Journal of Sustainable Development of Energy, Water
and Environment Systems

http://www.sdewes.org/jsdewes

Original Research Article

Geospatial Approaches to Enhancing Urban Flood Resilience in Auckland,
New Zealand: Implementation of Innovative Mitigation Strategies

Sai Meghana Annadi ', Funmilayo Ebun Rotimi, PhD **, George Okyere Dokyi, PhD’?
'Built Environment Engineering Department, School of Future Environments, Auckland Univergily of
technology, Auckland, New Zealand
e-mail: mnp3521@autuni.ac.nz
2Built Environment Engineering Department, School of Future Environments, Aucklan 1190
technology, Auckland, New Zealand
e-mail: funmi.rotimi@aut.ac.nz
3Built Environment Engineering Department, School of Future Environments, Au O of
technology, Auckland, New Zealand
e-mail: george.dokyi@aut.ac.nz

A
Cite as: Annadi, S. M., Ebun Rotimi, F., Dokyi, G., Geospatial Approaches to Enhancing Urban Flood Resilience in

Auckland, New Zealand: Implementation of Innovative Mitigation Strategies, J.sustain. dev. energy water environ. syst.,
13(4), 1130608, 2025, DOI: https://doi.org/10.13044/j.sdewes.d13.0608

ABSTRACT

Flooding is a major threat to urban resilience,
like Auckland, New Zealand, where urban
study addresses the gap in integrating decigion-making tools with Geographic
Information System to enhance flood resi i novel combination of the Analytic
Hierarchy Process and spatial analysi eveldp a high-resolution flood susceptibility
model, analysing seven key fact
density. The results show t Auclland is highly susceptible to flooding, 63%
moderately susceptible, ang model, validated against historical flood data,
ings offer actionable insights for urban planners,

pidly urbanising coastal cities
ifts increase flood risks. This

urban planning and disaster mitigation, advancing both
2hes to flood resilience.
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INT

F re among the most common natural disasters worldwide, impacting many nations
[ ccurs when large volumes of water inundate dry land [2]. Key causes include
heavingaidfall, storms, river overflows, climate change, and poor urban planning [3]. Urban
floods arise when unplanned development obstructs natural drainage systems, increasing flood
risks [4]. While urbanisation is a major factor, other contributors include deforestation,
population growth, and rising sea levels driven by climate change [5], [6]. With flood
vulnerability expected to rise [7], effective hazard assessment must consider meteorological,
hydrological, and socioeconomic factors [8]. Flood risk evaluation involves four steps:
assessing susceptibility, identifying areas, and estimating hazard intensity [9]. Advances in GIS,
remote sensing, and hydraulic modelling have become essential tools for flood risk and hazard
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assessment [10]. Natural disasters significantly challenge many countries around the world;
however some nations bear a disproportionate share of these environmental threats [11]. The
Philippines is among the most vulnerable nations to natural calamities [12]. Because of the
regular cyclones and typhoons, the nation is always at risk of flooding. Heavy rainfall is the
main cause of flooding, which is one of the most catastrophic natural disasters in Davao
Oriental, Philippines [13]. In response to these challenges, government agencies continually
seek tools and technologies to aid in disaster management [14]. Recently, they opted to
leverage GIS technology, incorporating topographical data into a dedicated database to
establish a GIS system [12]. By integrating multiple variables such as rainfall, slope, elevation,
drainage density, soil type, distance to the main channel, and population density, the study
identified flood-prone risk zones in the region [15]. A GIS-based flood risk assesgfftent was
conducted in Davao Oriental to evaluate the significance of each indicator. This aifelysig uses

that the three approaches produce with the predicted flood
points from a field survey. Based on the comparative r

D
O

km?) of the province, mainly in the coastal regionsfa ithinfgigh and extremely high flood-
bara
%
mitigation techniques to prevent floodin
aims to bridge the existing gap in theg
Geographic Information Systems

Flood susceptibility me
This section explores kefng

ages information technology for risk monitoring, alert communication,
isk awareness [16]. Auckland has implemented monitoring and warning

flood-prone areas based on spatial factors [17]. This supports experts and communities
in proactive flood prevention.

