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ABSTRACT

Enhancing energy efficiency il water distribution systems is crucial for developing sustainable
water infrastructures. Applying tenewable energy sources for this purpose is a key step toward
cleaner energy production. For this reasongthe energy/water unit discussed in this paper includes
a hybrid system, combining solar phetovoltaic and wind generation, with a water treatment
process composed of three motor pumps and storage tanks for water pumping and desalination.
Such multi-energy ‘multi-pumps,system can be operated more efficiently by optimizing the
energy management systems“according to environmental (solar and wind) conditions and
fulfilling operation constraints. Therefore, this paper presents a comparative analysis between
the results“abtained using a Fuzzy Logic Energy Management System, an optimized Genetic
Algorithm for the*tuning of a Fuzzy Logic Energy Management System and a Mixed-Integer
Linear Programming optimization approach that converges close to the global optimum in terms
ofienergy, management trajectories. It is worth noting that the Fuzzy Logic energy management
system‘cambe implemented at real time while the Mixed-Integer Linear Programming is based
onythesknowledge of the full (past and future) power production trajectories. This comparative
analysis'is a novel opportunity to assess the level of optimality achieved by fuzzy logic.
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INTRODUCTION

The rapid demographic growth is continually increasing the demand for water and energy
resources, while also straining both economic and environmental sustainability[1]. By 2035,
the global energy demand is projected to be 40% higher than it was in 2010 [2]. In comparison,
global human water consumption was estimated at approximately 2,000 km? yr! in 2010 and
projections indicate that total consumption could increase by up to 40% by the end of the 21st
century [3]. Thus, it is imperative to explore the interlinks between energy and water so that
both resources are managed and conserved sustainably [4]. Moreover, applying renewable
energy sources is essential for achieving cleaner energy production within these systems.

Among desalination technologies, Reverse Osmosis (RO) dominates, representing
approximately 69 % of the installed global capacity, while thermal methods such®as Multi-
Stage Flash (MSF) and Multi-Effect Distillation (MED) account for much smaller,shakes: Most
new desalination contracts also prefer membrane-based systems. This preference 1s'driven by
technical, economic and environmental advantages: compared to MED and MSF, RO is’the
most energy-efficient, reducing electrical consumption by over 31 %. It is upitoss3.% more
cost-effective and exhibits the lowest carbon footprint among desalination‘technologies [5].

In the same context, several studies have demonstrated that coupling reverse.0smosis (RO)
desalination with renewable energy sources such as solar photoyoltaic (PV) and wind can
reduce energy costs, lower environmental impacts and enhance/systémesustainability and
resilience. For instance, [6] Review the state of the art of wind and PV=powered RO systems
and discuss the technical challenges of direct renewable energy sources (RES) integration in
large-scale plants. Furthermore, studies emphasize thesrole ofirenewable integration in cutting
carbon emissions and improving long-term viability of RQ desalination [7].

RO desalination systems coupled with RES suchas photovoltaic (PV) panels or/and wind
turbines to ensure water and energy sustaifiability, is a pfomising and efficient direction that
may be considered as a water-energy microgrid (WEMG). The integration of such systems
enables a beneficial coordinated energy andWwater management by leveraging renewable
generation to drive desalination processes. This synergy improves overall resource efficiency
and enables optimal scheduling of enetgy and water demands within a multi-vector energy
system [8].

The inherent randomness and mtermittency of RES on the one hand and the specific
features of the desalination systemwen the other, present significant challenges to optimizing
the dispatch of energyflows thatiguarantee a water supply, given its consumption. To mitigate
these issues within ‘a, WEMG)»the deployment of efficient energy management systems
becomes essential. Furthermore, various studies have been conducted to address these
challenges, (with special attention given to optimization techniques that enable the efficient
schedulifig of alternative energy resources and energy storage systems. In [9], the authors
proposed a datasdriven, machine learning—based economic dispatch method for grid-connected
watet=energysmicrogrids. The approach focuses on the cost-efficient operation of distributed
ehergy resources under variable renewable generation. In [10], the authors developed a deep
reinforcement learning—based operational strategy for islanded energy—water microgrids,
enablingradaptive scheduling by leveraging the water system as a virtual battery. In [11], the
authors developed an optimal sizing framework for a grid-connected DC microgrid supplying
agricultural loads. The proposed optimal sizing method incorporates a water—energy
management system integrating battery cycle-life degradation.

This approach of optimization technique ensures system stability and facilitates the optimal
dispatch of generated power, thereby enhancing overall economic performance.

Among the various EMS approaches, two representative methods are presented: an offline
method that performs global optimization but requires a prior information database and an
online method that operates in real-time based on system conditions.
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Mathematical programming techniques, being an offline approach, such as linear
programming (LP) or mixed-integer linear programming (MILP), are widely employed to
address the global optimum of the energy management in microgrids [12]. Similarly, dynamic
programming (DP) and nonlinear programming (NLP), which are also typically formulated as
offline optimization problems, also offer deterministic solutions under well-defined system
models and constraints.

