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ABSTRACT 

Enhancing energy efficiency in water distribution systems is crucial for developing sustainable 

water infrastructures. Applying renewable energy sources for this purpose is a key step toward 

cleaner energy production. For this reason, the energy/water unit discussed in this paper includes 

a hybrid system, combining solar photovoltaic and wind generation, with a water treatment 

process composed of three motor pumps and storage tanks for water pumping and desalination. 

Such multi-energy multi-pumps system can be operated more efficiently by optimizing the 

energy management systems according to environmental (solar and wind) conditions and 

fulfilling operation constraints. Therefore, this paper presents a comparative analysis between 

the results obtained using a Fuzzy Logic Energy Management System, an optimized Genetic 

Algorithm for the tuning of a Fuzzy Logic Energy Management System and a Mixed-Integer 

Linear Programming optimization approach that converges close to the global optimum in terms 

of energy management trajectories. It is worth noting that the Fuzzy Logic energy management 

system can be implemented at real time while the Mixed-Integer Linear Programming is based 

on the knowledge of the full (past and future) power production trajectories. This comparative 

analysis is a novel opportunity to assess the level of optimality achieved by fuzzy logic. 

KEYWORDS 

Energy management system, Fuzzy logic, Genetic Algorithm, Mixed-Integer Linear Programming, 

Reverse Osmosis desalination system. 
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INTRODUCTION  

The rapid demographic growth is continually increasing the demand for water and energy 

resources, while also straining both economic and environmental sustainability[1]. By 2035, 

the global energy demand is projected to be 40% higher than it was in 2010 [2]. In comparison, 

global human water consumption was estimated at approximately 2,000 km³ yr⁻¹ in 2010 and 

projections indicate that total consumption could increase by up to 40% by the end of the 21st 

century [3]. Thus, it is imperative to explore the interlinks between energy and water so that 

both resources are managed and conserved sustainably [4]. Moreover, applying renewable 

energy sources is essential for achieving cleaner energy production within these systems.  

Among desalination technologies, Reverse Osmosis (RO) dominates, representing 

approximately 69 % of the installed global capacity, while thermal methods such as Multi-

Stage Flash (MSF) and Multi-Effect Distillation (MED) account for much smaller shares. Most 

new desalination contracts also prefer membrane-based systems. This preference is driven by 

technical, economic and environmental advantages: compared to MED and MSF, RO is the 

most energy-efficient, reducing electrical consumption by over 31 %. It is up to 53 % more 

cost-effective and exhibits the lowest carbon footprint among desalination technologies [5]. 

In the same context, several studies have demonstrated that coupling reverse osmosis (RO) 

desalination with renewable energy sources such as solar photovoltaic (PV) and wind can 

reduce energy costs, lower environmental impacts and enhance system sustainability and 

resilience. For instance, [6] Review the state of the art of wind and PV-powered RO systems 

and discuss the technical challenges of direct renewable energy sources (RES) integration in 

large-scale plants. Furthermore, studies emphasize the role of renewable integration in cutting 

carbon emissions and improving long-term viability of RO desalination [7]. 

RO desalination systems coupled with RES such as photovoltaic (PV) panels or/and wind 

turbines to ensure water and energy sustainability, is a promising and efficient direction that 

may be considered as a water-energy microgrid (WEMG). The integration of such systems 

enables a beneficial coordinated energy and water management by leveraging renewable 

generation to drive desalination processes. This synergy improves overall resource efficiency 

and enables optimal scheduling of energy and water demands within a multi-vector energy 

system [8]. 

The inherent randomness and intermittency of RES on the one hand and the specific 

features of the desalination system on the other, present significant challenges to optimizing 

the dispatch of energy flows that guarantee a water supply, given its consumption. To mitigate 

these issues within a WEMG, the deployment of efficient energy management systems 

becomes essential. Furthermore, various studies have been conducted to address these 

challenges, with special attention given to optimization techniques that enable the efficient 

scheduling of alternative energy resources and energy storage systems. In [9], the authors 

proposed a data-driven, machine learning–based economic dispatch method for grid-connected 

water–energy microgrids. The approach focuses on the cost-efficient operation of distributed 

energy resources under variable renewable generation. In [10], the authors developed a deep 

reinforcement learning–based operational strategy for islanded energy–water microgrids, 

enabling adaptive scheduling by leveraging the water system as a virtual battery. In [11], the 

authors developed an optimal sizing framework for a grid-connected DC microgrid supplying 

agricultural loads. The proposed optimal sizing method incorporates a water–energy 

management system integrating battery cycle-life degradation. 

This approach of optimization technique ensures system stability and facilitates the optimal 

dispatch of generated power, thereby enhancing overall economic performance. 

 

Among the various EMS approaches, two representative methods are presented: an offline 

method that performs global optimization but requires a prior information database and an 

online method that operates in real-time based on system conditions.  
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Mathematical programming techniques, being an offline approach, such as linear 

programming (LP) or mixed-integer linear programming (MILP), are widely employed to 

address the global optimum of the energy management in microgrids [12]. Similarly, dynamic 

programming (DP) and nonlinear programming (NLP), which are also typically formulated as 

offline optimization problems, also offer deterministic solutions under well-defined system 

models and constraints.  

A well-established method is the optimization-based MILP formulation, which can be 

applied to complex systems especially with a huge number of decision variables [13]. In [14], 

the study employs the roulette wheel mechanism and probability distribution functions to 

generate uncertainty scenarios for renewable generation, demand and market prices. The MILP 

optimisation approach is validated through simulations on both a single household and a 

microgrid, demonstrating the effectiveness of the proposed stochastic model.  

 

MILP is widely used in system analysis and optimization due to its flexibility and 

robustness in handling large-scale, complex problems, such as those encountered in the water-

energy nexus. In [15], a mathematical model for a centralized EMS for microgrids, functioning 

in both grid-connected and stand-alone modes, is proposed. The problem is formulated as a 

unit commitment problem, incorporating the distribution network and its associated operational 

constraints, which initially results in a Mixed-Integer Nonlinear Programming (MINLP) model. 