Geographic Information System

GIS is a tool designed to store, manage, analyse, and visualise geographical data [18]. It
enables the modelling and representation of spatial information, offering solutions to intricate
planning and management challenges [19]. Each layer in a GIS represents data with specifics
associated with specific locations and established relationships [20]. According to [21], GIS
techniques are intended to offer an organised framework for effectively manipulating and
analysing every all information, which enables the timely identification of possible hazard zones.



Recently, advancements in GIS and remote sensing have been incorporated into evaluating geo-
environmental disasters. This integration has significantly progressed flood susceptibility
mapping, flood hazard assessment, and flood management strategies [22].

Multi-Criteria Decision-Making Approaches

[23] define Multi-Criteria Decision Making (MCDM) as a method for tackling complex
decision problems involving multiple criteria. The process of ranking alternatives in an MCDM
model involves three key steps: identifying relevant criteria and alternatives, assigning weights to
criteria, and applying numerical measures to evaluate how alternatives impact these criteria [24].
Subsequently, numerical values are processed to generate a ranking score for each alternative [25].

to its user-friendliness and versatility [27]. This current study on ‘Flood Suscep
for Auckland’ adopted an AHP approach based on GIS to identify the flood risk ¥
suggests that GIS and AHP Multi-Criteria Decision Analysis (MCDA) is thg
as determined through an analysis of comparable articles published in high

Analytic Hierarchy Process

e t uses multi-level
gndle adaptive changes

The Analytic Hierarchy Process (AHP) is a pairwise compa
hierarchies and priorities [29]. A key advantage of AHP is4
with minimal inconsistency using decidable data. Many res s [
weighted criteria for flood susceptibility mapping. Foiexamp® [30] used AHP to assign criteria
weights, integrating them with GIS techniques like 4 erlay agd raster processing to produce

weighted linear combination to analyse Nagel public preparedness in Abidjan,
successfully identifying and mapping floq@"h i

The susceptibility analysis 1
Drawing on a comprehensivedi
influence flood susceptibild
Topographic Wetness

[40]. @study lacks attention to technological tools like GIS, particularly for urban areas such
as Auckland. Therefore, this research will evaluate the suitability of GIS techniques in mapping
urban flood susceptibility, identify and assess areas at risk of flooding, and suggest innovative
flood mitigation measures enabled by GIS technology.

MATERIALS AND METHODS

This study applies geospatial methods to enhance urban flood resilience in Auckland, New
Zealand. ArcGIS Pro was used for its robust spatial analysis and data management capabilities,
enabling detailed evaluation of flood-prone areas using data like topographic maps, flood



records, and rainfall patterns. Auckland was chosen as the case study due to its high flood
susceptibility, driven by rapid urban development and changing land use.

The research method begins with evaluating GIS techniques for urban flood mapping,
identifying flood-prone areas in Auckland, and suggesting innovative mitigation measures.
Data collection is carried out, involving both spatial data (e.g., DEM, land use/land cover, TWI,
and satellite data) and attribute data (e.g., rainfall, slope, and elevation profiles). These datasets
are processed to generate thematic layers, including DEM, Elevation, slope, land use/land
cover, TWI, NDVI, and rainfall maps. These thematic layers are then integrated and analysed
using Multi-Criteria Decision Analysis (MCDA) to create a flood susceptibility map. The
process concludes with insights and recommendations based on the flood susceptibility map to
improve urban flood resilience.

Multi-Criteria Decision Method

is processed to extract relevant factors like elevation, TWI (topogra
drainage density, land use, rainfall and NDVI. These factos

generates a flood risk map, aiding in flood susceptibility ﬁ ¢
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Figure 1. Multi-Criteria Decision (Source: Constructed by authors)

