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ABSTRACT 

As a step towards sustainable energy management systems, energy providers use various 

demand side management techniques to reduce fluctuations in consumer energy demand. 

Dynamic pricing schemes encourage consumers to shift their energy usage patterns from 

peak hours towards off-peak periods, but here usually the active participation of 

consumers is anticipated. Smart household devices, which can autonomously shift their 

time of operation, can efficiently support such demand side management techniques.  

In this paper an adaptive model-based control scheme is proposed to create intelligent 

cost-aware household appliances, which can change their behaviour to minimize the cost 

of consumed energy and at the same time provide the required quality of service.  

The controller utilizes the dynamically changing energy price list, published ahead by the 

energy provider, thus it cooperatively supports demand side management. The proposed 

methods are evaluated in a case study, utilizing a household refrigerator. The proposed 

adaptive model predictive controller can save 5-10% of the energy bill, according to 

simulation results.  

KEYWORDS 

Cost-aware household appliances, Energy, Adaptive modelling, Model-based control, 

Refrigerator. 

INTRODUCTION 

Financial incentives can provide possible means for energy imbalance management, 

since a sufficiently motivating dynamic pricing may urge consumers to shift their energy 

consumption pattern towards inexpensive off-peak periods and decrease their energy 

utilization in more expensive peak periods. Such Demand Side Management (DSM) 

techniques are beneficial for both the consumer (possibly resulting in lower energy bills) 

and the provider (resulting in more balanced energy utilization).  

Several energy providers experiment with hourly pricing systems published one day 

ahead [1]. To be efficient, such pricing schemes require reactive intelligent appliances on 

the consumer side. This paper investigates the possibility of creating intelligent
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cost-aware household appliances, which can adaptively change their control strategies to 

reduce energy cost and at the same time maintain the quality of service. As a case study, a 

refrigerator is utilized, which has stringent functional requirements to provide a fixed 

temperature range for the stored food, but at the same time allows some flexibility for the 

control strategy due to its thermal capacity.  

The proposed Model Predictive Control (MPC) system is illustrated in Figure 1.  

The controller utilizes the measured actual state (inner air and back panel temperatures) 

of the controlled appliance, and also utilizes a behavioural model and the energy price list 

for the next few hours. The utilized behavioural model can predict the state of the 

appliance for the near future, depending on the possible control actions, thus the 

controller can choose the optimal control strategy in order to shift the time of energy 

consumption towards lower-priced time periods in order to minimize the total price of 

consumed energy, while maintaining the required quality of service. The hardware 

requirements of the proposed solution are low: the two temperatures can be measured 

using inexpensive temperature sensors.  

The proposed MPC solution uses two kinds of predictor. The simpler one is a static 

State Space (SS) model based solution, while the other method uses an adaptive 

Time-Domain Non-Parametric (TDNP) model. 

The paper describes the utilized system model, the predictors and the control 

algorithm. The efficiency of the method is illustrated through simulations and real 

measured data. 

 

 
 

Figure 1. The concept of cost-aware MPC 

RELATED WORK  

The technical advancement of the world generates an increasing energy demand in 

both industry and households. This increasing demand is not uniform in time, rather it has 

peaks and valleys, mainly depending on the time of day: statistically the most energy is 

used in early morning and in the evening, while during the day and late nights the energy 

consumption is much smaller. Due to the uneven energy demand, the operation of the 

energy network is less efficient: the network must be designed to satisfy sporadic high 

peaks, resulting in unused capacity in most of the time [2]. The approach of DSM 

attempts to mitigate this ever increasing problem by modifying consumer demand in time 

so that actual demand and supply be close to each other [3]. The approach was shown to 

be efficient to mitigate load related congestions [4]. Day ahead markets create a dynamic 

environment for DSM [5], which will also be used in the proposed technique. Novel 

home energy systems open the possibility to apply more efficient DSM in household 

level [6]. An overview of smart-agent based models for home automation can be found in 