To reduce the computational complexity, the distribution power flow equations and nonlinear 

constraints are simplified via linearization techniques, transforming the MINLP into a MILP 

formulation. In [16], the integration of energy management systems into microgrids is 

examined through a multi-objective function that accounts for both total cost and greenhouse 

gas emissions. The system is precisely modelled to apply a novel MILP optimization algorithm. 

In [17], an energy renovation model is proposed to address an optimization problem in 

residential urban areas using the MILP approach. The model integrates energy supply systems 

and building envelope design, with a focus on assessing economic feasibility and the 

availability of roof space. In [18], the authors present two EMS approaches: a heuristic method 

and a Mixed-Integer Linear Programming (MILP) algorithm, applied to a smart power plant 

consisting of wind turbines and a lithium-ion storage battery to meet a power production 

commitment to the utility grid. A comparative study is conducted to improve the predefined 

heuristic using the optimal reference provided by the global MILP optimizer. 

 In [19], a year-long comparative analysis of two distinct architectures of water station 

involving single and multi-pump system both powered by the same PV generator is conducted. 

For the multi-pump architecture, a MILP model is developed to maximize water production. 

Consequently, the multi-pump water station demonstrates a significant enhancement in 

hydraulic efficiency compared to the single-pump station. Additionally, the annual water 

production volume for both architectures is assessed. 

Other techniques have also been investigated, like metaheuristic algorithms including 

Genetic Algorithms (GA), Particle Swarm Optimization (PSO) and Grey Wolf Optimizer 

(GWO), which provide flexibility in handling complex non-linear and multi-objective 

optimization [20].  

Recently, hybrid metaheuristic approaches have gained increasing attention, with studies 

proposing methods such as the Dual Predator Optimization (DPO) algorithm [21], which 

combines Grey Wolf Optimization (GWO) and Whale Optimization Algorithm (WOA) to 

address their respective shortcomings. The DPO has been applied to optimize renewable energy 

utilization in a hybrid microgrid. Reported results are promising, showing a reduction of 

approximately 15–20% in the Cost of Electricity (COE) and an average 7.5% reduction in the 

Loss of Power Supply Probability (LPSP). 

On the other hand, the online EMS has emerged as an attractive approach and has been the 

subject of numerous studies because of its key advantage of operating in real-time without 

requiring any prior knowledge of future events. Recently, the adoption of artificial intelligence 
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(AI) techniques as an online method particularly reinforcement learning has gained attraction 

[22]. Fuzzy logic is also considered as a robust and intelligent methodology for energy 

management which provides a suitable framework for addressing such problems. Parameters 

tuning of conventional rule-based fuzzy logic systems are manually designed by human experts, 

relying on heuristic knowledge and intuition about the system's behavior. Nevertheless, this 

kind of method exhibits the inability to handle accurately nonlinearities and uncertainties. To 

overcome the lack of adaptability and scalability, AI-optimized fuzzy logic control leverages 

artificial intelligence techniques, such as genetic algorithms, neural networks, or reinforcement 

learning, to automatically generate or fine-tune fuzzy rules and membership functions, thereby 

improving control accuracy and adaptability.  

In this context,[23] presents a comparative evaluation of two simplified and reduced fuzzy 

logic processes applied for EMS to achieve cost savings in a grid-connected hybrid solar PV 

and battery storage system. [24] proposes an adaptive and optimal fuzzy logic-based EMS that 

generates day-ahead fuzzy rules for real-time energy dispatch under operational uncertainties. 

An offline meta-heuristic algorithm, based on the artificial sheep algorithm, is used to optimize 

the fuzzy inference system, membership functions and rule sets. The objective is to minimize 

power fluctuations and operational costs. Simulation results show that the proposed solution 

outperforms conventional online rule-based and offline meta-heuristic scheduling methods. 

The authors in [25] applied a real-time neural network to solve the EMS problem for a test 

bench desalination system. By considering that all motor-pumps are power controlled in the 

internal control loop, an improved Power Field oriented control was proposed in [26]. 

 

Therefore, in this paper, two classes of strategy approaches, assessing online (suboptimal) 

fuzzy logic and offline (global optimum) MILP optimization, are developed to maximize the 

produced freshwater of a reverse osmosis micro-grid system. As implied by its name, MILP is 

constrained to linear relations between continuous model mixing real and integer variables. To 

account for nonlinear characteristics, these must sometimes be approximated using piecewise-

linear functions. These approximations are incorporated into the MILP formulation through the 

introduction of auxiliary binary variables which are used to distinguish between the segments 

of the piecewise-linear function. The main contribution of this paper is to assess the “level of 

optimality” of online fuzzy logic-based EMS for renewable energy supplied water treatment 

process, these EMS approaches being considered as performing and robust for this class of 

systems. 

 

The remaining sections are outlined as follows. Section 2 presents the architecture and the 

model of the desalination process coupled with a hybrid PV/Wind system, followed by the 

optimized fuzzy logic EMS. Section 3 presents the MILP-based EMS. Section 4 presents the 

comparative analysis of both (fuzzy logic and MILP) EMS applied to the pumping/desalination 

water station, both strategies aiming to maximize freshwater volume. Finally, the conclusions 

are presented in Section 5. 

 

STRUCTURE AND MODELLING OF THE REVERSE OSMOSIS DESALINATION 

HYBRID SYSTEM  

The Reverse Osmosis desalination hybrid system involves coupling a hybrid (wind and solar) 

source powering a water pumping/desalination unit. The power hybrid source and the water 

treatment system, which is composed of three motor pumps with desalination and storage devices, 

are interconnected to a DC bus via power converters. The interconnection to a reverse osmosis 

pumping/desalination system is structured as presented in Figure 1. One of the key characteristics 

of the case study is the use of hydraulic storage, which is preferred over electrochemical storage 



Amine Ben Rhouma,  Abir Zgalmi, et al.  