A well-established method is the optimization-based MILP formulation, which can be
applied to complex systems especially with a huge number of decision variables [13]. In [14],
the study employs the roulette wheel mechanism and probability distribution functions to
generate uncertainty scenarios for renewable generation, demand and market prices. The MILP
optimisation approach is validated through simulations on both a single househeld and a
microgrid, demonstrating the effectiveness of the proposed stochastic model.

MILP is widely used in system analysis and optimization due to its\flexibilitysand
robustness in handling large-scale, complex problems, such as those encountereduin the water-
energy nexus. In [15], a mathematical model for a centralized EMS for microgrids, functioning
in both grid-connected and stand-alone modes, is proposed. The problem is formulated as a
unit commitment problem, incorporating the distribution networkandiits associated operational
constraints, which initially results in a Mixed-Integer Nonlinedr Programming (MINLP) model.
To reduce the computational complexity, the distribution powerflowsequations and nonlinear
constraints are simplified via linearization techniques, transforming the MINLP into a MILP
formulation. In [16], the integration of energy management systems into microgrids is
examined through a multi-objective function that@ccounts forboth total cost and greenhouse
gas emissions. The system is precisely modelled'to apply a novel MILP optimization algorithm.
In [17], an energy renovation model is proposed tonaddress an optimization problem in
residential urban areas using the MILP approach: The model integrates energy supply systems
and building envelope design, withsa, focus oniassessing economic feasibility and the
availability of roof space. In [18], the authors preésent two EMS approaches: a heuristic method
and a Mixed-Integer Linear Programming (MILP) algorithm, applied to a smart power plant
consisting of wind turbines _and,a lithiums=ion storage battery to meet a power production
commitment to the utility grid."A eomparative study is conducted to improve the predefined
heuristic using the optimal reference provided by the global MILP optimizer.

In [19], a year-long comparative analysis of two distinct architectures of water station
involving single andumulti-pump System both powered by the same PV generator is conducted.
For the multi-pump architecture, a MILP model is developed to maximize water production.
Consequently,“the, multispump water station demonstrates a significant enhancement in
hydraulic_efficiency ‘eempared to the single-pump station. Additionally, the annual water
productiontolume for both architectures is assessed.

Qthertechniqiies have also been investigated, like metaheuristic algorithms including
@enetie, Algorithms (GA), Particle Swarm Optimization (PSO) and Grey Wolf Optimizer
(GWO), ‘which provide flexibility in handling complex non-linear and multi-objective
optimization [20].

Recently, hybrid metaheuristic approaches have gained increasing attention, with studies
proposing methods such as the Dual Predator Optimization (DPO) algorithm [21], which
combines Grey Wolf Optimization (GWO) and Whale Optimization Algorithm (WOA) to
address their respective shortcomings. The DPO has been applied to optimize renewable energy
utilization in a hybrid microgrid. Reported results are promising, showing a reduction of
approximately 15-20% in the Cost of Electricity (COE) and an average 7.5% reduction in the
Loss of Power Supply Probability (LPSP).

On the other hand, the online EMS has emerged as an attractive approach and has been the
subject of numerous studies because of its key advantage of operating in real-time without
requiring any prior knowledge of future events. Recently, the adoption of artificial intelligence
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(AI) techniques as an online method particularly reinforcement learning has gained attraction
[22]. Fuzzy logic is also considered as a robust and intelligent methodology for energy
management which provides a suitable framework for addressing such problems. Parameters
tuning of conventional rule-based fuzzy logic systems are manually designed by human experts,
relying on heuristic knowledge and intuition about the system's behavior. Nevertheless, this
kind of method exhibits the inability to handle accurately nonlinearities and uncertainties. To
overcome the lack of adaptability and scalability, Al-optimized fuzzy logic control leverages
artificial intelligence techniques, such as genetic algorithms, neural networks, or reinforcement
learning, to automatically generate or fine-tune fuzzy rules and membership functions, thereby
improving control accuracy and adaptability.

In this context,[23] presents a comparative evaluation of two simplified and reduéed fuzzy
logic processes applied for EMS to achieve cost savings in a grid-connected hybrid solar PV
and battery storage system. [24] proposes an adaptive and optimal fuzzy logic-based,EMS that
generates day-ahead fuzzy rules for real-time energy dispatch under operational uncertainties.
An offline meta-heuristic algorithm, based on the artificial sheep algorithm, 1sused to optimize
the fuzzy inference system, membership functions and rule sets. The objective 1$,to minimize
power fluctuations and operational costs. Simulation results show that the'proposed solution
outperforms conventional online rule-based and offline meta-heuristic scheduling methods.

The authors in [25] applied a real-time neural network to solve the' EMS /problem for a test
bench desalination system. By considering that all motorspumpsdarespower controlled in the
internal control loop, an improved Power Field oriented centrol was proposed in [26].