Case Study Context

Auckland, which is the focus of this study is in the northern part of New Zealand's North Island,
lies between latitudes 36°45'-37°10" South and longitudes 174°30'-175°10" East, covering
approximately 1,086 km?. Mount Eden, at 196 meters, is the highest point in central Auckland as
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illustrated in Figure 2. The Tasman Sea borders Auckland to the west, the Hauraki Gulf and
Pacific Ocean to the east, the Waikato region to the south, and the Northland region to the north.
The Tamaki River, in the east, connects through tributaries near urban Auckland. Auckland's
geography features two major harbours: Waitemata Harbour to the north and Manukau Harbour
to the south, forming a distinctive isthmus. The Waitemata Harbour drainage basin is vital for
water management. Urban areas consist of flat to rolling terrain, while surrounding regions are
rugged with volcanic cones and ranges [41]. Around 80% of the region is urbanised or semi-

urbanised, shaped by its unique volcanic and coastal landscapes [42].
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Figure 3. Average Mean Surface Air Temperature [44]

Rainfall data. Figure 4 shows the Annual Precipitation of Auckland (1903-2023) graph,
which indicates fluctuations in rainfall over the past century, with periods of both increasing and
decreasing trends. While precipitation was highly variable in the early 20th century, the data
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suggests a gradual increase in recent decades, particularly after 2000. This could indicate a shift
in rainfall patterns, which contributes to higher flood risks.

Annual Precipitation of Auckland (1903-2023)
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Table 1 shows the monthly precipitation data (2019-20
and extreme rainfall, with 2023 experiencing much hig!

fall athounts are important for

understanding recent floods and recognizing climag d pight affect future weather. By
looking at these patterns, the study can identify 4 3 cavy rainfall is more likely to cause
flooding. The rainfall data presented in Tabl gctgll from a single station. This ensures
consistency in measurement and allows ysis of precipitation trends over the

study period. The station is located withi ca and provides comprehensive monthly

il Auckland region (single station) [45]

Rainfall [mm]

2020 2021 2022 2023
10.9 74.06 27.39 317.57
10.6 87.46 148.75 381.03
32.63 151.67 109.12 49.7
423 113.62 116.14 115.55

133.21 52.43 115.77 275.4

125.15 134.7 134.03 191.55
94.34 109.84 281.31 159.9

August 117.67 149.89 139.26 171.34 82.35
September 126.63 47.4 166.3 175.29 154.45

October 76.9 48.83 116.1 135.71 102.35
November 44.82 142.32 79.23 207.26 58.21
December 64.13 27.23 77.83 129.72 75.22

Outline of Flooding Event. January 27th, 2023, and February 13th & 14th, 2023, were the
dates of the rainfall occurrences. Approximately 1.7 million people, or one-third of New Zealand's
total population of 5.2 million, live in the Auckland region, which is the focus of this research.
The country continues to recover from the billion-dollar destruction caused by rainstorm disasters
to property and infrastructure. Due to excessive rainfall, there were widespread catastrophic floods
over the upper North Island of New Zealand starting on Friday, January 27, 2023. Urban flooding
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was the main cause of these widespread catastrophic floods. As the long weekend approached,
Auckland was the most severely hit [46]. Because of the extreme weather, four people lost their
lives [47]. A state of urgency was issued in Auckland; at least 5,000 properties in the city were
assessed for potential damage from floods, with at least 77 of them receiving red stickers [47].
The terminal buildings of Auckland Airport were completely submerged in water, causing the
airport to temporarily close. Flights that were cancelled or diverted affected tens of thousands of
travellers [47]. Several areas of Auckland had to be evacuated due to flooding, and many people
needed to be rescued due to the rapid intensification of the flooding. Floodwaters left lots of people
trapped in their vehicles [47]. This research highlights the impacts of these rainfall events, which
caused billions of dollars in damage and the need for effective flood resilience strategies.

Auckland compared to other locations.

Geospatial Data Source and Influencing Factors

ision analysis for
h area requires several

The primary methodology of this study involves GIS-based €
flood susceptibility mapping. Creating a susceptibility mapgf#

sources, including digital elevation models (DEM),
as shown in Figure 5.
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Figure 5 . Method used to Develop the Flood Susceptibility Map for the Auckland Region
(Source: Constructed by authors)
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The spatial database for flood influencing factors comprises rainfall, geology, land use,
topographic wetness index (TWI), drainage density, slope, normalised difference vegetation index
(NDVI), and digital elevation model (DEM). Five of these factors can be extracted from the DEM
using the spatial analyst tool in ArcGIS pro based on Figure 6.

r—— = Slope [—~——-—- 1
I I
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| Y
I |
I |
| I
(RPN Flow — Flow
Direction Accomulation

Figure 6. Flowchart for the Data Collection Methodology Using ArcGLS.proySourc Constructed

by authors)

The slope map is generated directly from the DEM raster.
and flow accumulation must be extracted and processed with
analyst tool. Using the same flow accumulation data,
drainage density and distance from drainage.