Comparison of Energy Management Strategies between…  
Year 2026 

Volume 14, Issue 2, 1140680 
 

 

Journal of Sustainable Development of Energy, Water and Environment Systems 5 

 

to lower both economic and environmental costs. In this regard, three water storage tanks are 

associated with the water pumping and desalination system. 

A submersible motor pump 1 is used to pump brackish water from a well into the water tank 

1 (pumping mode), needed as the source of feedwater for the RO module. Subsequently, a multi-

stage high-pressure motor pump 2 is used to ensure freshwater production (permeate) through the 

RO module from water tank 1 (desalination mode). The produced freshwater is then stored in the 

water tank 2. Finally, a centrifugal motor pump 3 transfers the low-pressure permeate into an 

elevated storage tank (water tank 3 consisting of a water tower) for distribution (storage mode). 

Depending on the available generated hybrid PV–wind power (Phyb), the water levels in the 

three tanks and the consumption profile, eight operating modes are possible. An optimal 

management of the energy produced by this system is therefore essential to maximize permeate 

production and meet water demand. The principle and more details have been presented in 

previous work [27].  

 
Figure 1. Structure of the hybrid power desalination system. 

 

Solar PV model  

The power output of solar panels is directly influenced by their dimensions, but also by 

solar irradiance levels and operating temperatures, as outlined below [28]: 

𝑃𝑃𝑉 = 𝜂𝑔𝑝𝑣 × [1 − 𝛽 × (𝑇𝑐𝑒𝑙𝑙 − 𝑇𝑁𝑂𝐶𝑇)] × 𝐴𝑃𝑉 × 𝐼𝑟    (1) 

The PV cell temperature is estimated using the following expression: 
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𝑇𝑐𝑒𝑙𝑙 = 30 + 0.0175 × (𝐼𝑟 − 300) + 1.14 × (𝑇𝑎 − 25)                                            (2) 

 

 Where 𝜂𝑔𝑝𝑣  include the reference efficiency of the photovoltaic module and the power 

conditioning components (boost converter, wiring, etc), APV denotes the panel's area [𝑚2], 𝐼𝑟 

represents the solar irradiation [W/𝑚2],  β refers to the power temperature coefficient,TNOCT is 

the nominal operating cell temperature, Tcell is the photovoltaic cell temperature and 𝑇𝑎 [°C] is 

the ambient temperature.  

Wind turbine model  

Wind turbine power modeling is essential for predicting energy production and optimizing 

system performance. Several models exist, each with varying levels of complexity and 

accuracy. These models can be classified into three main categories: energetic, empirical and 

dynamic. In this paper, the author proposes to use an energetic model based on fundamental 

aerodynamic principles. The output power of a wind turbine, denoted as 𝑃𝑊𝑇  [W], is expressed 

as follows:  

𝑃𝑊𝑇 =
1

2
× 𝜂𝑔𝑊𝑇 × 𝐶𝑝 

𝑜𝑝𝑡
× 𝜌 × 𝐴𝑊𝑇 × 𝑉𝑤𝑖𝑛𝑑

3                                                                                             (3) 

where 𝐶𝑝 
𝑜𝑝𝑡

 is the optimum power coefficient, ρ is the air mass density [kg/𝑚3], 𝐴𝑊𝑇 is the 

wind turbine swept area [𝑚2], Vwind is the wind speed [m/s] and 𝜂𝑔𝑊𝑇 include the global static 

converter and generator efficiency.  

Water desalination system model 

 

The first motor pump, a submerged type, is used to extract brackish water from the well to 

the water tank 1. The following equation expresses the variation of the water flow rate as a 

function of power for a given discharge head. 

𝑄1 = 0.0022 x 𝑃1
1.16  +  6.8                                                                                                               (4) 

where 𝑄1 [𝑚3 /h] and 𝑃1 are respectively the flow rate and the electric power of the motor-

pump 𝑃1. 
A high-pressure vertical multi-stage centrifugal pump is used to feed the Reverse Osmosis 

(RO) module and to ensure freshwater production [27]. The evolution of the flow rate 𝑄2 at 

RO module input with respect to the desalination motor-pump power and the membrane 

capacity MC is given by: 
 

𝑄2 = 0.0122 ×  𝑃𝑒2
0.534 × 𝑀𝐶0.552                                                                                                   (5) 

 

Given an MC, the recovery rate R is evaluated using the following equation: 

𝑅 = 0.162 × 𝑄2
0.452 × 𝑀𝐶−0.353                                                                                                (6) 

 

The produced permeate freshwater flow 𝑄2𝑝  and the concentrate flow 𝑄2𝑟  are deduced 

respectively from eqs. (7) and (8): 

𝑄2𝑝 = 𝑅 × 𝑄2 (7) 

𝑄2𝑟 = 𝑄2 − 𝑄2𝑝 (8) 

 

The produced freshwater at very low pressure is stored in Water Tank 2. A third motor 

pump is employed for a gravity store at an elevated height (Water tank 3), ensuring useful water 

to supply consumers and reducing the dependence on the availability of electrical power. The 

energetic model of the third motor pump 3 can be expressed by [29]: 

 

𝑄3 = 2.18. 10−7  ×  𝑃3
2.15  +  3.44                                                                                                     (9) 
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where 𝑄3 [𝑚3 /h] and 𝑃3 are respectively the flow rate and the electric power of the motor-

pump P3. 

