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ABSTRACT 

Phase change materials are considered a very promising technology to reduce energy 

consumption for space heating and cooling purposes in buildings. In this framework, this 

paper presents a comprehensive energy performance analysis of building envelopes 

integrating phase change materials to provide suitable selection and design criteria of 

such technology. To this aim, an in-house dynamic simulation model implemented in a 

computer code, and validated by means of experimental data, has been used.  

The performance of phase change materials embedded in building enclosures and their 

optimal configuration (i.e., positions with respect to the construction layers) are 

evaluated. The results obtained by applying the code to suitable case studies (several 

climate zones and buildings are investigated) return that the energy saving percentage 

potentials per cubic meter of phase change materials range from 1.9%/m3 to 18.8%/m3. 

Finally, interesting design criteria for their adoption in buildings are provided. 

KEYWORDS 

Phase change materials, Dynamic energy performance analysis, Innovative building 

envelopes, Parametric analysis, Hygrothermal comfort, Heating and cooling energy. 

INTRODUCTION 

The building sector accounts for about 30-40% of the world primary energy 

consumption in Organisation for Economic Cooperation and Development (OECD) 

regions. The majority of energy needs in buildings is due to heating, cooling and 

ventilation needs, necessary to provides indoor thermal comfort to occupants [1]. As the
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world’s primary energy consumption is expected to keep growing due to the increase of 

world population (especially in developing countries), with rising standards of living [1], 

in order to address climate change issues the reduction of the energy consumption in 

buildings have become crucial. To this aim, the efficient design of new buildings and, 

particularly, the efficient renovation of the existing building stock are crucial toward the 

reduction of energy consumptions and greenhouse gas emissions [2]. 

In order to enhance the energy performance of new or retrofitted buildings, numerous 

energy efficiency measures and technologies, to be implemented into the building 

envelope exist, have been developed or set-up. They can be split into energy production 

systems, also based on renewables energies [3], and measures connected to the building 

thermophysical behaviour. Among building measures, those aiming at increasing the 

thermal mass of the building envelope, by decreasing and shifting the peak indoor air 

temperature, are a key factor for the decrease of heating and cooling requirements and 

peak loads and the enhancement of the occupants’ comfort [4]. In order to achieve such 

a goal, different Thermal Energy Storage (TES) solutions based on sensible or latent heat 

storage can be adopted [5]. Nowadays, the main trend is to develop high rise buildings 

which, in turn, requires low weight construction materials. As a consequence, a reduced 

capability to exploit sensible heat storage is detected [6]. In this framework, Phase 

Change Materials (PCM’s) could be a smart way to ensure indoor comfort conditions and 

to reduce building energy consumption by exploiting Latent Heat Thermal Energy 

Storage (LETES), being characterized by a high energy storage density [7, 8]. PCM’s are 

in fact are able to absorb and release a high amount of latent heat during the phase 

transition, occurring in a narrow temperature range. Then, by incorporating a PCM’s into 

building envelopes it is possible to increase its thermal inertia avoiding the use of massive 

construction materials (i.e., the heat capacity of PCM’s is an order of magnitude higher 

than traditional building materials) [4]. Thus, they can function as additional thermal 

mass, improving the adaptability of the building envelope to changing external or internal 

conditions. Therefore, PCM’s have been successfully incorporated into building 

envelopes, as reported in several case studies analyses such as in Lei et al. [9]. The energy 

savings potential of PCM’s integrated into the building envelope ranges from 5-25% of 

the annual cooling and heating requirements as a function of the weather and building  

use [4]. 

The increasing interest in PCM’s adoption for building applications can be also 

proven by the presence of several review papers in literature on this topic. As an example, 

a number of works concerning the use of PCM’s in building focus on the materials [10]:          

• Thermophysical properties;  

• Stability over time;  

• Encapsulation typology;  

• Behaviour in case of fire, etc.  

Researchers underline the necessity of further researches about PCM’s adoption in 

building in order to better understand their behaviour and the related economic 

convenience. In Souayfane et al. [11], the increasing importance of PCM’s in the building 

sector is analysed by focusing on their impact on the achievable energy savings, also 

depending on the performance obtained by diverse melting and solidification curves. 

Another recent review work, presented in Kasaeian et al. [12], discusses the results of a 

comprehensive review, highlighting how the PCM’s adoption in buildings could have 

positive effects on the heating, cooling, air-conditioning, and ventilation energy 

consumption. Results also show that the economic convenience of the system is higher 

for passive applications (PCM’s integration into roofs, walls, glass and floor). Moreover, 

one of the main results of this review pointed out by the authors, is the necessity to 

develop dynamic simulation models in order to predict the PCM’s performance in 

buildings and to assess their energy and economic convenience. One of the main issues 
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with PCM’s is, in fact, the selection of the suitable PCM for a certain application, as also 

underlined by Souayfane et al. [11]. In addition, although the building incorporation of 

PCM’s has been extensively studied in Akeiber et al. [4], very few studies investigate 

their use for different weather zones, building usages and PCM’s properties. As an 

example, in Fabiani and Pisello [13], an innovative PCM-doped concrete has been 

developed and tested. The results show that a more stable temperature is achieved during 

several tests by adding the PCM into the concrete. In another work, the energy 

performance of PCM’s integrated into the building envelope, by means of a numerical 

approach, has been analysed by taking into account the tropical climate for only the 

cooling season [9]. Similarly, the investigation of the PCM performances in buildings, 

for the winter and summer seasons, has been carried out for the subtropical climate [14]. 