[7]. 
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DSM can be performed using several control means. The most common way is to use 
different (but permanent) pricing for day and night periods. Unfortunately, users are 
reluctant to change their consumer habits, given the potential inconveniences and small 

economic reward. Controlled supply (e.g. for air conditioners or heaters) allows more 
direct intervention from the provider’s side, but users tend to resist external control of 
energy utilization [8]. Local buffering methods (e.g. using batteries or heat) can help end 

users to shift their energy utilization from the network without the need of changing the 
consumer habits and cost savings can be as much as 20%, according to simulation results 
of Adika and Wang [9]. DSM combined with storage and photovoltaic generators 

provided 15% decrease of both load and cost in real experiments [10].  
A scenario analysis for future German energy market for 2030 [11] showed that 

automatic domestic DSM systems along dynamic energy pricing has great potential. This 

approach utilizes cost-aware household appliances, which can react to changes of energy 
price without noticeable change of the provided services towards the users. Good 
candidates are appliances which can shift their time of operation: refrigerators have 

significant heat capacitance thus some shift in time does not cause large change in their 
performance, washing machines may not need to perform their operation immediately 
thus time shifting is again possible. In this paper the concept will be applied to 

refrigerators.  
MPC has been successfully utilized to create smart appliances. In [12] large 

refrigerators utilized in supermarkets are investigated. The proposed solution considers 

the changing energy prizes, the heat capacity of the stored food and the daily change of 
external temperature, to perform nonlinear optimization. In [13] MPC was utilized in 
household refrigerators and various linear and nonlinear system models were evaluated.  

In the literature, several models were proposed to capture the dynamic behaviour of 
refrigerators. Continuous differential equations were used [14] to describe the physical 
operations. Much faster discrete time models with similar accuracy were proposed in Lin 

et al. [15]. In [13] simpler stochastic differential equations were used and a third order 
model was able to capture nearly all the dynamics contained in the measurements.  

In this paper, a switched linear low-order SS model and an adaptive non-parametric 

model will be used to create the predictor. In the MPC controller, instead of 
computationally intensive optimization methods, a heuristic controller will be utilized. 

HYBRID STATE SPACE MODEL 

In order to model the operation of the refrigerator a hybrid (or switched) SS model 
will be utilized. The proposed MIMO system has two inputs: �� denotes the control 
signal (on: 1, off: 0) and �� is the external (i.e., room) temperature. The output vector 

contains inside air temperature �� and back panel temperature ��. 
The utilized model is the following: 

 

�� = �� + 
� 
� = �� + �� 

(1)

 

where � is the state vector of length 
, � = [��, ��]� is the input vector, � = [��, ��]� is 
the output vector, � is the state transition matrix of size 
 × 
, 
 is the input matrix of 

size 
 × 2, � is the output matrix of size 2 × 
 and � is the feedforward matrix of size 
2 × 2. 

The proposed hybrid model utilizes two parameter sets: ���, 
�, ��, ��� is used when 

the cooler is off (�� = 0), while ���, 
�, ��, ��� is used when the cooler is operating 
(�� = 1): 

 

� = ��, 
 = 
�, � = ��, � = ��  when �� = 0 
� = ��, 
 = 
�, � = ��, � = ��  when �� = 1 

(2)
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The proposed hybrid model has the advantage that the behaviour of the system can be 

described by low order models, thus the operation of the controller requires smaller 

computational capacity. In our case a second-order model (
 = 2) was enough to 

adequately model the refrigerator under test. The model parameters were determined 

using iterative grey-box modelling, resulting in the following parameter sets: 
 

�� = �−0.001159 0.001036
0.0001155 −0.0002269$ ; 
� = �0.0001395 0

0.0001114 0$ 

�� = �1 0
0 1$ ; �� = �0 0

0 0$ 

(3) 

 

and 
 

�� = �−0.002258 0.0004443
0.0001155 −0.0002269$ ; 
� = �0.0001395 −0.04523

0.0001114 −0.002378$ 

�� = �1 0
0 1$ ; �� = �0 0

0 0$ 

(4)

 

The performance of the proposed model is illustrated in Figure 2. The refrigerator 

under test was a conventional 800 W model. The operation of the refrigerator was 

measured during a day: the control signal, the inside air temperature, the back panel 

temperature, and the room temperature were recorded. The system model of (1-4) was 

operated from the measured initial state, i.e., the measured inside and back panel 

temperatures at 0:00 were set as initial values of ��0�. The measured operation of the 

device is shown in Figure 2 by green colour. The measured room temperature along with 

the measured control signal was provided as input for the system model. The simulated 

back panel temperature is shown in red, while the simulated inside air temperature is 

shown in blue in Figure 2. The simulated results correspond well with the measured data. 