Therefore, in this paper, two classes of strategy appreachespassessing online (suboptimal)
fuzzy logic and offline (global optimum) MILP optimization, are developed to maximize the
produced freshwater of a reverse osmosis micro-grid system. As implied by its name, MILP is
constrained to linear relations between cofitinuous model mixing real and integer variables. To
account for nonlinear characteristics, these must sométimes be approximated using piecewise-
linear functions. These approximations are incorperated into the MILP formulation through the
introduction of auxiliary binary #ariables which are used to distinguish between the segments
of the piecewise-linear function:\Themainseontribution of this paper is to assess the “level of
optimality” of online fuzzy logic-based EMS for renewable energy supplied water treatment
process, these EMS appioaches beingiconsidered as performing and robust for this class of
systems.

The remaining sectionsiare outlined as follows. Section 2 presents the architecture and the
model of the”"desalination process coupled with a hybrid PV/Wind system, followed by the
optimized fuzzy logicsEMS. Section 3 presents the MILP-based EMS. Section 4 presents the
comparative analysis of both (fuzzy logic and MILP) EMS applied to the pumping/desalination
water station, both'strategies aiming to maximize freshwater volume. Finally, the conclusions
are presented in Section 5.

STRUCTURE AND MODELLING OF THE REVERSE OSMOSIS DESALINATION
HYBRID SYSTEM

The Reverse Osmosis desalination hybrid system involves coupling a hybrid (wind and solar)
source powering a water pumping/desalination unit. The power hybrid source and the water
treatment system, which is composed of three motor pumps with desalination and storage devices,
are interconnected to a DC bus via power converters. The interconnection to a reverse 0smosis
pumping/desalination system is structured as presented in Figure 1. One of the key characteristics
of the case study is the use of hydraulic storage, which is preferred over electrochemical storage
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to lower both economic and environmental costs. In this regard, three water storage tanks are
associated with the water pumping and desalination system.

A submersible motor pump 1 is used to pump brackish water from a well into the water tank
1 (pumping mode), needed as the source of feedwater for the RO module. Subsequently, a multi-
stage high-pressure motor pump 2 is used to ensure freshwater production (permeate) through the
RO module from water tank 1 (desalination mode). The produced freshwater is then stored in the
water tank 2. Finally, a centrifugal motor pump 3 transfers the low-pressure permeate into an
elevated storage tank (water tank 3 consisting of a water tower) for distribution (storage mode).

Depending on the available generated hybrid PV—wind power (P»), the water levels in the
three tanks and the consumption profile, eight operating modes are possible. An optimal
management of the energy produced by this system is therefore essential to maximizefpermeate
production and meet water demand. The principle and more details have been presented in
previous work [27].

PV/WT hybrid source
Bus DC — /\Wﬁ\m
wingd (¢;=1hour)
AN
Phy b T Irradiation (&;=1hour)
"""" 23 'AVAVAVAVAVAVAN
._ —

Temperature (¢;=1hour)
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Water consumption
profile (¢;=1hour)

wateritankl

| Motor-pump3 | water tank3
Motorgpump1 # water tank 2 pump I
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|
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Figure 1. Structure of the hybrid power desalination system.

Solar PV model

The power output of solar panels is directly influenced by their dimensions, but also by
solar irradiance levels and operating temperatures, as outlined below [28]:

Ppy = Ngpv X [1- B X (Tcell - TNOCT)] X Apy X I 1
The PV cell temperature is estimated using the following expression:
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Teon = 30 + 0.0175 X (I, — 300) + 1.14 X (T, — 25) )

Where 14,, include the reference efficiency of the photovoltaic module and the power
conditioning components (boost converter, wiring, etc), Apy denotes the panel's area [m?], I,
represents the solar irradiation [W/m?], S refers to the power temperature coefficient, Tygcr is
the nominal operating cell temperature, T, is the photovoltaic cell temperature and T, [°C] is
the ambient temperature.

Wind turbine model

Wind turbine power modeling is essential for predicting energy production and optimizing
system performance. Several models exist, each with varying levels of complexity and
accuracy. These models can be classified into three main categories: energeticg@mpitical and
dynamic. In this paper, the author proposes to use an energetic model based on fundamental
aerodynamic principles. The output power of a wind turbine, denoted as Py, W, is expressed
as follows:

PWT=lxngWTXC0ptprAWTXV3' 3)
2 P wind

where C{,’ Pt is the optimum power coefficient, p is the air maS§density [kg/m3], Ay, 7 is the
wind turbine swept area [m?], Vi, inq is the wind speed [m/s].and.n gwa, include the global static
converter and generator efficiency.

Water desalination system model

The first motor pump, a submerged type, 48 used towextract brackish water from the well to
the water tank 1. The following equationfexpresses the variation of the water flow rate as a
function of power for a given discharge head:

Q, = 0.0022 x P*¢, + 6.8 (4)
where Q; [m3 /h] and P; are xéSpectively'the flow rate and the electric power of the motor-
pump P1.