The influence of the weather on building integrated PCM performance has been analysed 

in Ascione et al. [15] by taking into account several climate zones, still focusing on just 

the cooling season. Another study underlining the importance of PCM’s in order to reach 

the Net Zero Energy Building (NZEB) goal is reported in Stritih et al. [16]. Here by 

means of TRNSYS software the authors analyse the behaviour of a PCM layer integrated 

into the building wall. Specifically, here the authors underline the strong influence of the 

weather zone on PCM performance due to the fact that the PCM should be totally 

discharged in order to have the best benefits. As an example, low diurnal temperature 

variation implies high possibility of the incomplete melting ‒ freezing cycle of PCM’s 

with negative effects on the heat absorption process during the following cycle. Moreover, 

to ensure effective thermal storage of PCM’s as passive cooling strategy, low night time 

temperatures are desirable, in this case, during the summer season, to enhance the PCM 

discharge (discarding the heat gains from the PCM’s solidification) additional cooling 

and/or ventilation may be necessary. Such challenges are often relative to buildings 

located Mediterranean climate zone, as some of those investigated in this paper, along 

with cold and hot climate zones where PCM’s are effective in a certain season  

only [17]. 

The available literature shows that most of the studies refer to heating or cooling 

dominated weather zones, focusing on seasonal performances, whereas different results 

are expected when building heating and cooling requirements are almost similar.  

This lack of knowledge is also pointed out in Xie et al. [18] where the authors analyse, 

by a numerical point of view, the performance of PCM integrated into the wall of a 

residential building. 

In this framework, with the aim to assess the efficacy of integrating PCM’s in building 

applications in different weather zones and for different building use, in this paper a 

comprehensive dynamic simulation analysis is presented. In particular, with the aim to 

find out suitable criteria to be easily adopted for the selection and the design of PCM’s 

for building applications, the paper presents a numerical analysis, carried out by means 

of dynamic simulations. For this purpose, authors used an in-house developed computer 

code (written in MATlab and called DETECt 2.3) for the calculation of the whole 

building energy, economic and hygrothermal comfort performance. Such a code has 

already been modified to simulate building integrated PCM’s [19, 20]. In this paper, two 

different composite PCM’s, whose load curves are characterized by different peak 

melting and freezing temperatures, are implemented with the aim to evaluate how the 

thermophysical properties of PCM’s modify the building heating and cooling needs.  

The whole building energy performance simulation code allows assessing the 

performance of PCM’s by embedding them in building enclosures (e.g., roofs and walls 

or transparent elements) for any building envelope configuration (e.g., by placing PCM’s 

in different positions with respect to the construction layers). In addition, to evaluate the 

advantages on the indoor comfort due to the use of PCM’s, several comfort indexes  

(e.g. PPD, PMV, etc.) are calculated.  
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Finally, a suitable case study based on a set of buildings of different design and 

operating features located in diverse climate zones is carried out. A comprehensive 

parametric study is performed in order to assess the effects of the above mentioned 

operating and design parameters on the system energy and economic performance and on 

the hygrothermal comfort of occupants. Interesting design criteria for the development 

and adoption of building embedded PCM’s are provided. Moreover, an additional case 

study is carried out by taking into account residential and office buildings, six different 

weather zones and two composite PCM embedded in diverse building envelope 

components. The influence of the phase change temperature, location, and amount of 

PCM’s on building envelope on the heating and cooling requirements is studied and 

discussed. Finally, at the authors’ knowledge this paper contributes to the state-of-the-art 

by investigating the energy performance of building envelopes integrating PCM’s for 

heating and cooling consumption and peak load reduction through numerical simulation.  

SIMULATION MODEL 

With the aim of assessing the energy performance analysis of building embedded 

PCM’s, a purpose-developed simulation model has been conceived and then 

implemented in a previously developed simulation software called DETECt 2.3 [19, 21]. 

This mathematical tool, implemented in MATlab environment, has been validated by 

means of the code to code and experimental procedures as reported in several previous 

works. Specifically, in Buonomano et al. [22], the authors validated the software by 

means of a code to code procedure and by following the BESTTEST procedure [23].  

The potential of the code has been proven by investigating several case studies [24] such 

as NZEB buildings [25]. Lately, the software reliability has been further proven by an 

experimental validation procedure [26]. The software is able to dynamically analyse the 

building energy behaviour. The code was conceived to examine innovative technologies 

to be integrated into the building shield, as well as to find out optimal design and 

operating conditions, to be carried out by means of the embedded parametric analysis 

tool, toward the design of high energy efficient buildings, such as NZEB’s. 

The building model is based on a high order Resistive-Capacitive (RC) thermal 

network [27], by taking into account two main assumptions:  

• The conductive heat transfer is supposed to be one-dimensional (also through the 

PCM layers);  

• All materials are considered as isotropic. 