Notice that the current system model does not contain means to describe external 

disturbances (e.g., opening of the door), thus during the measurement the device was 

operated without any user intervention. 
 

 
 

Figure 2. Measured and state-space based simulated behaviour of the domestic refrigerator 

 

The hybrid SS model is accurate enough for utilization in model MPCs. However, the 

modelled system may change in time, thus the model should be re-identified from time to 

time. In case of refrigerators, the model change frequently happens, e.g., when a large 



Journal of Sustainable Development of Energy, Water  

and Environment Systems 

Year 2018 

Volume 6, Issue 3, pp 547-558 
 

551 

amount of food is placed into the refrigerator, thus changing the heat capacitance of the 

device. Thus an adaptive predictive model is also proposed in the next section. 

ADAPTIVE TIME-DOMAIN NON-PARAMETRIC MODEL 

For the adaptive modelling of the refrigerator a (TDNP) model with linear 

interpolation is utilized. The main idea of the model is to approximate the step responses 

of the back panel and the inside air temperature. The solution handles separately the 

warming up and cooling down phases, for each phase using a different table. Figure 3 

illustrates the operation of the warm-up table. The warm-up table in row �)� → )�� 

contains the time necessary for the back panel to warm up from temperature )�  to 

temperature )� (with compressor off). The cool-down table in row �)� → )�� contains 

the time necessary for the back panel to cool down from temperature )� to temperature )� 

(with compressor on).  

The adaptive prediction operates as follows: if the next assumed control state is “on” 

then the cool-down table is selected. If the next assumed control state is “off” then the 

warm-up table is selected. According to the current measured temperature )�+�, the 

predicted temperature ),�+ + 1� in the next time instant can be calculated as follows: 
 

),�+ + 1� = )�+� + -.∆0 (5) 
 

where ∆0 is the sampling interval and -. is the slope, read from the table row �). → ).1��, 

such that )�+� ∈ [)., ).1�]. To predict the temperature in the successive time instants, 

earlier predictions are used, as follows: 
 

),�+ + 1� = ),�+� + -.∆0 (6)
 

where the slope (-.� is selected similarly from the table row for which ),�+� ∈ [)., ).1�]. 
The prediction steps (6) can be repeated to generate predictions for a future time horizon, 

i.e., ),�+ + 1�, ),�+ + 2�, … , ),�+ + 
�.  
 

 
 

Figure 3. TDNP system model, showing the warm-up table 

 

The tables are continually updated while the refrigerator is operated, thus providing 

adaptive behaviour. The system stores the time instants when the measured temperature 

crosses a reference temperature value, e.g., the compressor is off, thus temperature is 

increasing. Reference temperature ).  was detected at time 0.  and the next reference 

temperature ).1�is detected at time 0.1� . The table maintenance process is activated 

when the measured temperature fully crosses a reference temperature range. The time 

spent in the reference region [)., ).1�] is ∆0. = 0.1� − 0., which is used to update the 

table entry in row �). → ).1��, as follows: 
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-. = �).1� − ).�/∆0. (7)
 

The operation of the model is illustrated by Figure 3. It is supposed that the 

temperature changes linearly between reference points. The approximation of the 

exponential-like step responses is fairly good if sufficiently dense reference points are 

used (e.g., in 1 °C steps). 

Figure 4 illustrates the reconstructed warm-up step response of a refrigerator back 

panel, based on a real measured warm-up table, where the reference temperature values 

were −19 °C, −18 °C, …, +7 °C in 1 °C steps. The measured slopes correspond to the 

slopes of the short line segments of the interpolated step response.  
 

 
 

Figure 4. Reconstructed warm-up step response of a refrigerator back panel from its measured 

warm-up table 

 

An example for the adaptation process is shown in Figure 5, where the SS mode was 

used to provide realistic simulation (red reference curve). The TDNP model was used to 

create a static model (the tables were trained before the experiment and then were left 

unchanged, shown by black curves) and an adaptive model (the tables were trained 

continuously, shown by green curves). The TDNP model was used to estimate both the 

back panel and the inside air temperatures. 
 