A high-pressure vertical'multi-stage centrifugal pump is used to feed the Reverse Osmosis
(RO) module and to ensuréwfreshwater production [27]. The evolution of the flow rate Q, at
RO module input with respeet to the desalination motor-pump power and the membrane
capacity MC is given by

Q, = 0.0122 x P%>3* x M(0552 (5)
Given'an MC, the recovery rate R is evaluated using the following equation:
R = 0.162 x Q9452 x M(C~0353 (6)

The produced permeate freshwater flow @, and the concentrate flow Q,, are deduced
respectively from egs. (7) and (8):
Q2p =R X 0Q; (7)
Qxr = Q2 — Q2p ()

The produced freshwater at very low pressure is stored in Water Tank 2. A third motor
pump is employed for a gravity store at an elevated height (Water tank 3), ensuring useful water
to supply consumers and reducing the dependence on the availability of electrical power. The
energetic model of the third motor pump 3 can be expressed by [29]:

Q; = 2.18.1077 x PZ15 + 3.44 9)
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where Q5 [m3 /h] and P; are respectively the flow rate and the electric power of the motor-

pump P3.
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Figure®2. Environment (wind, solar, temperature) and water load profile data

Figure 2 illustrates the environmental input variables over both a one-year and a representative one-
week period. The one-week period (the first week of July) was selected as a representative operating
window from the annual dataset to illustrate short-term system dynamics while maintaining the
readability of the results. This specific week corresponds to a period of high freshwater demand combined
with pronounced renewable energy variability, making it particularly suitable for comparing energy
management strategies within a concise and interpretable time frame. Seasonal and inter-daily variations
in wind speed and solar irradiance are clearly visible in the annual profiles, highlighting the significant
fluctuations encountered throughout the year. It is important to note that the energy management system
design is based on a one-year horizon.

Hourly meteorological data for the entire year, including wind speed, ambient temperature and solar
irradiance, were used for a site in Djerba, southern Tunisia. The freshwater consumption profile was
generated by extrapolating measured demand data obtained over one month to a full year using seasonal
correction factors derived from historical consumption patterns.
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Optimized Fuzzy Logic Energy Management System

In this study, the authors have selected the Mamdani-type Fuzzy Logic Controller
(FLCO)[30], [31], which operates through three fundamental stages. First, the fuzzification
process transforms the crisp input values into linguistic variables by applying predefined
membership functions. Next, the inference mechanism applies a set of fuzzy rules within the
rule base for Energy Management System (EMS) to simulate human decision-making using
fuzzy operators such as AND/OR, typically implemented through the MIN/MAX operators.
The inference system generates a fuzzy output based on the degree of activation ofthe fuzzy
rules and the input variable magnitudes. Finally, this fuzzy output undergoes defuzzification to
convert it into a crisp output value suitable for “real-world” application. Ameng«thewarious
defuzzification techniques, the Center of Gravity (COG) method is employed in this work, as
it is widely recognized for its computational efficiency and reliable performanee. The COG
technique calculates the centroid of the aggregated output membership function;” thereby
providing a balanced and representative crisp value.

The input variables of the system consist of the hybrid photoyvoltaic/wind,power (Py,,,;,) and
the water levels of the three tanks (H;, H2 and H3). The outputsicorrespond to'the power sharing
factors (a;, a2) which determine the distribution of the gen@ratcdpowers within the hydraulic
process. The third coefficient a3 is deduced from eq. (10):

3

), @=1 (10)

i=1

P = & X Phyp (11)

Table A% The proposed fuzzy manager parameters

MF type Number Number
of subsets of parameters
Inputs Phyb Triangular/ 12 38
Trapezoidal
H,; Triangular 3 9
H> Triangular 3 9
H; Triangular 3 9
Outputs oy Triangular 9 27
a2 Triangular 11 33

The design of the Fuzzy Logic EMS (FLEMYS) largely relies on determining a set of tuning
parameters, such as membership functions (type, number and placement parameters), the fuzzy
rule base and the defuzzification method. In this study, the FL system consists of 324 rules based
on the membership functions of both the input and output variables. The proposed fuzzy manager
parameters for the different inputs and outputs is presented in Table 1.

The number of degrees of freedom (DoF) that can be used for the application of a Genetic
algorithm (GA) to optimize the fuzzy system refers to the number of tuning parameters that GA
can manage. This last defines the solution space within which the GA operates and directly
influences the flexibility and complexity of the optimization process. Typically, the GA can
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optimize key components of fuzzy logic systems, particularly the structure and parameters of the
membership functions (MFs), which include selecting the type of MF (e.g., Gaussian, triangular,
trapezoidal) as well as tuning the parameters that define their shape and position. GA can also
optimize the fuzzy rule base by selecting which rules are active (rule pruning) or adjusting the
associated rule weights [32].

Furthermore, the optimization process may extend to other components of the fuzzy inference
system, including the defuzzification strategy and/or inference mechanism. In some cases, GAs
can also fine-tune the rule weights of scaling factors.

In this paper, the proposed GA is used to optimize the fuzzy energy manager that aims to
parameterize the fuzzy parameters to maximize the freshwater production as follows:

Ffitness = fON QZp (t)dt (12)

Where Frimess 1S the objective function corresponding with the freshwateryvolume to be
maximized and where N is the total number of time steps.

