tons of sugarcane 

Greek letters 

µ i straw moisture 

Abbreviations 

CC Climate Change 

CO2,b Carbon Dioxide (biogenic origin) 

CO2,f Carbon Dioxide (fossil origin) 

CO2,fix Carbon Dioxide (fixation from the air) 

CH4 Methane 

CH4,b Methane, biogenic origin 

LCA Life Cycle Assessment 

N2O Dinitrogen Monoxide 

RF Reference Flow 
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