In DETECt, each thermal zone is divided into M building elements (wall, floor, roof, 

etc.), each of them is split in N thin sub-layer of different thicknesses, returning a very 

high number of nodes simulating the mutual interaction between real building elements 

[27]. Note that such approach is particularly useful for analysing the thermal behaviour 

of PCM’s [27]. An example of an RC thermal network of a generic m-th building element 

split in N + 2 nodes is represented in Figure 1 (inside of building on the right, outside of 

building on the left). Here, several energy interactions can be detected:  

• Transmission through opaque and transparent elements;  

• Solar radiation absorbed by the exterior and the interior surfaces;  

• Solar energy absorbed by and transmitted through fenestration;  

• Internal long-wave radiation exchanges and solar radiation distribution within a 

thermal zone;  

• Infiltration and natural ventilation;  

• Heat gains due to equipment and occupants.  

In order to solve the algebraic and differential equations describing the whole building 

thermal network, an implicit finite difference approach is used and an iterative method 

throughout the whole number of integration sample times is considered. With respect to 
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the PCM modelling approach, a backward scheme is used [28]. In the following, a brief 

description of the building model is reported, whereas further details are reported in 

Buonomano [29]. 
 

 

 

Figure 1. Schematics of the RC thermal network 

 

In each time step and for each capacitive n-th node (1 ≤ n ≤ N) of the m-th building 

element (1 ≤ m ≤ M), the differential equation describing the heat transfer is: 
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where Cm,n and Tm,n are the thermal capacitance and the temperature of the n-th node, 

whereas 
eq

,m jR  is the thermal resistance coupling such node to the neighbor ones. 
eq

,m jR is 

either a convective (external 
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,0mR  or internal 
conv

, +1m NR ) or a conductive ( cond
,m nR ) resistance, 

depending on the side layer of the considered node. For non-capacitive outer (j = 0) and 

inner (j = N + 1) surface nodes (i.e., Cm,n is neglected), 
conv

,0mR and 
conv

, +1m NR connect non-

capacitive nodes to those linked to the outdoor air temperature (Tout) and to the indoor air 

(Tin) one. ,
ɺ

m nQ is a forcing function including the incident solar and the long-wave 

radiation exchange acting on outer and inner surfaces nodes, evaluated as described in 

Judkoff and Neymark [23]. 

The differential equation on the thermal network node of the indoor air, to be solved 

simultaneously with the system of eq. (1), is: 
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where Cin and Tin are the thermal capacitance and temperature of the zone indoor air, Rv 

is a convective thermal resistance related to air ventilation and infiltration, gQɺ is the 

sensible heat gains (due to occupants, lights and equipment), 
s
HCQɺ  is the sensible heat to 

be supplied to (or removed from) the thermal zone by an ideal heating and cooling system, 

aiming at maintaining the indoor air at the desired set point temperature [25]. 

Phase Change Materials modelling 

The main novelty of the proposed simulation model concerns the modelling of the 

thermal behaviour of building integrated PCM, modelled as building envelope layers 

[19]. In DETECt, the effective heat capacity method is considered for modelling the PCM 

thermal behaviour [30]. The choice of such method, among those available in literature, 
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is due to its simplification, being the PCM studied as a single-phase non-linear 

conduction problem (i.e., latent heat is considered as an increased form of sensible heat 

in the transition phase) [31]. Specifically, in order to take into account in eq. (1), the PCM 

phase change a thermal capacitance function of the PCM layer temperature is assumed 

[i.e. Cm,n = Cm,n(Tm,n)]. Note that the PCM specific heat and the thermal conductivity are 

assumed as constant in case of single phase (solid or liquid). Conversely, when PCM is 

undergoing phase change, its specific heat and thermal conductivity vary as a function of 

the temperature of the previous time step. The values of specific heat capacity and 

conductivity for several PCM typologies are available by adopting suitable experimental 

correlations obtained through laboratory tests or provided by manufacturers [32].  

In DETECt, such correlations are exploited with the aim of studying several PCM’s 

encapsulated in matrixes made by traditional building materials (gypsum, concrete, etc.). 

The above mentioned effective PCM heat capacity fits a Gaussian shaped curve [31], 

where the maximum corresponds to the peak melting temperature [18], expressed as: 

 
2

PCM PCM PCM, , ,( )

T b

c
m n m n m nC T M a e

− 
− 
 = ×  

(3)

 

where 
PCM,m nM is the mass of the PCM layer, a is the maximum increment of the PCM 

specific heat due to the latent heat, b is the average temperature of the phase change for 

melting and solidification and c is the range of the phase change. Further details are 

available in Buonomano et al. [19] or Buonomano et al. [21]. 

Finally, it is worth noting that in DETECt both the melting and solidification curve 

are modelled, together with the hysteresis phenomenon, whereas very few mathematical 

models related to the PCM’s take into account both curves. In most of the studies 

available in the literature carried out by means of commercial software or codes the 

hysteresis phenomenon has been neglected (only recently modelled [33]). 