In this context, the defuzzification method, the set of inference rulessand the number and type
of the previously selected membership functions are kept fixed. The Qptimizationfocuses on the
shape and position parameters of the membership functions for beth'inputs and outputs. To reduce
the complexity of the proposed optimization technique, only one pomat” of the triangular
membership function is adjusted. The proposed optimizatiofi technique is'depicted in Figure 3. In
the end, the set of decision parameters shrank to a 31-gene chromosome,structure, which was used
by the genetic algorithm. Specifically, the first inputsvatiable (P, ) is represented by 9 genes,
while the three inputs related to the tank level variables (H;, H>'and H3) are represented by 6
genes. The first output variable is encoded by 7 genes and the remaining 9 genes are allocated to
the characterization of the second output variabley Fhanks to this structured encoding, the GA can
focus on different solutions in an organizéd mannerywithout losing the compactness of the fuzzy
system. The optimal set of Fuzzy Inference Systems (FIS) will be selected by varying these
parameters.

Fuzzifieation . - Defuzzification
Inputs Outputs
i : Fuzzy : !
! Inference !
L7 S0
: Genetic !
Membership Algorithm ; Membership
Function i Optimization | Function

Figure 3. The proposed optimized Fuzzy logic energy management system.

The hybrid power produced for one week, with the dispatched powers of the three motor pumps
for the GA optimized FLEMS (GA FLEMS) are presented in Figure 4.
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The consumed energy E., the non-consumed energy E,. (wasted energy) and the produced
freshwater volume for FLEMS and optimized GA FLEMS are compared in Table 2.

Applying the optimization strategy, the freshwater production shows a performance
improvement of 2.96% over one week, increasing until 8.06% over a year. Additionally, the
energy generated by the hybrid source is used more efficiently. Specifically, the system's overall
energy efficiency is enhanced by 2.06%, while the amount of unused power drops by 5.77%.
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Table 2. Comparative performance of FLEMS and GA FLEMS
Comparative simulation results of the FLEMS and GA_FLEMS for a year

E.(kWh) E,.(kWh) Freshwater (m?3)
FLEMS 310* 1.073 10* 2245
GA-FLEMS 3.06 10% 1.011 10% 2426
Gain (%) 2.06 5.77 8.06

This table demonstrates the effectiveness of GA-FLEMS in managing energy flows and
meeting operational objectives. However, the degree of optimality cannot cusfently be
assessed, as that kind of EMS is necessarily suboptimal. Therefore, this paper aims‘to employ
an optimization algorithm capable of determining the optimal trajectory a pfioripgiven the
trajectories of the power flows produced by solar and wind generators. To achieve this within
reduced computation time, the mixed-integer linear programming (MILP) “technique is
selected.

Contrary to the FLEMS, the MILP strategy is not applicable in real-time,since it requires
the knowledge of environment profiles. Thus, an analytical evaluation setting the gap with
respect to the reference optimal approach (here, the MILP formulation) 1s,essential to determine
how close the real-time EMS (in our case, the FLEMS) opéfatesito afmeptimal or near-optimal
performance level. The optimality level of the FLEMS,will betassessed in the following
section.

ENERGY MANAGEMENT SYSTEM BASED ON A MILP ALGORITHM

Linear programming offers several advantagesffor solying complex optimization problems
with a huge number of decision variables, enabling the"attainment of an optimal solution in a
fast and efficient manner. In this study, the GUROBI'solver is used, which relies on the Branch-
and-Bound algorithm to efficiently, solve the MIDP optimization problem. The first step in the
modeling process involves linedrizing the desalination system to ensure its compatibility with
linear programming techniques, The'second step focuses on defining the objective function and
system constraints, thereby . ensuringia rigorous formulation of the MILP problem.

Piecewise linearization of the\desalination motor pump constraints

The water flow rate, as a function of electric power at motor pump input, along with the
rejection rate_of ‘the desalihation motor pump, are described by their respective nonlinear
equations in [27], [29]. To formulate the MILP problem, a piecewise-linear approximation is
applied [19]This method involves dividing each nonlinear function (flow rate and rejection
rate) into_“n® breakpoints and approximating each segment linearly as illustrated in Figure 7
for a‘case of'two segments. Typically, the selection of the number of breakpoints is based on
balancing the trade-off between the process complexity (number of segments and subsequent
variables) and the approximation error between the actual nonlinear and the linearized models.
In this study, different cases were performed with varying numbers of breakpoints to obtain
the optimal models presented in Table 3.
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Figure 7. Modeling a piecewise linear function.

For any given desalination power, e.g., p;_1 < P,; < p;, the flow rate funetion value (Q,; =
f(P3;)) can be approximated by linear equation with coefficients ay, b; foreach piecewise i,
which is expressed as:

1
Q2i = a; X P (1) + b; (13)
The same manner is used for the recovery rate R; = f (Q%) With ceefficients c;, d; for each
piecewise 1, such that
R = ¢; X Q2 (™ d (19

The selection of the best linear model>(ie. best number of segments) is based on the
calculated error between the actual nonlinearymodél and the linearized representation.
Moreover, the error in our analysis £afivbe quantified using various metrics, such as Mean
Absolute Error (MAE), Mean Squared Error (MSE), or Root Mean Squared Error (RMSE). In
this study, RMSE is selected asdthe primary etror evaluation metric, as given by egs. (15) and

(16).