 
 

Figure 5. Test of the adaptive predictor with changing ambient temperature 
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In the experiment the ambient temperature increased from 22.5 °C to 35 °C at 4:00, 
and decreased from 35 °C to 15 °C at 13:00. At the beginning both models had small error 
until the change at 4:00, when both models produced high error. The adaptive model learns 

the new behaviour soon, but the error of the static model is permanent. A similar effect can 
be seen at 13:00: the adaptive model learns the new behaviour quickly after a short transient, 
while the performance of the static model remains poor. 

HEURISTIC MODEL PREDICTIVE CONTROL 

The proposed controller assumes that the energy price 5�0� is known ahead with a 
reasonable horizon [1]. Such pricing schemes are utilized, e.g., in Northern European 
countries, where hourly energy prices are published 24 hours ahead [16]. The controller 

utilizes the evolution of the prices and the built-in model to optimize the control decisions. 
The control goal is to minimize the Total Cost (TC) of the operation: 

 

)��)� = 6 5�0����0�70
8

9
 (8)

 

While minimizing the cost, the required quality of service must be provided.  
The constraints of the control contain the required temperature range for the inside air 
and the allowed temperature range for the back panel, as follows: 

 

):;<,=.> ≤ �� ≤ ):@A,=.> 

):;<,B=CDE ≤ �� ≤ ):@A,B=CDE 
(9)

 

Instead of formal optimization of eq. (8) and eq. (9), the proposed MPC operates 

using heuristic control laws. Since the time constants of a domestic refrigerator are below 
one hour, the time horizon is set to two hours: the controller makes its decision based on 
the current price and the price of the next hour. The following cases are considered: 

• A: The price of the current hour is the same as the price of the next hour; 
• B: The price of the current hour is higher than the price of the next hour; 
• C: The price of the current hour is lower than the price of the next hour. 

Notice that the control has effect on the current hour, the next hour’s data is used only 
to choose the strategy. 

Control law A 

 The control simply applies conventional control techniques: the cooler is operated 

until either the temperature of the back panel reaches )FGH,IJKLM or the temperature of the 
inside air reaches )FGH,JNO. Then the cooler is switched off until either the temperature of 
the back panel reaches )FPQ,IJKLM or the temperature of the inside air reaches )FPQ,JNO.  

In this case no prediction is necessary. 

Control law B 

The controller tries to minimize the operation time in the current (expensive) hour and 
delay the operation to the next (cheaper) hour, thus the applied heuristics are the 

following: operate the device using Control law A, but stop the last cooling period so that 
at the end of the hour the back panel temperature reaches exactly )FPQ,IJKLM. To reach 
this control law the controller makes predictions periodically during the cooling phases 

(in every 2 seconds), using the actual measured system state as initial state for the model, 
and performing the simulation with �� = 0 . The cooler is switched off when the 
predicted ��,RST equals )FPQ,IJKLM, where ��,RST is the simulated back panel temperature 

at the end of the hour.  
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If the prediction is accurate, the back panel temperature reaches its allowed maximum 

exactly at the end of the current hour. However, prediction errors may be present. If the 

back panel does not warm up to the allowed maximum, some cost is wasted, since the 

cooler could have been switched off earlier, but otherwise no control action is required.  

If the back panel temperature reaches its allowed maximum too early, then the cooler 

must be switched on again, causing again some unnecessary cost.  

Control law C 

The controller tries to minimize the operation time in the next hour, and thus cools 

down the device by the end of the current (cheaper) hour as much as possible, so that in 

the next (expensive) hour the operation time be less. The heuristic control law is the 

following: operate the device according to Control law A, but when the compressor is off, 

it makes predictions periodically (every 2 seconds), using the actual measured system 

state as initial state for the model and performing the simulation with �� = 1. The cooler 

is switched on when, according to prediction, ��,RST = )FGH,IJKLM, where ��,RST is the 

simulated back panel temperature at the end of the hour.  

In the presence of prediction errors, the back panel may reach its allowed minimum 

either too early (in this case the cooler must be switched off), or it may not reach its 

allowed minimum by the end of the hour (in this case no control action is required).  

In both cases some extra cost occurs. Notice that the required temperature range is always 

provided, regardless of the accuracy of the model. 