 

 

 
Figure 2. Environment (wind, solar, temperature) and water load profile data 

Figure 2 illustrates the environmental input variables over both a one-year and a representative one-

week period. The one-week period (the first week of July) was selected as a representative operating 

window from the annual dataset to illustrate short-term system dynamics while maintaining the 

readability of the results. This specific week corresponds to a period of high freshwater demand combined 

with pronounced renewable energy variability, making it particularly suitable for comparing energy 

management strategies within a concise and interpretable time frame. Seasonal and inter-daily variations 

in wind speed and solar irradiance are clearly visible in the annual profiles, highlighting the significant 

fluctuations encountered throughout the year. It is important to note that the energy management system 

design is based on a one-year horizon. 

Hourly meteorological data for the entire year, including wind speed, ambient temperature and solar 

irradiance, were used for a site in Djerba, southern Tunisia. The freshwater consumption profile was 

generated by extrapolating measured demand data obtained over one month to a full year using seasonal 

correction factors derived from historical consumption patterns.  
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Optimized Fuzzy Logic Energy Management System 

 

In this study, the authors have selected the Mamdani-type Fuzzy Logic Controller 

(FLC)[30], [31], which operates through three fundamental stages. First, the fuzzification 

process transforms the crisp input values into linguistic variables by applying predefined 

membership functions. Next, the inference mechanism applies a set of fuzzy rules within the 

rule base for Energy Management System (EMS) to simulate human decision-making using 

fuzzy operators such as AND/OR, typically implemented through the MIN/MAX operators. 

The inference system generates a fuzzy output based on the degree of activation of the fuzzy 

rules and the input variable magnitudes. Finally, this fuzzy output undergoes defuzzification to 

convert it into a crisp output value suitable for “real-world” application. Among the various 

defuzzification techniques, the Center of Gravity (COG) method is employed in this work, as 

it is widely recognized for its computational efficiency and reliable performance. The COG 

technique calculates the centroid of the aggregated output membership function, thereby 

providing a balanced and representative crisp value. 

The input variables of the system consist of the hybrid photovoltaic/wind power (𝑃ℎ𝑦𝑏) and 

the water levels of the three tanks (H1, H2 and H3). The outputs correspond to the power sharing 

factors (α1, α2) which determine the distribution of the generated powers within the hydraulic 

process. The third coefficient α3 is deduced from eq. (10): 

∑  𝛼𝑖

3

𝑖=1

= 1 

 

(10) 

𝑃𝑖 = 𝛼𝑖 × 𝑃ℎ𝑦𝑏 (11) 

 

 
Table 1. The proposed fuzzy manager parameters 

 MF type Number 

of subsets 

Number 

of parameters 

Inputs Phyb Triangular/ 

Trapezoidal 

12 38 

H1 Triangular 3 9 

H2 Triangular 3 9 

H3 Triangular 3 9 

Outputs α1 Triangular 9 27 

α2 Triangular 11 33 

 
 

The design of the Fuzzy Logic EMS (FLEMS) largely relies on determining a set of tuning 

parameters, such as membership functions (type, number and placement parameters), the fuzzy 

rule base and the defuzzification method. In this study, the FL system consists of 324 rules based 

on the membership functions of both the input and output variables. The proposed fuzzy manager 

parameters for the different inputs and outputs is presented in Table 1. 

The number of degrees of freedom (DoF) that can be used for the application of a Genetic 

algorithm (GA) to optimize the fuzzy system refers to the number of tuning parameters that GA 

can manage. This last defines the solution space within which the GA operates and directly 

influences the flexibility and complexity of the optimization process. Typically, the GA can 
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optimize key components of fuzzy logic systems, particularly the structure and parameters of the 

membership functions (MFs), which include selecting the type of MF (e.g., Gaussian, triangular, 

trapezoidal) as well as tuning the parameters that define their shape and position. GA can also 

optimize the fuzzy rule base by selecting which rules are active (rule pruning) or adjusting the 

associated rule weights [32].  

Furthermore, the optimization process may extend to other components of the fuzzy inference 

system, including the defuzzification strategy and/or inference mechanism. In some cases, GAs 

can also fine-tune the rule weights of scaling factors.  

In this paper, the proposed GA is used to optimize the fuzzy energy manager that aims to 

parameterize the fuzzy parameters to maximize the freshwater production as follows: 

 

Ffitness = ∫ Q2p
𝑁

0
(𝑡)𝑑𝑡                                                                                                      (12) 

 

Where Ffitness is the objective function corresponding with the freshwater volume to be 

maximized and where N is the total number of time steps.   

In this context, the defuzzification method, the set of inference rules and the number and type 

of the previously selected membership functions are kept fixed. The optimization focuses on the 

shape and position parameters of the membership functions for both inputs and outputs. To reduce 

the complexity of the proposed optimization technique, only one point of the triangular 

membership function is adjusted. The proposed optimization technique is depicted in Figure 3. In 

the end, the set of decision parameters shrank to a 31-gene chromosome structure, which was used 

by the genetic algorithm. Specifically, the first input variable (𝑃ℎ𝑦𝑏) is represented by 9 genes, 

while the three inputs related to the tank level variables (H1, H2 and H3) are represented by 6 

genes. The first output variable is encoded by 7 genes and the remaining 9 genes are allocated to 

the characterization of the second output variable. Thanks to this structured encoding, the GA can 

focus on different solutions in an organized manner without losing the compactness of the fuzzy 

system. The optimal set of Fuzzy Inference Systems (FIS) will be selected by varying these 

parameters. 

 

 
Figure 3. The proposed optimized Fuzzy logic energy management system. 

 

The hybrid power produced for one week, with the dispatched powers of the three motor pumps 

for the GA optimized FLEMS (GA_FLEMS) are presented in Figure 4. 
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Figure 4. Power flows of the hybrid source shared by the three motor pumps over one typical 

week using GA_FLEMS. 

Figure 5 and Figure 6 show, respectively, the different water flows and water level evolutions 

of the three pumps with the GA_FLEMS.  