— (ZIiV=1(Q2real(P2i) B Qz (le'))z) (15)
RMSE(Q)). &
RMSE(R) — \/(Z?,:l(Rreal(ereal D—R(Q20)%) (16)
N

Wherey, Porin » Pamax » @2min and Q2pmax are respectively the maximum and the minimum
desalination“eleetric motor pump power and flow rate, Q,,.4; and Q, are the consistent real
and linearized flow rates and R,.,; and R are the corresponding real and linearized recovery
rates.

In, this paper, three case studies regarding the number of breakpoints (piecewise) are
developéd. An optimization problem is formulated using the Fmincon algorithm to determine
the optimal piecewise linear approximation of the water flow and rejection rate curves. The
objective is to minimize the root mean squared error (RMSE) between the original curve and
its piecewise linear approximations for the three cases:

{RMSE(QZ) (17)
RMSE(R)

An inequality constraint is implemented to ensure that the linear approximation solution
lies below the actual curve, preventing the overestimation of water production in the MILP
formulation.

QZ < QZreal (18)
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Table 3 presents the error values calculated between the actual nonlinear model and its
linearized approximation for the three numbers (n) of breakpoints (piecewise).

For a single piecewise approximation, the error was huge, measured at approximately 0.55
for the flow rate and 0.17 for the recovery rate. In the second case study (n=2), the error
decreased slightly to 0.29 and 0.09 for the flow and recovery rates, respectively. Finally, with
three piecewise segments (2 breakpoints), the linearized approximation closely matched the
actual nonlinear model, yielding an RMSE of 0.06 for the flow rate and 0.03 for the recovery
rate. These results demonstrate the small error and validate the effectiveness and accuracy of
the linear models used in the MILP formulation for the case of 3 breakpoints.

Table 3. Error between the actual nonlinear model and its linearized approximation for the
three cases

RMSE RMSE RMSE

n=1 n=2 n=3

Flow rate Q, 0.553 0.296 0.066
Recovery rate R 0.175 0.094 0.032

MILP Problem formulation
The MILP objective function is calculated using eq. (19) aiming to maximize the water

storage volume in the output water tank 3, which s#@presents the freshwater quantity available
for users.

Max (Vs = [ Qs(t) x dt's Ylao 05(t) x At) (19)

Different system constraints relatedsto the, power balance and parameter boundaries are
presented in the following sections.

System power balance constraint
To maintain the ener@y balanee im’the pumping/desalination plant, the total energy

consumed by the plantrand ‘generated by the PV/Wind system should be equal. Hence, the
equation constraint (20) must be,fulfilled:

Phyb(t) = Pl(t) + Pz(t)+P3(t) + Pcur(t) (20)

Where, Pp(t) =0, P,(t) = 0 and P;(t) = 0 are respectively the three motor pumps power
and Pag(t) 18 the,curtailment power from both hybrid sources.

Wateritank constraints

As the hydraulic storage has finite capacity, the energy management strategy has to manage
water levels between the maximum capacity denoted Hmax and a minimum level denoted
Hmin>=0 to avoid excessive discharging. Accordingly, the state of the storage system at any
time must satisfy the following constraints:

21
0 SHl (t) SHlmax' ( )
0 <H, () <Hjmax, (22)

2
0 <H3(t) <Hzmax, (23)

Where H,(t), H,(t) and H;(t) are respectively the instantaneous brackish water, permeate
water and freshwater tank levels.
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Desalination, pumping and storage motor pumps constraints

The two pumping and storage motor pumps (P1 and P3) operating at fixed power have two
possible operating states. For this reason, two binary variables Df and K{ are added to
represent the startup and shutdown (on/off) operation of P1 and P3, respectively, which are
expressed in (24) and (25):

Pi(t) = Dlt X Pimax 24)

P3(t) = Klt X P3max 25)

Where P; 4y and Ps,,, are respectively the pumping and storage maximum power.

The two variables P,; and T,; are associated with the appropriate pair of comsecutive
breakpoints. Each breakpoint and corresponding segment are linked to a binary #ariable s!.
Thus, for n—1 breakpoints and n segments, n binary variables are introduced, Fhe piecewise
linear approximation of the flow rate function and the conversion rate are represented,thtough
the following constraints:

st X Py < Py(t) < st x Py, Vizl (26)
Yi=o Sit =1 @7)
n
PO =) Pu® @)
i=1
The water flow and the conversion rate can be deduced ftom eqs:*(29) and (30):
Q2 = X1ty Qi = Xiq a; X P () + Ty 57 XD 9
R =3 R =X, ¢ X QAP+ iy 8 X d; (30)

It should be noted that s§ = 1 correspdnds to'the case where the motor pump 2 is inactive,
since for any i > 1, sf=0 would alsodmplies By; ()& 0 due to constraints (26).