Comfort indexes 

In order to analyse the hygrothermal comfort in each building thermal zone, DETECt 

2.3 allows dynamically calculating the following comfort indexes: 

• Predicted Mean Vote (PMV), representing the comfort perception of a large 

population of people exposed to a certain environment. By establishing a thermal 

stress based on steady-state heat transfer between the body and the environment, 

the thermal strain is ranked with a comfort vote. Further details about PMV are 

reported in [34];  

• Predicted Percentage of Dissatisfied (PPD), representing the predicted percentage 

of dissatisfied people at each PMV. PPD varies as PMV ranges between −3 (very 

cold) to 3 (very hot), zero being the neutral conditions. Additional details about 

PPD are reported in d'Ambrosio Alfano et al. [35]; 

• Mean radiant temperature of the indoor building space (Tr). It is the uniform 

temperature of an ideal space in which the radiant heat transfer between occupants 

and internal surfaces is equal to the radiant heat transfer occurring in a real non-

uniform space. 

CASE STUDY 

In order to show the potential of the simulation model and the effectiveness of PCM’s 

integrated in the building envelope for energy savings and occupants’ comfort, a suitable 

case study is carried out. To this aim, PCM’s are integrated into interior and exterior walls 

of a sample building, alternatively used as commercial building, office and dwelling. The 
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building is located in different weather zones characterized by very cold, cold, warm, hot 

and Mediterranean temperate climates, such as: Naples and Palermo (Italy), Almeria 

(Spain), Athens (Greece), Jerusalem (Israel), Montreal (Canada), and Denver (USA).  

A sample 8.0 × 6.0 m rectangular shaped lightweight building (with East-West 

oriented longitudinal axis), 3.0 m height, is modelled, as shown in Figure 2. The U-values 

of vertical walls, roof and windows are respectively 0.49, 0.30, and 1.70 W/m2K.  

The Solar Heat Gain Coefficient (SHGC) of the window is set to 0.262. 

 

 
 

Figure 2. Sketch of the sample building 

 

Occupancy indexes are 0.03 people/m2 for the dwelling, 0.06 for the office, and 0.12 

for the commercial building. The number of air changes for residential and non-

residential uses are 0.5 and 1.2 Vol/h, respectively. In addition, a night free cooling 

ventilation is taken into account (2.0 Vol/h) for outdoor air temperatures lower than the 

indoor one. Dynamic simulations are performed on the yearly basis by using Meteonorm 

weather data files for the considered weather zones. The Heating, Ventilation and Air 

Conditioning (HVAC) system is modelled by an electric air-to-water chiller/heat pump 

(by taking into account variable performance, nominal heating and cooling COP = 3.0 

and 2.5), necessary to prevent the indoor air temperature exceeding the thermal comfort 

range, between 20 and 26 °C. The overall energy performance analysis is based on the 

system operation scheduled as in Table 1. 
 

Table 1. Climatic zones, climatic indexes and system scheduling 

 

Weather zone 

Heating Degree  

Days (HDD)  

[Kelvin day ] 

Cooling Degree  

Days (CDD) 

 [Kelvin day] 

Incident Solar 

Radiation (ISR) 

[kWh/m2y] 

Use 
Heating months  

[hours] 

Cooling months  

[hours] 

Montreal 4,567 297 1,350 

Dwelling 
15/9-31/3 

(0-24) 

1/6-15/9 

(11-18) 

Office 

Commercial 

(8-24) 

(8-20) 

(8-24) 

(8-20) 

Denver 2,667 77 988 

Dwelling 
15/9-31/3 

(0-24) 

1/6-15/9 

(11-18) 

Office 

Commercial 

(8-24) 

(8-20) 

(8-24) 

(8-20) 

Jerusalem 1,482 771 2,039 

Dwelling 
15/11-31/3 

(7-10, 14-21) 

1/6-30/9 

(11-18) 

Office 

Commercial 

(8-24) 

(8-20) 

(8-24) 

(8-20) 

Naples 1,479 499 1,470 

Dwelling 
15/11-31/3 

(7-10, 14-21) 

1/6-30/9 

(11-18) 

Office 

Commercial 

(8-24) 

(8-20) 

(8-24) 

(8-20) 

Athens 1,060 1,201 1,561 

Dwelling 
15/11-31/3 

(7-10, 14-21) 

1/6-30/9 

(11-18) 

Office 

Commercial 

(8-24) 

(8-20) 

(8-24) 

(8-20) 

Palermo 760 987 1,664 

Dwelling 
1/12-31/3 

(7-10, 14-21) 

1/6-30/9 

(11-18) 

Office 

Commercial 

(8-24) 

(8-20) 

(8-24) 

(8-20) 

8.0 m 

6.0 m 
3.0 m 2.0 m 

0.5 m 

1.0 m 
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Two different PCM’s are analysed, their melting and solidification curves are shown 

in Figure 3. Here, the cp curves of the first modelled PCM’s, namely PCMa, are obtained 

by experimental data provided by Kuznik et al. [36]. The melting and solidification 

curves of the second PCM, namely PCMb, are obtained by shifting the cp of PCMa toward 

higher peak temperatures. The selected peak melting temperatures are 19 and 23 °C for 

PCMa and PCMb, respectively. Simulation data are referred to composite material panels 

obtained by mixing gypsum with PCM paraffin microcapsules. In fact, the PCM’s are a 

mixture of 40% ethylene-based polymer and 60% paraffin wax, with a density of  

900 kg/m3. The panels (5.2 mm thick, 1,000 mm wide and 1,198 mm long) are 

encapsulated within 100 µm aluminium layer on both sides. Note that the same amount 

of stored and released energy are selected and simulated for both the simulated materials, 

PCMa and PCMb. 
 