EVALUATION 

The performance of the proposed control system was evaluated using the refrigerator 

model of eq. (1-4). In the evaluation four control laws were utilized. 

Conventional control 

In the refrigerator under test a simple control was utilized, based on the temperature 

of the back panel. If the temperature of the back panel is above )FPQ,IJKLM , the 

compressor is switched on. If the temperature of the cooling back panel reaches 

)FGH,IJKLM, the compressor is switched off. 

Model Predictive Control-State Space 

It uses hybrid SS model in the prediction process. In the simulation no model changes 

were utilized, thus the SS model, although static, provided accurate prediction. 

Model Predictive Control-Time-Domain Non-Parametric 

This version of the proposed heuristic control uses adaptive TDNP model in the 

prediction process. 

Optimal Model Predictive Control 

The optimal control was calculated using a heuristic search method, which allows to 

find optimal control for piecewise affine systems [17]. The optimal controller used  

4 hours look ahead time. Note that the optimal controller allowed switching the 

compressor on/off in every 5 minutes, which may not be ideal for a real device, but the 

results are nevertheless useful for comparison. 

For the test, real prices were downloaded from [16], for a whole week starting on 21 

March 2016. For each day all three algorithms were run and the total cost was calculated. 

An example (Tuesday) is shown in Figure 6. The inside air temperature is shown by blue, 

while the back panel temperature is shown by red, for all four algorithms.  

The conventional, the MPC-SS and the MPC-TDNP algorithms used control strategies 
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with long cooling and warming periods, while the optimal controller applied short 

periods, thus the resulting inside temperature is smoother.  
 

 
 

Figure 6. One day of simulated operation of the refrigerator using the optimal, heuristic and 

conventional controllers, using real price data 

 

Notice that the optimal controller also found the heuristic rules. Between 18:00 and 

19:00 an expensive period is visible: the optimal controller cooled down the unit before 

18:00 (similarly to Control law C) and let it warm up by 19:00 (similarly to Control law 

B). The proposed heuristic controller utilizes long periods but they are adequately shifted 

to produce low cost.  

The results are summarized in Table 1, showing the energy cost for each day and for 

the whole week, for the four algorithms. On those days, where the energy prices show 

significant fluctuations, substantial saving around 10-14% can be reached, using the 

optimal control. The proposed heuristic controller with hybrid SS model provides 

somewhat lower saving results, reaching 8-12% on the best days. The MPC-TDNP 

algorithm is less accurate and can produce fewer savings than the MPC-SS, as expected. 

It can reach 6-12% on the best days. On days where the prices are more uniform the 

achieved savings are moderate. During the whole week, the optimal control allowed 

saving of 10.4%, while the MPC-SS (accurate, but non adaptive) provided 6.9% and the 

MPC-TDNP (adaptive, but less accurate) gave us 6.8% savings. 

Notice that the optimal controller switches the compressor on and off with much 

higher frequency than the conventional controller (see Figure 6). This may have 

undesired effect of the lifetime of the device. The proposed controller, however, 

increases the switching frequency only moderately.  

The computational cost of the conventional controller is negligible. The MPC 

controllers must run the decision-making process periodically, in order to take into 

consideration disturbances and changes in system dynamics. The computational needs of 

the MPC algorithms were compared using the same 2-hour horizon. The optimal and 

heuristic controllers required 2.2 s and 0.01 s of computation for one iteration, 

respectively, on a 2.3 GHz PC. The computational needs of proposed method are 

significantly lower, thus its real implementation on embedded hardware is more realistic. 
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Table 1. Costs during the test week for the conventional, optimal,  

heuristic controllers with SS prediction and heuristic control with adaptive TDNP prediction  

(the savings, with respect to the conventional control, are also shown) 

 

 

Cost (EUR) Savings [%] 