 

 
Figure 5. The three pumps' flow rate and the permeate flow rate over one week 

 
Figure 6. The three tanks’ levels over one week 

The consumed energy Ec, the non-consumed energy Enc (wasted energy) and the produced 

freshwater volume for FLEMS and optimized GA_FLEMS are compared in Table 2. 

Applying the optimization strategy, the freshwater production shows a performance 

improvement of 2.96% over one week, increasing until 8.06% over a year. Additionally, the 

energy generated by the hybrid source is used more efficiently. Specifically, the system's overall 

energy efficiency is enhanced by 2.06%, while the amount of unused power drops by 5.77%. 
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Table 2. Comparative performance of FLEMS and GA_FLEMS 

Comparative simulation results of the FLEMS and GA_FLEMS for a year 

 𝑬𝒄(kWh) 𝑬𝒏𝒄(kWh) Freshwater (𝑚3) 

FLEMS 3 104 1.073 104 2245 

GA-FLEMS 3.06 104 1.011 104 2426 

Gain (%) 2.06 5.77 8.06 

 

This table demonstrates the effectiveness of GA-FLEMS in managing energy flows and 

meeting operational objectives. However, the degree of optimality cannot currently be 

assessed, as that kind of EMS is necessarily suboptimal. Therefore, this paper aims to employ 

an optimization algorithm capable of determining the optimal trajectory a priori, given the 

trajectories of the power flows produced by solar and wind generators. To achieve this within 

reduced computation time, the mixed-integer linear programming (MILP) technique is 

selected. 

Contrary to the FLEMS, the MILP strategy is not applicable in real-time since it requires 

the knowledge of environment profiles. Thus, an analytical evaluation setting the gap with 

respect to the reference optimal approach (here, the MILP formulation) is essential to determine 

how close the real-time EMS (in our case, the FLEMS) operates to an optimal or near-optimal 

performance level. The optimality level of the FLEMS will be assessed in the following 

section. 

ENERGY MANAGEMENT SYSTEM BASED ON A MILP ALGORITHM 

Linear programming offers several advantages for solving complex optimization problems 

with a huge number of decision variables, enabling the attainment of an optimal solution in a 

fast and efficient manner. In this study, the GUROBI solver is used, which relies on the Branch-

and-Bound algorithm to efficiently solve the MILP optimization problem. The first step in the 

modeling process involves linearizing the desalination system to ensure its compatibility with 

linear programming techniques. The second step focuses on defining the objective function and 

system constraints, thereby ensuring a rigorous formulation of the MILP problem. 

Piecewise linearization of the desalination motor pump constraints 

The water flow rate, as a function of electric power at motor pump input, along with the 

rejection rate of the desalination motor pump, are described by their respective nonlinear 

equations in [27], [29]. To formulate the MILP problem, a piecewise-linear approximation is 

applied [19]. This method involves dividing each nonlinear function (flow rate and rejection 

rate) into “n” breakpoints and approximating each segment linearly as illustrated in Figure 7 

for a case of two segments. Typically, the selection of the number of breakpoints is based on 

balancing the trade-off between the process complexity (number of segments and subsequent 

variables) and the approximation error between the actual nonlinear and the linearized models. 

In this study, different cases were performed with varying numbers of breakpoints to obtain 

the optimal models presented in Table 3.  
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Figure 7. Modeling a piecewise linear function. 

For any given desalination power, e.g., 𝑝𝑖−1 ≤ 𝑃2i ≤ 𝑝𝑖, the flow rate function value (𝑄2𝑖 =
𝑓(𝑃2𝑖)) can be approximated by linear equation with coefficients 𝑎𝑖, 𝑏𝑖 for each piecewise i, 

which is expressed as: 

𝑄2i = 𝑎𝑖 × 𝑃2i(t) + 𝑏𝑖  (13) 

The same manner is used for the recovery rate 𝑅𝑖 = 𝑓(𝑄2i) with coefficients 𝑐𝑖, 𝑑𝑖 for each 

piecewise i, such that 

𝑅𝑖 = 𝑐𝑖 × 𝑄2i(t) + 𝑑𝑖  
(14) 

The selection of the best linear model (i.e. best number of segments) is based on the 

calculated error between the actual nonlinear model and the linearized representation. 

Moreover, the error in our analysis can be quantified using various metrics, such as Mean 

Absolute Error (MAE), Mean Squared Error (MSE), or Root Mean Squared Error (RMSE). In 

this study, RMSE is selected as the primary error evaluation metric, as given by eqs. (15) and 

(16). 

 

𝑅𝑀𝑆𝐸(𝑄2) = √
(∑ (𝑄2𝑟𝑒𝑎𝑙(𝑃2𝑖) − 𝑄2(𝑃2𝑖)𝑁

𝑖=1 )²)

𝑁
  

(15) 

𝑅𝑀𝑆𝐸(𝑅) = √(∑ (𝑅𝑟𝑒𝑎𝑙(𝑄2𝑟𝑒𝑎𝑙 𝑖)−𝑅(𝑄2𝑖)𝑁
𝑖=1 )²)

𝑁
                                         

(16) 

Where, 𝑃2𝑚𝑖𝑛 , 𝑃2𝑚𝑎𝑥 , 𝑄2𝑚𝑖𝑛  and 𝑄2𝑚𝑎𝑥 are respectively the maximum and the minimum 

desalination electric motor pump power and flow rate, 𝑄2𝑟𝑒𝑎𝑙 and 𝑄2 are the consistent real 

and linearized flow rates and 𝑅𝑟𝑒𝑎𝑙 and 𝑅 are the corresponding real and linearized recovery 

rates.  

In this paper, three case studies regarding the number of breakpoints (piecewise) are 

developed. An optimization problem is formulated using the Fmincon algorithm to determine 

the optimal piecewise linear approximation of the water flow and rejection rate curves. The 

objective is to minimize the root mean squared error (RMSE) between the original curve and 

its piecewise linear approximations for the three cases: 

𝑚𝑖𝑛 {
 𝑅𝑀𝑆𝐸(𝑄2)

𝑅𝑀𝑆𝐸(𝑅)
           (17) 

An inequality constraint is implemented to ensure that the linear approximation solution 

lies below the actual curve, preventing the overestimation of water production in the MILP 

formulation. 