 
 

Figure 3. Trends of the specific heat of the two investigated composite PCM’s 

RESULT AND DISCUSSION 

The building envelope integration of PCM layers influences both heating and cooling 

demands due to the charging and discharging cycle. Such phenomenon is mainly 

governed by the PCM melting temperature range and peak.  

In order to show this thermal behaviour, a first discussion concerning the commercial 

building use, with HVAC running hours range from 08:00 to 20:00, is presented.  

Figure 4 shows the indoor air temperatures and sensible heating loads calculated for the 

weather zone of Denver in five sample winter days (March 11th-16th), for the building 

envelope integrating PCMa in East, West walls and roof (internal position) and for the 

reference one (without PCM). The indoor air temperature for the reference case (Tin,ref, 

blue line) is compared to the case with PCMa (Tin,PCM, orange line), by taking into account 

a daily heating schedule (09:00-17:00). Tin,PCM is higher than Tin,ref when the HVAC 

system is turned off, therefore, when the HVAC system is activated, the corresponding 

maximum sensible load (Qheat,PCM, orange line) is lower than that one of the reference 

case (Qheat,ref, blue line). 

The integration of PCM (i.e., PCMa at the internal position), due to the consequent 

peak load reduction, implies the need of lower sized HVAC systems with respect to the 

reference case (no PCM). Nevertheless, during daily hours when the HVAC system is 

switched on (i.e., Tin,PCM and Tin,ref maintained at the winter set point indoor air 

temperature of 20 °C), the required sensible load, Qheat,PCM, is higher than Qheat,ref, due to 

the higher thermal capacitance of the building envelope. In fact, during the whole winter 

season, an increase of the heating energy requirements (about +18%) is obtained by using 

PCM. Obviously, such heat, stored within the layers of PCM, is transferred to the indoor 

thermal zone in the late evening/night hours, when the HVAC system is switched off (i.e., 

commercial use of the building) and the building is not occupied, not exploiting most of 
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the energy and comfort advantages of PCM’s. This can be observed by analysing the 

comfort indexes profiles, Tr, PMV and PPD, shown in Figure 5 and calculated for the 

same building envelopes and sample days of Figure 4. Here, it is possible to note that all 

such indexes improve when PCM’s are used, but such improvement occurs during not 

occupied hours (grey areas), higher Tr and PMV (i.e. closer to 0), lower PPD. 
 

 
 

Figure 4. Indoor air temperature and sensible heating load – March 11th-16th Denver 

 

 
 

Figure 5. Tr, PMV and PPD – March 11th-16th Denver 

 

In case of a building with and without PCM’s, the indoor air temperatures are shown 

and compared in Figure 6 for the same conditions and weather zone of Figure 4, by taking 

into account five summer sample days instead of winter days. This figure shows that 

during summer, the advantages due to the use of PCM’s (e.g., reduced fluctuation of the 

indoor air temperature) occur during occupied daily hours, with a consequent reduction 

of cooling requirements and an increase of occupants’ comfort. In fact, the increase of 

the thermal inertia, achieved by means of the PCM layers integrated into the building 

envelope, causes an attenuation of the indoor air temperature, resulting in reduced cooling 
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loads. On a yearly basis, the cooling requirement decreases of about 40% with respect to 

the reference case. 

 

   

 

Figure 6. Indoor air temperature and sensible heating load – July 20th-25th Denver 

 

Similarly, the profile of the comfort indexes calculated for the summer sample days, 

Tr, PMV and PPD, reported in Figure 7, shows that the integration of PCM causes a higher 

Tr,PCM with respect to Tr,ref also during daily hours when the HVAC system is turned on 

and the building is occupied. The same considerations can be applied to the PMV which 

in case of PCM is closer to the neutral point, with a consequent increase of the PPD. 
 

 
 

Figure 7. Tr, PMV and PPD – July 20th-25th Denver 

 

The effectiveness of the PCMa and PCMb, which may be considered alternatively 

suitable for heating and cooling dominated zones, is also analysed. Note that the two 

PCM’s, i.e., PCMa (considered as suitable for heating-dominated zones) and PCMb 

(considered as suitable for cooling-dominated zones), store and release the same amount 

of energy. 
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In the following, the overall energy simulation results, obtained for two building use, 

dwelling and office, are discussed. Note that the considered heating and cooling 

schedules are those reported in Table 1. For the weather zone of Denver and the office 

building, the obtained monthly results are reported in Figure 8, where, the PCM is 

integrated into East and West walls, as well as in the roof. In such figure, the electricity 

demand of the chiller/heat pump is reported as a function of the different investigated 

system layouts. For the office building use, the best configuration is obtained by 

integrating the PCM externally to the building envelope. The overall summer cooling 

energy savings are maximized by boosting the PCM charge/discharge effect through a 

night free cooling ventilation. In addition, during night hours the absence of internal heat 

gains allows the PCM to complete a charge/discharge cycle. It is also worth noting that 

the PCM also causes a lower heating demand during the colder winter months. In fact, 

the heat stored within the PCM layers (i.e. charging mode), when integrated into internal 

positions, is provided by HVAC system, thus an increase of the heating demand vs. the 

reference case (no PCM) is observed. Contrarily, when the PCM’s is located externally 

to the building envelope, a heating saving, also in colder months, is observed. In this case, 

the heat stored within the PCM’s is provided by solar radiation (as a function of the solar 

altitude and angle), and it is transmitted toward the outdoor and indoor environment, 

shifted in time. Thus, heating energy saving is achieved by exploiting the free solar heat 

stored by the PCM during winter sunny days. 