I, flow direction
(lator in the spatial
t tool also produces

ANALYSIS AND PRESENTATION OF R

ng ArcGIS Pro, parameter maps (e.g.,

GIS to develop a flood susceptibility map
i I, and NDVI) are generated to analyse

Slope, Elevation, Rainfall, LULC, Dr;

these factors, assigning weights thetlsignificance. The consistency ratio (CR) ensures
the reliability of the weighted iampPhligih g complex decision-making.

Elevation

Elevation significé nces flood occurrence, as water flows rapidly from higher to
lower elevations, 1 iitg arecas more prone to flash flooding. The elevation map of
Auckland, prese 7, was generated using a Digital Elevation Model (DEM) sourced
from the U @cological Survey (USGS) and processed in ArcGIS. Elevation in
Aucklan to 700 meters, with higher elevations in inland hilly areas and lower
elevatgons oastlines and flatlands. These variations are critical for assessing flood risks, as
lo re particularly vulnerable.
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Slope

Flood risk increases in areas with lower slope values, as flatter terrain allows runoff to move
quickly, heightening flood susceptibility. Conversely, steeper terrain slows runoff, reducing flood
risk. The slope map of Auckland shown in Figure 8 was created using a Digital Elevation Model
(DEM) and ArcGIS's spatial analyst tool. Slope values, measured in degrees, range from 0.001—
4.418 (low) to 23.564—75.105 (high). Central and northern Auckland, with lower slope values
highlighted in green, are more prone to flooding due to rapid runoff, while the western areas, with
higher slopes, exhibit reduced flood risks.
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Figure 8. Slope Map of Auckland (Source: generated by authors)

Topographic Wetness Index

The Topographic Wetness Index (TWI) is a vital metric for identifying areas prone to wetland
formation and high overland water flow potential. It helps assess flood susceptibility by
highlighting zones likely to accumulate water. The TWI map is derived from slope and flow
accumulation data and analysed using a Digital Elevation Model (DEM). Calculated with ArcGIS
Pro's raster calculator, TWI values reflect topographical characteristics. In Auckland, as depicted
in Figure 9, TWI values range from -9.4 to 12.2. Lower values, shown in red, indicate steeper
slopes and smaller drainage areas, suggesting reduced runoff accumulation. Higher values, found
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in flatter regions or areas with larger drainage zones, signify greater water accumulation and flood
risk.

TWI = In(As = {tanp + C}) (1)
where As = total area of upslope drainage, tan3 = local slope gradient, and C = 0.001
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Figure 9. Topographic Wetness Index (TWI) Map (Source: generated by authors)

Drainage Density

The drainage density map is calculated from flow accumulation, which can be derived from
DEM data using the “line density” tool within the spatial analyst tools of ArcGIS software pro.
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Figure 10 presents the drainage density distribution for Auckland, with values ranging from the
lowest (0.1 - 31.9) to the highest (127.7 - 159.6) the central and some southeastern parts of the
region, where red and orange colours are prominent, are the area’s most at risk. These regions
have the highest drainage density values (127.7 - 159.6), indicating that they are more prone to
the risks associated with high surface water runoft.
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Wure 10. Drainage Density Map (Source: generated by authors)

ain

ainf@ll 1s a primary driver of floods, as heavy rains can overwhelm river systems and lead
to exc rface runoff when infiltration capacity is exceeded. Rainfall data for this study was
obtained from the Climatic Research Unit (CRU). Figure 11 shows the annual rainfall distribution
across Auckland, with the northern areas receiving the least rainfall (34.92—150.18 mm). Moving
south, rainfall increases, with the central region experiencing moderate levels (150.19-338.89 mm,
shown in yellow and orange). The southern and southeastern areas receive the highest rainfall
(415.8-503.79 mm), making them more prone to flooding due to higher water availability. This
rainfall gradient is critical for assessing flood risks and managing water resources.
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ver are critical in influencing soil stability and water infiltration, making
prs in flood susceptibility mapping. Areas with dense vegetation reduce