Conventional 
Optimal  

MPC 
MPC-SS MPC-TDNP 

Optimal  

MPC 
MPC-SS MPC-TDNP 

Monday 0.2617 0.2353 0.2390 0.2395 10.1 8.6 8.5 

Tuesday 0.2517 0.2156 0.2213 0.2213 14.4 12.1 12.1 

Wednesday 0.2555 0.2312 0.2389 0.2394 9.5 6.5 6.3 

Thursday 0.2195 0.2002 0.2082 0.2085 8.8 5.1 5.0 

Friday 0.1657 0.1503 0.1597 0.1599 9.3 3.6 3.5 

Saturday 0.1459 0.1320 0.1389 0.1392 9.5 4.8 4.6 

Sunday 0.1240 0.1117 0.1193 0.1193 9.8 3.7 3.7 

Week 1.4242 1.2767 1.3257 1.3268 10.4 6.9 6.8 

CONCLUSIONS 

A heuristic MPC was proposed for domestic refrigerators which allows cost savings 

and also supports demand side management. Based on measurements on a domestic 

refrigerator, a static hybrid SS and an adaptive TDNP model were created. The models 

were then utilized as predictors in the MPC, to allow realizing simple heuristic control 

laws, which shift the time of operation, according to price changes.  

The performance of the proposed heuristic controller with SS and TDNP predictors 

was compared to that of a conventional controller and an optimal controller. According to 

simulation results, the achievable cost saving is about 6.8%, as opposed to 10% gain of 

the optimal controller.  

While the optimal controller provided a theoretical optimum, its real application is 

not realistic, since it has high computational need, and the provided control strategy is not 

hardware-friendly (frequent switching of the cooler). The proposed controller, however, 

can be applied to any hardware (it has similar dynamic characteristics to the conventional 

controllers) and the computational needs are much less.  

The proposed MPC-SS solution uses a static prediction method which is accurate in 

special simulation or very controlled real life situation, but this attribution is questionable 

in an average household. That is the case why the MPC-TDNP was developed which uses 

an adaptive predictive solution. Although this solution is less accurate than the SS model 

in the simulation environment, in the real life situation the adaptation attribution can 

compensate it. 

The proposed methods showed high potential for real implementations, but future 

work is required. Real implementations also will require further optimization of the 

controller and in particular the predictor, so that the controller can be embedded in small 

inexpensive microcontrollers. Also the effect of door openings could be incorporated in 

the predictor. 
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NOMENCLATURE 

-. the slope in the i-th interval [-] 

∆0. time that is spent in the i-th interval [s] 

),�+ + 1� predicted temperature [°C] 

)FPQ,JNO the maximum temperature of the air inside the refrigerator [°C] 



Journal of Sustainable Development of Energy, Water  

and Environment Systems 

Year 2018 

Volume 6, Issue 3, pp 547-558 
 

557 

)FPQ,IJKLM 
the maximum temperature of the back panel inside  

the refrigerator 
[°C] 

)FGH,JNO the minimal temperature of the air inside the refrigerator [°C] 

)FGH,IJKLM 
the minimal temperature of the back panel inside  

the refrigerator 
[°C] 

Greek letters 

U forgetting factor 

Abbreviations 

DSM Demand Side Management 

MPC Heuristic Model Predictive Control 

MPC-SS Heuristic Model Predictive Control with SS Prediction 

MPC-TDNP Heuristic Model Predictive Control with TDNP Prediction 

SS Hybrid State Space model 

TC Total Cost 

TDNP Time-Domain Non-Parametric model 

REFERENCES 

1. Huisman, R., Huurman, C. and Mahieu, R., Hourly Electricity Prices in Day-ahead 

Markets, Energ. Econ., Vol. 29, No. 2, pp 240-248, 2007, 
https://doi.org/10.1016/j.eneco.2006.08.005 

2. Papagiannis, G., Dagoumas, A., Lettas, N. and Dokopoulos, P., Economic and 

Environmental impacts from the implementation of an Intelligent demand side 

management System at the European Level, Energ. Policy, Vol. 36, No. 1, pp 163-180, 

2008, https://doi.org/10.1016/j.enpol.2007.09.005 

3. Bergaentzlé, C., Clastres, C. and Khalfallah, H., Demand-side management and 

European Environmental and Energy goals: An optimal complementary approach, 

Energ. Policy, Vol. 67, pp 858-869, 2014, https://doi.org/10.1016/j.enpol.2013.12.008 

4. Göransson, L., Goop, J., Unger, T., Odenberger, M. and Johnsson, F., Linkages between 

Demand-side management and congestion in the European Electricity Transmission 

System, Energy, Vol. 69, pp 860-872, 2014, 
https://doi.org/10.1016/j.energy.2014.03.083 