𝑄2 ≤ 𝑄2𝑟𝑒𝑎𝑙               (18) 
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Table 3 presents the error values calculated between the actual nonlinear model and its 

linearized approximation for the three numbers (n) of breakpoints (piecewise).  

For a single piecewise approximation, the error was huge, measured at approximately 0.55 

for the flow rate and 0.17 for the recovery rate. In the second case study (n=2), the error 

decreased slightly to 0.29 and 0.09 for the flow and recovery rates, respectively. Finally, with 

three piecewise segments (2 breakpoints), the linearized approximation closely matched the 

actual nonlinear model, yielding an RMSE of 0.06 for the flow rate and 0.03 for the recovery 

rate. These results demonstrate the small error and validate the effectiveness and accuracy of 

the linear models used in the MILP formulation for the case of 3 breakpoints. 

 

Table 3. Error between the actual nonlinear model and its linearized approximation for the 

three cases 
 RMSE 

n=1 

RMSE 

n=2 

RMSE 

n=3 

Flow rate 𝑸𝟐 0.553 0.296 0.066 

Recovery rate R 0.175 0.094 0.032 

MILP Problem formulation 

The MILP objective function is calculated using eq. (19) aiming to maximize the water 

storage volume in the output water tank 3, which represents the freshwater quantity available 

for users.  

Max (𝑉3 = ∫ 𝑄3(𝑡) × 𝑑𝑡
𝑇

0
≈ ∑ 𝑄3(𝑡) × ∆𝑡𝑇

𝑡=0  )                                                                          

  

(19) 

Different system constraints related to the power balance and parameter boundaries are 

presented in the following sections. 

System power balance constraint 

To maintain the energy balance in the pumping/desalination plant, the total energy 

consumed by the plant and generated by the PV/Wind system should be equal. Hence, the 

equation constraint (20) must be fulfilled: 

𝑃ℎ𝑦𝑏(𝑡) = 𝑃1(t) + 𝑃2(t)+𝑃3(t) + 𝑃𝑐𝑢𝑟(t)                                                                                           (20) 

  

Where, 𝑃1(t) ≥ 0, 𝑃2(t) ≥ 0 and 𝑃3(t) ≥ 0 are respectively the three motor pumps power 

and 𝑃𝑐𝑢𝑟(t) is the curtailment power from both hybrid sources. 

Water tank constraints 

As the hydraulic storage has finite capacity, the energy management strategy has to manage 

water levels between the maximum capacity denoted Hmax and a minimum level denoted 

Hmin>=0 to avoid excessive discharging. Accordingly, the state of the storage system at any 

time must satisfy the following constraints: 

0 ≤𝐻1(t) ≤H1max,                                                                                                                                      (21) 

0 ≤𝐻2(t) ≤H2max,                                                                                                                                      (22) 

0 ≤𝐻3(t) ≤H3max,                                                                                                                                      (23) 

Where 𝐻1(t), 𝐻2(t) and 𝐻3(t) are respectively the instantaneous brackish water, permeate 

water and freshwater tank levels. 
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Desalination, pumping and storage motor pumps constraints 

 The two pumping and storage motor pumps (P1 and P3) operating at fixed power have two 

possible operating states. For this reason, two binary variables 𝐷1
𝑡  and 𝐾1

𝑡  are added to 

represent the startup and shutdown (on/off) operation of P1 and P3, respectively, which are 

expressed in (24) and (25): 

𝑃1(𝑡) = 𝐷1
𝑡 × 𝑃1𝑚𝑎𝑥                                                                                                             (24) 

𝑃3(𝑡) = 𝐾1
𝑡 × 𝑃3𝑚𝑎𝑥                                                                                                                  

(25) 

Where 𝑃1𝑚𝑎𝑥 and 𝑃3𝑚𝑎𝑥 are respectively the pumping and storage maximum power.  

The two variables 𝑃2i  and 𝑇ri are associated with the appropriate pair of consecutive 

breakpoints. Each breakpoint and corresponding segment are linked to a binary variable 𝑠𝑖
𝑡. 

Thus, for n−1 breakpoints and n segments, n binary variables are introduced. The piecewise 

linear approximation of the flow rate function and the conversion rate are represented through 

the following constraints: 

𝑠𝑖
𝑡 × 𝑃𝑖−1 ≤ 𝑃2i(t) ≤ 𝑠𝑖

𝑡 × 𝑃𝑖  , ∀i≥1                                                                                        (26) 

∑ 𝑠𝑖
𝑡𝑛

𝑖=0 = 1                                                                                    (27) 

𝑃2(t) = ∑ 𝑃2i(t)

𝑛

𝑖=1

 (28) 

The water flow and the conversion rate can be deduced from eqs. (29) and (30): 

𝑄2 = ∑ 𝑄2i
𝑛
𝑖=1 = ∑ 𝑎𝑖 × 𝑃2i(t)𝑛

𝑖=1 + ∑ 𝑠𝑖
𝑡 × 𝑏𝑖

𝑛
𝑖=1                                                                              

(29) 

𝑅 = ∑ 𝑅i
𝑛
𝑖=1 = ∑ 𝑐𝑖 × 𝑄2i(𝑃2i)

𝑛
𝑖=1 + ∑ 𝑠𝑖

𝑡 × 𝑑𝑖
𝑛
𝑖=1                                                                            (30) 

It should be noted that 𝑠0
𝑡 = 1 corresponds to the case where the motor pump 2 is inactive, 

since for any 𝑖 > 1, 𝑠𝑖
𝑡=0 would also implies 𝑃2i(t) = 0 due to constraints (26). 