surface runoff and elevating the risk of flooding. The LULC map shown in Figure
erated using 2023 Landsat 8 imagery acquired from the United States Geological
Survey (USGS) website. From the LULC map obtained, 29% of Auckland consists of fallow land,
26% of forest, 22% of agricultural activities or cultivated, 13% of settlements and 1 % of water.
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etation Index

ence Vegetation Index (NDVI) is an essential tool for evaluating
1s crucial in reducing surface runoff and serving as a natural barrier
I is determined using the red (R) and near-infrared (NIR) bands from

NDVI = (Band5 + Band4) + (Band5 — Band4) )

Regions with lower NDVI values, shown in yellow and light orange, likely represent urbanised
or developed areas with limited vegetation. Conversely, areas with higher NDVI values, illustrated
in green and dark green, denote regions with thick vegetation, such as forests or parks, which play
a key role in natural flood protection. This distribution highlights the varying capacity of different
areas within Auckland to withstand and mitigate the effects of flooding based on their vegetation
cover.
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Weight Linear n Technique
The weighted ir ghmbination (WLC) method assesses criterion relevance and assigns

approprid . The Analytical Hierarchy Process (AHP) approach for WLC involves

ghts
ighing the unit factors; (b) organising these factors into a hierarchical structure;

was usc@ywith the factors scored on a nine-point continuous scale [49] according to their relative
importance shown in Table 2. The study employs the consistency ratio (CR) to evaluate the
reliability of the pairwise comparison matrix. This is done by first calculating the Consistency
Index (CI) using the following formula:

Cl = (Amax —n)+~(n—1) (3)
where Amax is the principal eigenvalue of the matrix, and n is the number of criteria.

To determine if the pairwise comparison matrix is consistent, the consistency ratio (CR) is
calculated using:
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CR = Cl +RI “)
In this formula, RI represents a random index value that depends on the size of the matrix [50].
A CR value of 10% or less is considered acceptable. However, if the CR exceeds 10%, it indicates

inconsistency in the assessments, and the subjective judgments should be revisited.

Table 2. Criteria Weight of Pairwise Comparison Matrix Scale [51]

.Intensny of Definition Elevation
1mportance
1 Equal importance Two elements contribute equally to the
3 Moderate importance Experience and judgment slightl
element over anothg
5 Strong Importance
. Very strong importance
9 Extreme importance
2,4,6,8 can be used to expre
The study meets its research objectives by4qQtegratt Analytic Hierarchy Process (AHP)
with GIS to develop a flood susceptibility ucklaid.
DISCUSSION

ibilit§ map is structured into two distinct phases. First,
hr a pairwise comparison matrix within the AHP
framework, ensuring a sys gn of factor importance. Subsequently, these weights
are applied using the weigMgdfong method in Geographic Information Systems (GIS) to
generate the final flo ili

developed bW [49], parison matrix was created where the diagonal elements are equal to 1.
elefent corresponding to rainfall is of equal importance to itself, which means

in the first row (for rainfall) is 1. Similarly, when elevation is compared with
nding diagonal element will also be 1, and this pattern continues for all criteria.
of the values in each column of the comparison matrix is calculated, as shown in
llowing this, a normalised pairwise matrix is derived by dividing each element of the
column by the sum of that column. The criteria weights are then determined by calculating the
average of the elements in each row, which is done by dividing the sum of the row elements by
the number of criteria. The criterion with the highest weight is considered the most significant in
the overall calculation. From the criteria weights obtained, the three most influential factors in this
analysis are TWI, Rainfall, and Elevation, collectively accounting for over 50% of the total weight
[52], [53].
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Table 3. Pair-Wise Comparison Matrix and Final Weights