5. Jiang, B., Farid, A. M. and Youcef-Toumi, K., Demand side management in a 

Day-ahead wholesale Market: A comparison of Industrial & Social Welfare approaches, 

Appl. Energ., Vol. 156, pp 642-654, 2015, 
https://doi.org/10.1016/j.apenergy.2015.07.014 

6. Beaudin, M. and Zareipour, H., Home Energy management Systems: A review of 

modelling and complexity, Renew. Sustain. Energ. Rev., Vol. 45, pp 318-335, 2015, 
https://doi.org/10.1016/j.rser.2015.01.046 

7. Mehdi, G. and Roshchin, M., Electricity consumption constraints for Smart-home 

automation: An overview of Models and Applications, Energ. Proc., Vol. 83, pp 60-68, 

2015, https://doi.org/10.1016/j.egypro.2015.12.196 

8. Broberg, T. and Persson, L., Is our everyday comfort for sale? Preferences for demand 

management on the Electricity Market, Energ. Econ., Vol. 54, pp 24-32, 2016, 
https://doi.org/10.1016/j.eneco.2015.11.005 

9. Adika, C. O. and Wang, L., Smart charging and appliance scheduling approaches to 

demand side management, Electr. Power. Energ. Sys., Vol. 57, pp 232-240, 2014, 
https://doi.org/10.1016/j.ijepes.2013.12.004 

10. Setlhaolo, D. and Xia, X., Combined residential demand side management strategies 

with coordination and Economic analysis, Electr. Power. Energ. Sys., Vol. 79,  

pp 150-160, 2016, https://doi.org/10.1016/j.ijepes.2016.01.016 



Journal of Sustainable Development of Energy, Water  

and Environment Systems 

Year 2018 

Volume 6, Issue 3, pp 547-558  
 

558 

11. Wolisz, H., Punkenburg, C., Streblow, R. and Müller, D., Feasibility and potential of 

Thermal demand side management in Residential Buildings considering different 

developments in the German Energy Market, Energ. Convers. Manag., Vol. 107,  

pp 86-95, 2016, https://doi.org/10.1016/j.enconman.2015.06.059 

12. Hovgaard, T. G., Larsen, L. F. S., Edlund, K. and Jørgensen, J. B., Model predictive 

Control Technologies for efficient and flexible Power consumption in refrigeration 

Systems, Energ., Vol. 44, No. 1, pp 105-116, 2012, 
https://doi.org/10.1016/j.energy.2011.12.007 

13. Sossan, F., Lakshmanan, V., Costanzo, G. T., Marinelli, M., Douglass, P. J. and  

Bindner, H., Grey-box modelling of a Household refrigeration unit using Time Series 

Data in application to demand side management, Sustain. Energ. Grid. Netw., Vol. 5,  

pp 1-12, 2016, https://doi.org/10.1016/j.segan.2015.10.003 

14. Laguerre, O., Benamara, S. and Flick, D., Numerical simulation of simultaneous Heat 

and Moisture transfer in a domestic Refrigerator, Int. J. Refrig., Vol. 33, No. 7,  

pp 1425-1433, 2010, https://doi.org/10.1016/j.ijrefrig.2010.04.010 

15. Lin, E., Ding, G., Zhao, D., Liao, Y., Yu, N. and Yamashit, J., Dynamic Model for 

Multi-compartment indirect cooling Household Refrigerator using Z-transfer function 

based Cabinet Model, Int. J. Therm. Sci., Vol. 50, No. 7, pp 1308-1325, 2011, 
https://doi.org/10.1016/j.ijthermalsci.2011.01.024 

16. Nord Pool, 2016, http://www.nordpoolspot.com/Market-data1/Elspot/Area-Prices/ 

ALL1/Hourly/?view=table, [Accessed: 12-February-2018] 

17. Balint, R. and Magyar, A., Refrigerator optimal scheduling to minimize the cost of 

Operation, Hungarian Journal of Industry and Chemistry, Vol. 44, No. 2, pp 99-104, 

2016, https://doi.org/10.1515/hjic-2016-0012 

 

 

 

 
Paper submitted: 30.10.2017 

Paper revised: 12.02.2018 

Paper accepted: 25.02.2018 

 

 