OPTIMALITY ASSESSMENT OF THEFLEMS FOR THE WATER STATION

This section presents‘the simulatiofi results of the pumping/desalination water station
comparing the FLEMS§GA-FLEMS.and MILP performance, the final objective being to assess
the level of optimalityaof FL based EMS that may be actually implemented at real time. The
input weather ¢onditions (temperature, wind speed and solar irradiation) and water
consumption_profile are sampled every hour.

Figure 8, presents the results of the MILP-based EMS. The first curve shows the power
generatedybyythe photovoltaic and wind systems (Ppy;) over one typical week. The second
curve‘illustratesithe/qpower consumed for water pumping (motor pump 1), where the pumping
unit operatestat,a constant power level. Similarly, the water storage unit (motor pump 3)
operatesywith fixed power consumption. The third curve displays the power used by the
desalination unit, which operates with a variable power range between a minimum P,,,;,, and
a maximum P,,,,,, as depicted in Figure 8. The flow rate curve in terms of time, represented
by Figure 9, looks the same as the aspect of the absorbed power of the three motor pumps (Q;,
Q and Q3 ) as well as the permeate water flow (Qp,). Then, Figure 10 exposes the water tanks'
levels evolution for the same period. Simulation results in Figure 11 show that the maximum
water volume using this MILP configuration is equal to 94.5 m3 after one week.
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Figure 11. Freshwater volume produced with MILP-based EMS

The MILP optimization relies on a linear model based on the piecewise approxXimation
described in the previous section, with the number of segments opfimized t0 minimize
deviations. Due to that process, a slight underestimation of the pump outlet flow is involved in
the linearized model compared to the nonlinear representation. T@ provide,a more rigorous
comparative assessment between both management approachesgthe outputteferences sent by
the MILP-based EMS are therefore applied to the nonlinear model.

Figure 12. Freshwater tank level for linear and nonlinearFigure 12, Figure 13 and Figure
14 illustrate the evolution of the water levels in the reservoirs under the EMS-based MILP
strategy applied to both the linear and nonlinear models over@ne week. The results show a tiny
deviation. To better assess this deviation, particulaf attention is given to the freshwater volume,
as shown in Figure 15.
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Figure 12. Freshwater tank level for linear and nonlinear models from the MILP EMS
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Astillustrated in Figure 15, the outcome of the linear model shows no significant deviation

from that of the nonlinear model, with a relative error evaluated at 0.37%.
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Figure 15. Freshwater volume for linear and nonlinear models _from the MILP EMS

The MILP-based approach involves the maximum produciblefreshwatet, volume over the
year, compared to FL-EMS and GA-FLEMS strategies, as illastrated inwEigure 16.
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Figure 16. Freshwater volume for different EMS strategies over 1 year

Table4 allows for the assessment of the optimality degree of the fuzzy logic controller
optimized by a genetic algorithm (GA-FLEMS) at annual, monthly and weekly time scales
using two complementary indices. The optimality degree is defined as a performance index
relative to the MILP benchmark:

Optimality degree (%) = @ X 100 (31)
MILP

where Vg7 and V4 p represent the freshwater production achieved by GA-FLEMS and
MILP, respectively. Similarly, the deviation in non-consumed energy is defined as:
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Enc GA-FL — Enc MILP

Deviation(%) = x 100 (32)

Enc MILP

Where E,. ga.rr.and E, .y p represent the non-consumed energy under each strategy.

Over the annual trajectory, MILP achieves the highest freshwater production (2701 m?) and
the lowest non-consumed energy (7.35 x 10® kWh), confirming its role as the global optimal
benchmark. GA-FLEMS produces 2426 m? of freshwater, corresponding to an optimality
degree of approximately 90 % with respect to the MILP reference. The higher curtailment
observed under GA-FLEMS (+37.5 %), as captured by the deviation metric, indicates an
underutilization of the available renewable resources and reflects the trade-off assogiated with
real-time implementation and limited future knowledge.

At the monthly scale, GA-FLEMS produces 72.8 % of the MILP reference freshwater,
while exhibiting a significantly higher level of non-consumed renewable energy (+481.% %)
compared to MILP.

At the weekly scale, GA-FLEMS closely tracks the optimal MILP trajectoryjthat may be
operated at real time in “real life” in terms of freshwater produgction (95.% of the MILP
reference), while showing a large deviation in non-consumed enesgyy(+157:6 %).