Drainace Normalized
Matrix TWI Elevation Slope Rainfall LULC NDVI ag principal
Density .
Eigenvector
TWI 1 1 1 1 3 5 1 19.94%
Elevation ! 1 1 1 2 3 1 16.88%
Slope 1 1 1 1 3 1 1 15.86%
Rainfall 1 1 1 1 3 2 1 16.88%
LuLc 173 12 1/3 1/3 1 1
NDVI /5 1/3 1 1/2 1 1
Drainage 1 1 1 1 1 1
density

Additionally, the consistency ratio (CR) was calculated using; Q
Cl = (Amax —n)+~ (n— (3)

(where Amax is the principal eigenvalue of the matrix, anO\@s the Rumber of criteria)

4)

To assess the consistency of the gene
which confirms the reliability of the aggs !
below the threshold of 0.1, or 10%. Ifthe CR excBds 0.1, it suggests that the evaluations may be
too inconsistent to be considere

Integration of GIS

After determining
weighted overlay too
reclassified accorg

s, the flood susceptibility map was created using the
ro. To use this tool effectively, each raster parameter was first
ibility class ratings. Then, the cell values were multiplied by
e influence, and the resulting rasters were combined. This process
p final flood susceptibility map, which was categorised into five risk
risk, moderate risk, low risk, and very low risk as illustrated in Figure
e areas of different flood susceptibility zones along with the percentage of
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The mapfifrom 4 highlights that certain northern and northeastern parts of the region,
along wit e offghore islands, have higher flood risk, whereas central and southern areas of

Au € hibit lower flood susceptibility. The southern and central parts of Auckland
sho 0 nce of low to very low flood susceptibility, marked in green on the map. These
a i covered with more vegetation and forested land, which helps absorb rainfall and
redu risk of flooding.

Fig 15 presents a pie chart illustrating the spatial distribution of flood risk levels in
Auckland, derived from the corresponding flood risk map. The results reveal that a substantial
proportion of the area (63%) falls within the moderate risk category. Additionally, 21% of the area
is classified as low risk, while 16% is designated as high risk. Importantly, the analysis indicates
that no regions fall under the very high or very low risk classifications.

These findings suggest that the majority of Auckland is currently exposed to a moderate level
of flood risk. However, the potential intensification of urban development and deforestation
activities poses a significant threat to this balance. Without the implementation of robust flood
management and land-use planning strategies, there is a heightened likelihood that areas presently
considered moderate or low risk could transition into higher risk categories over time. Therefore,
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proactive measures are critical to sustaining current risk levels and enhancing the city’s resilience

to future flood events.

Very High
0% Very Low

High
16%

Moderate
63%

= Very High = High = Moderate =Low = Very Low

Geographic Information Systems (GIS) is a powerfu mg, analysing, and
visualising spatial data, enabling efficient decision vartous fields, including
environmental management and urban planning [54], [55]. as bdn extensively used in the
Philippines, one of the most disaster-prone countricg ess mitigate flood risks [15]. Due
to frequent typhoons and heavy rainfall, goverpgm jes have integrated GIS technology

Figure 15. Percentages of Flood Susce

with topographical and meteorological data t oQ@l-risk maps [14]. Studies in Davao

ood risk assessment by incorporating
multiple variables such as slope, elevati C , soil type, and population density [17].
Methods like the Analytic Hierarc ), Weights by Rank (WR), and Ratio
Weighting (RW) have been use -prone areas [17]. The results indicated that
95.99% of Davao Oriental fall oderate flood risk zones, while coastal regions
face higher susceptibility, ent mitigation strategies [16]. Similarly, this study

employs GIS-based spatia ssess flood susceptibility in Auckland. The results
highlight that northe parts of the region, along with offshore islands, are at a
higher risk of floodi c@gtral and southern Auckland exhibit lower susceptibility due to
vegetation cover ing§ align with previous research emphasising the role of GIS in
identifying nePand supporting flood resilience planning [12], [56], [57].

cess assesses the accuracy of a flood susceptibility map by comparing its
ibility zones with actual floodplain locations [58]. This ensures that the spatial
ood-prone areas aligns with historical flood records, improving the reliability of

levels: Very Low (1), Low (2), Moderate (3), High (4), and Very High (5). The floodplain
shapefile (vector) represents historically flooded areas based on Auckland Council data. Both
datasets are loaded into ArcGIS Pro to ensure proper alignment and coordinate system consistency.
The “Extract Values to Points” tool is used to sample flood susceptibility values at validation
points. Each point is assigned a susceptibility class (1-5), allowing direct comparison with
floodplain locations. A Spatial Join is performed to check whether high-susceptibility zones
correspond to actual floodplain locations. The analysis examines how many of these points fall
within the floodplain, indicating model accuracy.