 

 

 

Figure 8. Office building in Denver: monthly results 

 

It is worth noting that for the office use, a continuous HVAC system running from 

08:00 to 24:00 is taken into account (differently from the commercial building use, 

discussed before, where running hours range from 08:00 to 20:00). The energy 

behaviours analysed by means of the monthly results reported in Figure 8, can be further 

discussed through Figure 9 and Figure 10. Here, the time histories of the office indoor air 

temperature (Tin), relative to the reference configuration (no PCM), and the two 

investigated PCM’s (i.e. PCMa and PCMb) for both the PCM layouts (i.e. considered in 

external and internal envelope positions), are shown for two winter (January 11th and 12th 

– Figure 9) and summer (July 6th and 7th – Figure 10) sample days. During the day-time, 

when the HVAC system is switched on, the required indoor air temperature set points  

(20 °C and 26 °C) are always reached, whereas in night-time the indoor air temperature 

is free to float. In winter, the minimum indoor air temperature decrease, obtained during 

the night time, occurs in case of the internal PCM positions (as expected due to the stored 

heat delivered toward the indoor zone during night-time). Nevertheless, such 
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configurations require much more energy during the HVAC running time, as  

discussed before. 
 

 

 

Figure 9. Indoor air temperatures for different building envelope configurations  

(office building in Denver, January 11th and 12th) 

 

 

 

Figure 10. Indoor air temperatures for different building envelope configurations  

(office building in Denver, July 6th and 7h) 

 

During summer, because of the indoor air temperatures attenuation and delay  

(vs. those related to the reference case without PCM), the external PCM configuration 

allows Tin to increase slowly with respect to other PCM cases. This is due to the capability 

to of the external PCM’s to absorb and release solar radiation to the outdoor environment. 

As a result, in case of external PCM’s, the morning activation of the HVAC system occurs 

later with respect to other cases (i.e. internal and reference). By comparing the thermal 

behaviour obtained by using PCMa and PCMb types, taking into account Figures 8-10, it 

is possible to observe that during winter the best PCM type from the energy point of view 

is the one with lowest melting/solidification peak temperatures, PCMa. Contrarily, during 

summer, highest energy savings are obtained with the PCMb type, as expected. It is worth 

noting that the overall energy performance depends on the weight of the heating and 

cooling energy requirements on the total (heating + cooling) ones. 

The obtained overall yearly results are reported in Table 2 (office use) and in Table 3 

(residential use). Here, the electricity demand of the chiller/heat pump of the traditional 

building (no PCM) and the achieved energy savings obtained by integrating PCM into 

the building envelope are reported for all the investigated weather zones and system 

layouts. For both the heating and cooling requirements, interesting electricity savings  

are obtained.  

By analysing the overall energy results, reported in terms of electrical needs, it is 

possible to observe that the lowest energy needs are achieved by integrating PCM in the 

East and West walls and in the roof. Higher energy needs, still lower than those of the 

reference case, are calculated by considering PCM in the South and North walls.  
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Nevertheless, it must be taken into account that for the first layout (i.e. East and West 

walls + roof) a higher amount of PCM is integrated into the building envelope with 

respect to the second layout (i.e. South and North walls). In particular, 2.1 m3 (first layout) 

and 1.2 m3 (second layout) of PCM are integrated into the building envelope. Therefore, 

although the calculated absolute energy savings are advantageous for the first layout, 

much higher energy savings potentials are obtained by taking into account the second 

one, as shown in Table 4. In this table, the percentage difference of total energy needs 

per cubic meters of PCM is reported for each investigated case. In Table 2 and Table 3, 

the lowest energy needs, heating, cooling, and total, are underlined.  
 

Table 2. Yearly heating, cooling and, total electrical energy results ‒ office use. 

 

Weather zones Layout 

No PCM (reference) 

PCMa PCMb 

East and West walls + 

roof 
South and North walls 

East and West walls + 

roof 
South and North walls 

Heat. Cool. Tot. Heat. Cool. Tot. Heat. Cool. Tot. Heat. Cool. Tot. Heat. Cool. Tot. 

[kWh/m2y] 