 

OPTIMALITY ASSESSMENT OF THE FLEMS FOR THE WATER STATION 

This section presents the simulation results of the pumping/desalination water station 

comparing the FLEMS, GA-FLEMS and MILP performance, the final objective being to assess 

the level of optimality of FL based EMS that may be actually implemented at real time. The 

input weather conditions (temperature, wind speed and solar irradiation) and water 

consumption profile are sampled every hour. 

Figure 8, presents the results of the MILP-based EMS. The first curve shows the power 

generated by the photovoltaic and wind systems (𝑃ℎ𝑦𝑏) over one typical week. The second 

curve illustrates the power consumed for water pumping (motor pump 1), where the pumping 

unit operates at a constant power level. Similarly, the water storage unit (motor pump 3) 

operates with fixed power consumption. The third curve displays the power used by the 

desalination unit, which operates with a variable power range between a minimum 𝑃2𝑚𝑖𝑛 and 

a maximum 𝑃2𝑚𝑎𝑥, as depicted in Figure 8. The flow rate curve in terms of time, represented 

by Figure 9, looks the same as the aspect of the absorbed power of the three motor pumps (𝑄1, 

𝑄2 and 𝑄3 ) as well as the permeate water flow (𝑄𝑝). Then, Figure 10 exposes the water tanks' 

levels evolution for the same period. Simulation results in Figure 11 show that the maximum 

water volume using this MILP configuration is equal to 94.5 𝑚3 after one week.  
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Figure 8. Hybrid power shared by the three motor pumps power over one week (MILP-

based EMS) 

  

 
Figure 9. The three pumps' flow rate and the permeate flow rate over one week (MILP-based 

EMS) 

 

 
Figure 10. The three tanks’ levels over one week (MILP-based EMS) 
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Figure 11. Freshwater volume produced with MILP-based EMS 

 

The MILP optimization relies on a linear model based on the piecewise approximation 

described in the previous section, with the number of segments optimized to minimize 

deviations. Due to that process, a slight underestimation of the pump outlet flow is involved in 

the linearized model compared to the nonlinear representation. To provide a more rigorous 

comparative assessment between both management approaches, the output references sent by 

the MILP-based EMS are therefore applied to the nonlinear model. 

Figure 12. Freshwater tank level for linear and nonlinear Figure 12, Figure 13 and Figure 

14 illustrate the evolution of the water levels in the reservoirs under the EMS-based MILP 

strategy applied to both the linear and nonlinear models over one week. The results show a tiny 

deviation. To better assess this deviation, particular attention is given to the freshwater volume, 

as shown in Figure 15.  

 

 

 
Figure 12. Freshwater tank level for linear and nonlinear models from the MILP EMS 
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Figure 13. Permeate water tank level for linear and nonlinear models from the MILP EMS  

 

  
Figure 14. Brackish water tank level for linear and nonlinear models from the MILP EMS 

 

As illustrated in Figure 15, the outcome of the linear model shows no significant deviation 

from that of the nonlinear model, with a relative error evaluated at 0.37%. 
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Figure 15. Freshwater volume for linear and nonlinear models from the MILP EMS 

 

The MILP-based approach involves the maximum producible freshwater volume over the 

year, compared to FL-EMS and GA-FLEMS strategies, as illustrated in Figure 16.   

 

 
Figure 16. Freshwater volume for different EMS strategies over 1 year 

 

Table 4 allows for the assessment of the optimality degree of the fuzzy logic controller 

optimized by a genetic algorithm (GA-FLEMS) at annual, monthly and weekly time scales 

using two complementary indices. The optimality degree is defined as a performance index 

relative to the MILP benchmark: 

𝑂𝑝𝑡𝑖𝑚𝑎𝑙𝑖𝑡𝑦 𝑑𝑒𝑔𝑟𝑒𝑒 (%) =
𝑉𝐺𝐴𝐹𝐿

𝑉𝑀𝐼𝐿𝑃
× 100                                                                         

  

(31) 

where 𝑉GA-FL and 𝑉MILP represent the freshwater production achieved by GA-FLEMS and 

MILP, respectively. Similarly, the deviation in non-consumed energy is defined as: 

 
 



Amine Ben Rhouma,  Abir Zgalmi, et al.  

Comparison of Energy Management Strategies between…  
Year 2026 

Volume 14, Issue 2, 1140680 
 

 

Journal of Sustainable Development of Energy, Water and Environment Systems 19 

 

𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛(%) =
𝐸𝑛𝑐 𝐺𝐴−𝐹𝐿 − 𝐸𝑛𝑐 𝑀𝐼𝐿𝑃

𝐸𝑛𝑐 𝑀𝐼𝐿𝑃
× 100 

  

(32) 

Where 𝐸nc GA-FLand 𝐸nc MILP represent the non-consumed energy under each strategy. 

 

Over the annual trajectory, MILP achieves the highest freshwater production (2701 m³) and 

the lowest non-consumed energy (7.35 × 10³ kWh), confirming its role as the global optimal 

benchmark. GA-FLEMS produces 2426 m³ of freshwater, corresponding to an optimality 

degree of approximately 90 % with respect to the MILP reference. The higher curtailment 

observed under GA-FLEMS (+37.5 %), as captured by the deviation metric, indicates an 

underutilization of the available renewable resources and reflects the trade-off associated with 

real-time implementation and limited future knowledge. 

At the monthly scale, GA-FLEMS produces 72.8 % of the MILP reference freshwater, 

while exhibiting a significantly higher level of non-consumed renewable energy (+481.7 %) 

compared to MILP. 

At the weekly scale, GA-FLEMS closely tracks the optimal MILP trajectory that may be 

operated at real time in “real life” in terms of freshwater production (95 % of the MILP 

reference), while showing a large deviation in non-consumed energy (+157.6 %). 