The model’s accuracy is determined using the formula:
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Validation Accuracy

B ( Correctly Predicted Floodplain points (5)

X 1009
Total Floodplain ponts ) &

Where Correctly Predicted Floodplain Points = 24,932 and Total Floodplain Points = 30,047

The model achieved an accuracy of 82.98%, indicating strong agreement between risk zones
and actual flood-prone areas.

CONCLUSION
The results of the research show that Auckland is vulnerable to floods, espg to its
varied topography and urban development, which can exacerbate flood risks. '\ of

this study was to create a flood susceptibility map for the Auckland regi
AHP (Analytic Hierarchy Process) technique. Seven influencing factors
the flood susceptibility map, and the final map was classified into
method. The results indicate that flood susceptibility in the Augldaril regiof is predominantly
moderate, with 63% of the urban area categorised under modg 1SR
up 16%, while 21% of the area is classified as low risk. Tige nd 1ghlight the need for
targeted flood mitigation strategies, particularly for tI§ portion of the area facing
moderate risk and emphasise the importance of monj h-risk Zones. Overall, this study
demonstrates that the AHP method provides

These maps provide layered visual outp isigg critical factors like terrain slope and
proximity to drainage systems. This

mitigating flood risks. The meth@dol in this study could be applied to other regions,
offering a robust tool for flood

i3 [S-based Decision Support Systems (DSS), dynamic flood scenarios
sessments can be generated. Early warning protocols would also be
timely alerts for emergency services, authorities, and the public. Staff
would enhance technical proficiency in using GIS tools, interpreting flood
an§operating DSS, creating a skilled workforce ready to manage flood emergencies.

Medium-term actions (2-5 years): The focus would shift to infrastructure upgrades and
policy enhancements. High-risk areas would see improvements to stormwater drainage systems,
embankments, and other critical assets. Nature-based solutions, such as wetlands restoration
and floodplain reclamation, would mitigate flood impacts naturally. GIS-based susceptibility
maps would be updated to reflect urbanisation and climate changes, forming the basis for
revised zoning regulations. Development in high-risk zones would be restricted, and new
projects would incorporate flood-resilient designs. Community engagement programs would
educate residents on flood preparedness through workshops, participatory mapping, and
awareness campaigns, promoting resilient practices such as rainwater harvesting and
permeable surfaces.




Long-term actions (5+ years): Dynamic floodplain management would be integrated into
Auckland’s urban development plans. GIS tools would help identify low-risk areas for growth
and designate high-risk zones as green spaces or ecological buffers. Climate change adaptation
would take centre stage, with GIS-based modelling evaluating impacts such as sea level rise
and altered rainfall patterns. Adaptive land-use strategies, including buffer zones along rivers
and coasts, would reduce vulnerability to extreme events. Infrastructure development would
align with climate-resilient standards, using sustainable materials and designs. Regular updates
and validation of GIS models would ensure their relevance, incorporating the latest
environmental and urban data. Collaboration with academic institutions would foster

innovation and improve model accuracy.
Limitations of the research
While GIS technology provides capabilities for flood mitigation, this stud 0 es

several limitations. The limitation of this study is that it used only open- dhtasets
with different resolutions and scales. The elevation of the building is also rcd in this
study. Additional building height information can provide detaileg
about the risks of buildings. Building height can be obtained b,
resolution, i.e., 5 cm, which can be generated through aeria .@
satellite sensors; this high-resolution DEM can give mou™agc
study does not provide a detailed analysis of the precipity pa
thoroughly examined. This limitation may affect theunderst
urban flooding dynamics.
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