Denver 
Internal 

56.7 12.6 23.9 
53.4 6.6 20.4 48.8 8.5 19.7 51.4 8.1 20.4 48.1 10.0 20.0 

External 44.0 9.4 18.4 44.8 11.4 19.5 44.6 9.4 18.6 45.2 11.5 19.7 

Naples 
Internal 

18.3 20.5 14.3 
14.2 16.6 11.4 13.6 17.9 11.7 14.1 19.2 12.4 13.5 19.8 12.4 

External 12.7 17.8 11.4 13.2 19.1 12.0 13.0 17.6 11.4 13.4 19.2 12.1 

Jerusalem 
Internal 

16.0 21.5 13.9 
10.9 16.5 10.3 10.5 18.2 10.8 10.8 19.3 11.3 10.4 20.5 11.7 

External 10.2 18.2 10.7 10.7 20.0 11.5 10.4 17.9 10.6 10.8 20.1 11.7 

Athens 
Internal 

13.5 26.9 15.3 
8.5 26.5 13.5 8.6 26.5 13.4 8.7 29.0 14.5 8.7 28.1 14.1 

External 8.6 24.8 12.8 9.0 25.8 13.3 8.8 24.6 12.8 9.1 25.8 13.4 

Montreal 
Internal 

88.7 10.4 33.7 
99.5 5.4 35.3 89.6 7.0 32.7 96.4 6.9 34.9 88.3 8.3 32.7 

External 77.9 8.2 29.2 78.2 9.2 29.8 78.2 8.2 29.4 78.5 9.3 29.9 

Palermo 
Internal 

8.3 23.3 12.1 
2.0 21.8 9.4 2.8 22.3 9.8 2.1 24.2 10.4 2.7 24.0 10.5 

External 3.7 21.4 9.8 4.1 22.5 10.4 3.7 21.1 9.7 4.1 22.5 10.4 

Almeria 
Internal 

10.0 18.5 10.7 
2.9 16.2 7.4 3.9 17.1 8.1 3.0 18.4 8.4 3.8 18.8 8.8 

External 4.7 16.2 8.1 5.3 17.6 8.8 4.8 16.1 8.0 5.3 17.8 8.9 

 

Table 3. Yearly heating, cooling and, total electrical energy results ‒ residential use 

 

Weather zones Layout 

No PCM 

(reference) 

PCMa PCMb 

East and West walls + 

roof 
South and North walls 

East and West walls + 

roof 
South and North walls 

Heat. Cool. Tot. Heat. Cool. Tot. Heat. Cool. Tot. Heat. Cool. Tot. Heat. Cool. Tot. 

[kWh/m2y] 

Denver 
Internal 

56.3 15.8 25.1 
56.8 9.7 22.8 56.7 11.5 23.5 56.4 11.0 23.2 56.4 13.1 24.0 

External 55.7 10.6 22.8 56.7 13.9 24.5 56.3 10.8 23.1 57.2 14.2 24.7 

Naples 
Internal 

18.7 27.8 17.4 
17.8 25.2 16.0 17.8 26.2 16.4 17.8 26.8 16.7 18.0 27.7 17.1 

External 18.0 23.7 15.5 18.5 25.9 16.5 18.3 23.7 15.6 18.6 26.1 16.7 

Jerusalem 
Internal 

15.4 29.9 17.1 
13.2 26.0 14.8 13.7 27.5 15.6 13.2 27.6 15.4 13.7 29.4 16.3 

External 14.1 24.5 14.5 14.7 27.9 16.1 14.3 24.3 14.5 14.9 28.2 16.2 

Athens 
Internal 

12.7 36.5 18.8 
10.8 37.1 18.4 11.2 37.4 18.7 10.9 38.1 18.9 11.3 38.1 19.0 

External 11.6 33.2 17.1 12.1 35.2 18.1 11.8 32.8 17.1 12.2 35.1 18.1 

Montreal 
Internal 

113.6 13.6 43.3 
115.1 8.1 41.6 117.5 9.7 43.1 115.0 9.8 42.2 117.2 11.3 43.6 

External 117.5 9.7 43.1 118.9 11.6 44.3 117.8 10.1 43.3 119.1 11.8 44.4 

Palermo 
Internal 

6.7 32.5 15.2 
3.5 31.9 13.9 4.5 32.6 14.5 3.6 32.9 14.3 4.4 33.3 14.8 

External 5.3 29.2 13.5 5.9 31.4 14.5 5.4 28.9 13.4 5.9 31.4 14.5 

Almeria 
Internal 

7.8 22.6 11.6 
4.4 22.0 10.2 5.5 22.6 10.9 4.3 23.6 10.9 5.3 24.0 11.4 

External 6.4 19.5 10.0 7.0 21.6 11.0 6.5 19.5 9.9 7.0 21.8 11.1 

 

In Table 4, the highest energy percentage difference (positive values mean energy 

savings) of the office building is underlined, whereas the italic style is used for the highest 

energy saving achieved by residential buildings. Some general considerations are 

summarized in the following. With the exception of Montreal (residential building use), 

where a continuous HVAC operation (24 h) due to the very cold winter weather is 

assumed, for all the investigated weather zones and building use, the use of PCM 

produces heating energy savings. In winter, the PCMa type shows the best energy 

performance if located in the external position, especially for the colder weather zones, 

whereas better performance is achieved by the PCMa located internally for warmer 

weather zones. In case of residential use, the internal position is preferable (stored heat is 

released inside the thermal zone in late evening or early night hours with the HVAC still 

running, improving energy savings and comfort). During summer, in case of temperate 
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or Mediterranean weather zones, the best energy performance is obtained by the PCMb 

type, located in external position. Concerning the total energy needs, the energy saving 

percentage potentials per cubic meter of PCM range from 1.9%/m3 in Montreal to 

7.4%/m3 in Jerusalem. For the office building use, the minimum energy saving potentials 

is achieved in Montreal, 9.8%/m3, whereas the maximum is obtained in Jerusalem, 

18.8%/m3 (Table 4). Here, the highest energy potentials are observed by integrating PCM 

within the South and North walls. This layout is also the less expensive, due to the lower 

amount of PCM integrated within the building envelope. 