These deviations, which are not constant across the threesimulation,periods, are due both
to the intrinsic differences between the two energy management miethods and to the variability
of meteorological data, water demand and seasonal effects. However, the long term (annual)
vision gives an “integral vision” of the management process efficiency and the optimality
degree of the fuzzy logic controller with optimization ofiits control parameters (GA-FLEMS)
remains really high (close to 90%) for an EMS'process that may be implemented at real time,
without perfect production and water demand foresight:

Table 4. Comparative performancewof GA_FLEMS and MILP at annual, monthly and
weekly time scales

Comparative simulation results of the/\GA-FLEMS and MILP for a year

E.(kWh) E,..(kWh) freshwater (m3)
GA-FLEMS 306:1.0* 1.011 10* 2426
MILP 3.336 10* 7.352 103 2701
Comparativé simulation‘results of the GA-FLEMS and MILP for a month
E .(KWh) E,.(KWh) Freshwater (m?)
GA-FLEMS 1.16 103 14.96 102 400
MILP 2.4103 2.57 102 549
Comparative simulation results of the GA-FLEMS and MILP for a week
E.(kWh) E,.(kWh) Freshwater (m?)
GA-FLEMS 702.44 168.5 90
MILP 805.54 65.4 94.5

This paper primarily addresses the problem of energy management over a one-year time
horizon. In that paper, the focus was put on evaluating online fuzzy-based management
performance with respect to deterministic optimization approaches (MILP) with fixed system
sizing. The results are certainly relevant in terms of qualitative efficiency performance of EMS
but there are rigorously only valid for the considered system sizing. Thus, in future work, it
would be advisable to integrate both sizing and operation inside a “co-design process”
optimization. In such integrated process, uncertainties effects related to data, degradation
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models and extended time horizons should be assessed. For example, in [33] the authors
investigated the design of a microgrid under uncertainty. The results indicate that temporal
representation is a dominant factor: reducing the data to a single year with respect to the project
lifecycle strongly distorts both the key performance indicators (KPIs—namely system cost and
self-sufficiency level) and the sizing results, whereas extending the horizon to several years
substantially reduces errors by better capturing long-term efficiency.

CONCLUSION

In this study, two energy management strategies are proposed and comparatively analyzed.
The first strategy is based on a fuzzy logic energy management system optimizedrusing a
genetic algorithm (GA-FLEMS), while the second relies on a Mixed-Integer Linear
Programming (MILP) formulation. The GA-FLEMS approach is grounded,, in¢ causal
knowledge of the system environment and is therefore suitable for real-time implementation.
In contrast, the MILP-based strategy assumes a priori knowledge of the completeset of'system
inputs, including climatic conditions and water consumption profiles, over ‘thé entire
optimization horizon.

The primary objective of both energy management strategies'is to optimally distribute
power flows among the motor pumps in a rational and efficient manner, thereby maximizing
pure water production while ensuring optimal system perfosmances The MILP-based approach
is particularly relevant as it provides a global optimum“or the energy management problem
and can serve as a reference benchmark. Moreover, due togts non-causal nature, the MILP
formulation is well-suited for system sizing and opfimakco-design studies.

To enable the MILP formulation, the systém“model\is piecewise linearized. This step
reformulates the original nonlinear problem ifito a tractable linear optimization problem while
preserving the essential system dynamics4Usingithe MILP solution as a reference benchmark,
a comparative analysis is conducted to evaluate the performance and optimality of the GA-
FLEMS approach, specifically desighed for realstime operation.

Simulation results demonstraté'that the GA-FLEMS strategy achieves approximately 90%
of the optimal performance obtainedwithythe MILP benchmark in terms of annual pure water
production. These results confitm the effectiveness of the proposed fuzzy-logic-based energy
management strategy whilehighlighting the inherent trade-off between real-time causal control
and globally optimal,fion-¢ausal optimization methods.

It is important_to highlight that, in the present study, the system component sizing is
assumed to be fixed. Futute work will focus on developing a comprehensive co-optimization
framework that, simultaneously optimizes motor pump setpoint trajectories and component
sizing, thereby enabling integrated design and operational optimization of the overall system.
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NOMENCLATURE
Symbols
A area [m?]
H level [m]
P power (W]
0 flow [m3/s]
R Recovery rate [%]
T temperature [°C]
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V volume [m?]
Greek letters

p density [kg/m’]

o power ratio -

B temperature coefficient of power [°C1]

n efficiency [%]
Subscripts and superscripts

a ambient

C consumed

cur Curtailed

hyb hybrid

max maximum

min minimum

opt optimum

p permeate
Abbreviations

Al Artificial Intelligence

COE Cost Of Energy

COG Center Of Gravity

DP Dynamic Programming

DPO Dual Predator Optimizer

EMS Energy Management System

FLEMS Fuzzy Logic Energy Management System

GA Genetic Algorithm

GWO Grey Wolf Optimizer

LP Linear Programming

LPSP Loss of P@wer Supply Probability

MAE MeanAbsolute Ersor

MC Membrane Capacity

MED Mhulti- Bffect Distillation

MF Membesship Function

MILP Mixed Integer Linear Programming

MINEP MixedInteger Nonlinear Programming

MSE Mean Squared Error

MSE Multi-Stage Flash

NLP Nonlinear Programming

NOCT Normal Operating Cell Temperature

PSO Particle Swarm Optimization

PV Photovoltaic

RMSE Root Mean Squared Error

RES Renewable Energy Sources

RO Reverse Osmosis

WEMG Water Energy MicroGrid

WOA Whale Optimization Algorithm
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