These deviations, which are not constant across the three simulation periods, are due both 

to the intrinsic differences between the two energy management methods and to the variability 

of meteorological data, water demand and seasonal effects. However, the long term (annual) 

vision gives an “integral vision” of the management process efficiency and the optimality 

degree of the fuzzy logic controller with optimization of its control parameters (GA-FLEMS) 

remains really high (close to 90%) for an EMS process that may be implemented at real time, 

without perfect production and water demand foresight. 

 

Table 4. Comparative performance of GA_FLEMS and MILP at annual, monthly and 

weekly time scales 

Comparative simulation results of the GA-FLEMS and MILP for a year 

 𝑬𝒄(kWh) 𝑬𝒏𝒄(kWh) freshwater (𝒎𝟑) 

GA-FLEMS 3.06 104 1.011 104 2426 

MILP 3.336 104 7.352 103 2701 

Comparative simulation results of the GA-FLEMS and MILP for a month 

 𝑬𝒄(kWh) 𝑬𝒏𝒄(kWh) Freshwater (𝒎𝟑) 

GA-FLEMS 1.16 103 14.96 102 400 

MILP 2.4 103 2.57 102 549 

Comparative simulation results of the GA-FLEMS and MILP for a week 

 𝑬𝒄(kWh) 𝑬𝒏𝒄(kWh) Freshwater (𝒎𝟑) 

GA-FLEMS 702.44 168.5 90 

MILP 805.54 65.4 94.5 

 

 

This paper primarily addresses the problem of energy management over a one-year time 

horizon. In that paper, the focus was put on evaluating online fuzzy-based management 

performance with respect to deterministic optimization approaches (MILP) with fixed system 

sizing. The results are certainly relevant in terms of qualitative efficiency performance of EMS 

but there are rigorously only valid for the considered system sizing. Thus, in future work, it 

would be advisable to integrate both sizing and operation inside a “co-design process” 

optimization. In such integrated process, uncertainties effects related to data, degradation 
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models and extended time horizons should be assessed. For example, in [33] the authors 

investigated the design of a microgrid under uncertainty. The results indicate that temporal 

representation is a dominant factor: reducing the data to a single year with respect to the project 

lifecycle strongly distorts both the key performance indicators (KPIs—namely system cost and 

self-sufficiency level) and the sizing results, whereas extending the horizon to several years 

substantially reduces errors by better capturing long-term efficiency. 

CONCLUSION 

In this study, two energy management strategies are proposed and comparatively analyzed. 

The first strategy is based on a fuzzy logic energy management system optimized using a 

genetic algorithm (GA-FLEMS), while the second relies on a Mixed-Integer Linear 

Programming (MILP) formulation. The GA-FLEMS approach is grounded in causal 

knowledge of the system environment and is therefore suitable for real-time implementation. 

In contrast, the MILP-based strategy assumes a priori knowledge of the complete set of system 

inputs, including climatic conditions and water consumption profiles, over the entire 

optimization horizon. 

The primary objective of both energy management strategies is to optimally distribute 

power flows among the motor pumps in a rational and efficient manner, thereby maximizing 

pure water production while ensuring optimal system performance. The MILP-based approach 

is particularly relevant as it provides a global optimum for the energy management problem 

and can serve as a reference benchmark. Moreover, due to its non-causal nature, the MILP 

formulation is well-suited for system sizing and optimal co-design studies. 

To enable the MILP formulation, the system model is piecewise linearized. This step 

reformulates the original nonlinear problem into a tractable linear optimization problem while 

preserving the essential system dynamics. Using the MILP solution as a reference benchmark, 

a comparative analysis is conducted to evaluate the performance and optimality of the GA-

FLEMS approach, specifically designed for real-time operation. 

Simulation results demonstrate that the GA-FLEMS strategy achieves approximately 90% 

of the optimal performance obtained with the MILP benchmark in terms of annual pure water 

production. These results confirm the effectiveness of the proposed fuzzy-logic-based energy 

management strategy while highlighting the inherent trade-off between real-time causal control 

and globally optimal, non-causal optimization methods. 

It is important to highlight that, in the present study, the system component sizing is 

assumed to be fixed. Future work will focus on developing a comprehensive co-optimization 

framework that simultaneously optimizes motor pump setpoint trajectories and component 

sizing, thereby enabling integrated design and operational optimization of the overall system. 
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NOMENCLATURE 

Symbols 

A area [m2] 

H level [m] 

P power [W] 

Q flow [m3/s] 

R Recovery rate [%] 

T temperature [°C] 
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V volume [m3] 

 

Greek letters 

ρ density [kg/m3] 

α power ratio - 

β temperature coefficient of power [°C-1] 

η efficiency [%] 

Subscripts and superscripts 

a ambient 

c consumed 

cur Curtailed 

hyb hybrid 

max maximum 

min minimum 

opt optimum 

p permeate 

Abbreviations 

AI Artificial Intelligence 

COE Cost Of Energy 

COG Center Of Gravity 

DP Dynamic Programming 

DPO Dual Predator Optimizer 

EMS Energy Management System 

FLEMS Fuzzy Logic Energy Management System 

GA Genetic Algorithm 

GWO Grey Wolf Optimizer 

LP Linear Programming 

LPSP Loss of Power Supply Probability 

MAE Mean Absolute Error 

MC Membrane Capacity 

MED Multi-Effect Distillation 

MF Membership Function 

MILP Mixed Integer Linear Programming 

MINLP Mixed Integer Nonlinear Programming 

MSE Mean Squared Error 

MSF Multi-Stage Flash 

NLP Nonlinear Programming 

NOCT Normal Operating Cell Temperature 

PSO Particle Swarm Optimization 

PV Photovoltaic 

RMSE Root Mean Squared Error 

RES Renewable Energy Sources  

RO Reverse Osmosis 

WEMG Water Energy MicroGrid 

WOA Whale Optimization Algorithm 
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