Finally, it is worth noting that for all the investigated system configurations, although 

there are interesting energy savings, the operating economic savings are still too low to 

balance the current initial PCM cost to obtain acceptable paybacks. 

 
Table 4. Percentage difference of total electrical energy per cubic meter of PCM 

 

 
ΔEel [%/m3] 

 
ΔEel [%/m3] 

East and West walls + 

roof 

South and  

North walls 

East and West walls + 

roof 

South and  

North walls 

PCMa 

Office 
Internal 

D
en

v
er

 

6.9 14.7 

N
ap

le
s 

9.7 15.3 

External 11.0 15.5 9.8 13.2 

Residential 
Internal 4.3 5.4 3.7 5.4 

External 4.4 2.1 5.1 4.0 

PCMb 

Office 
Internal 7.1 13.5 6.5 11.0 

External 10.6 14.8 9.8 12.7 

Residential 
Internal 3.6 3.5 1.9 1.4 

External 3.8 1.2 4.9 3.4 

PCMa 

Office 
Internal 

Je
ru

sa
le

m
 

12.5 18.8 

A
th

en
s 

5.7 10.0 

External 11.1 14.2 7.8 10.6 

Residential 
Internal 6.4 7.4 1.0 0.6 

External 7.2 5.1 4.3 3.3 

PCMb 

Office 
Internal 8.8 13.4 2.4 6.1 

External 11.3 13.5 7.8 10.4 

Residential 
Internal 4.6 3.7 −0.2 −0.8 

External 7.2 4.2 4.4 3.1 

PCMa 

Office 
Internal 

M
o

n
tr

ea
l 

−2.3 2.6 

P
al

er
m

o
 

10.6 15.7 

External 6.3 9.8 9.2 11.9 

Residential 
Internal 1.9 0.5 4.0 3.8 

External 0.3 −1.8 5.5 3.8 

PCMb 

Office 
Internal −1.7 2.5 6.7 11.0 

External 6.2 9.5 9.5 11.9 

Residential 
Internal 1.2 −0.5 2.7 2.3 

External 0.0 −2.2 5.8 3.9        
  

PCMa 

Office 
Internal 

A
lm

er
ia

 

14.6 20.2    

External 11.8 14.8    

Residential 
Internal 5.7 5.5    

External 6.9 4.7    

PCMb 

Office 
Internal 10.5 15.1    

External 11.9 14.3    

Residential 
Internal 3.2 2.0    

External 6.7 4.0    

CONCLUSIONS 

This paper focuses on a comprehensive analysis of the effectiveness of the integration 

of PCM’s in the building envelope. To this aim, a mathematical model for the energy 

performance of buildings (DETECt 2.3) has been suitably modified in order to model and 

simulate PCM wallboards. For analysing different PCM’s, data obtained by a previously 

carried out experimental characterization are taken into account.  

A case studies analysis is carried out by simulating residential and non-residential 

uses concerning a building located in seven weather zones. Different scenarios (e.g. 

different PCM configurations and types, variable weather conditions, etc.) are analysed 

in order to show and discuss some crucial effects due to the use of PCM’s in the building 

envelope on its energy requirements and comfort level of occupants.  

The main finding regards the position of the PCM within the building envelope (e.g. 

integrated interior or exterior envelope layers of perimeter walls and roof) aiming at 

effectively reducing the building energy demand. In particular, the optimal position of 
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PCM panels highly depends on the building use (i.e. internal gains) and weather 

conditions (i.e. external solicitation). Therefore, to obtain representative results, its use 

should be studied with care on a yearly basis, since a well behaving material during 

summer could be a poor choice in winter. To this aim, the use of dynamic simulations 

carried out on the yearly, is crucial.  

Finally, the developed tool provides interesting design criteria for the development 

and adoption of building integrated PCM’s. Further analyses will be performed (also 

focusing on the system optimization by taking into account several objective functions) 

with the aim to comprehensively investigate the relationships among PCM properties 

(e.g. peak melting temperature, melting range, etc.) and overall building energy 

consumptions. 

NOMENCLATURE 

c specific heat [J/KgK]/range of phase change 

C thermal capacitance [J/K] 

ɺQ  thermal load [W] 

M mass [kg] 

N building component thermal node [-] 

R thermal resistance [K/W] 

T temperature [K] 

t time [h] 

Subscripts/Superscripts 

a maximum increment of phase change 

material specific heat due to latent heat 

 

 

ac heating, ventilation and air  

conditioning system 

 

 

b average phase change temperature for 

melting and solidification 

 

 

conv convective  

eq equivalent  

g gain  

HC heating/cooling  

in indoor air  

m generic m-th building element  

n generic building element thermal node  

out outdoor air  

r radiant  

ref reference  

v ventilation  

Abbreviations 

CDD Cooling Degree Days  

COP Coefficient of Performance  

HDD Heating Degree Days  

HVAC Heating, Ventilation and  

Air Conditioning 

 

 

PCM Phase Change Material  

PPD Percentage of Person Dissatisfied  

RC Resistive/Capacitive  

SHGC Solar Heat Gain Coefficient 
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