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ABSTRACT 
Plastic pollution in the ocean is a widespread issue in the marine biosphere that requires large-
scale monitoring systems. However, extending the use of deep-learning-based detection 
methodologies to real-world marine settings is difficult. Reflections from surfaces, small target 
objects, and partially blocked debris often hinder the effective functioning of such systems. To 
mitigate these challenges, this paper presents a detection system built on the You Only Look 
Once architecture that explicitly considers the aforementioned constraints. The architecture 
combines two mutually supportive modules: a directional coordinate attention module, which 
decodes spatial dependencies along horizontal and vertical axes, and a Sinkhorn distance-based 
regularization term, which stabilizes feature focus across spatial dimensions. Experimental 
testing of image collections by aerial and underwater cameras shows significant performance 
improvements compared to the latest state-of-the-art assessments. The proposed system 
achieves a precision of 92% and a recall of 94% in aerial scenes and a precision of 90% and a 
recall of 92% in sub-aqueous scenes. An ablation study validates the hypothesis that the two 
modules work together to improve performance. Furthermore, visual inspection yields more 
reliable results for detecting typical marine debris, including reflective artifacts, small objects, 
and visually contaminated scenes. 

KEYWORDS 
Wastewater, Marine debris, Plastics detection, Environmental monitoring, Deep learning, Optimal 
transport. 

INTRODUCTION 
Plastic pollution has become a pressing issue of the current era, with significant 

implications for marine ecosystems. It is estimated that the amount of plastic in the world's 
oceans ranges between 100 and 150 million tons, with approximately 6.4 million tons of plastic 
deposited in the waters every year [1]. Plastics are difficult to decompose naturally and may 
take centuries to break down in the ocean. Over time, these polymers break down into 
microplastics and nanoplastics, which are difficult to see with the naked eye but deadly to 
marine life, the stability of the marine environment, and human health [2]. 
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The growing crisis of the plastic pollution is aggravated by the further increasing world 
production of plastics and the lack of the recycling facilities. The extensive presence of plastic 
debris in the oceans and their deep layers prevents systematic surveillance and reduction 
efforts. The complexity of underwater ecology, including low visibility, unstable photic 
regimes, and refraction distortions, makes it difficult to successfully identify and taxonomically 
assign sunken plastic debris. 

To overcome the above issues, more research has been conducted on the use of automated 
methods for detecting marine litter. Although manual shoreline monitoring and survey aerial 
technology have good datasets, they are labour-consuming, expensive and restricted in space 
and time [3]. In its turn, the recent advancements in robotics and sensor technologies namely, 
remotely operated vehicle (ROV) and unmanned aerial vehicle (UAV).have made marine 
debris detection more effective and feasible. These systems provide safer, more economical, 
and scalable mechanisms for monitoring surface and underground conditions. 

The fundamental component of such systems is computer vision algorithms. Convolutional 
neural networks (CNNs) are one such algorithm and have significantly advanced object 
detection capabilities by processing visual data efficiently and effectively [4]. Specifically, the 
You Only Look Once (YOLO) family of models has been widely adopted due to its excellent 
balance between inference speed and detection accuracy [5]. However, high visual similarity 
among unequal objects and high intra-class variability still limit detection in submerged data 
[6]. 

The current studies are still centered on the means of reinforcing machine learning-based 
models to improve adaptability to the marine environment. Wang et al. proposed new network 
designs, such as Extended Efficient Layer Aggregation Networks, cascaded scaling planning, 
and specialized module layouts, to improve the efficiency of general detection [7]. Due to its 
small size and simple deployment, the YOLOv7-Tiny model has been highly successful in 
locating submerged marine debris. This model comes with adaptive anchor-box computation 
and massive data augmentation policies. Its feature extractors incorporate strong MaxPool 
blocks [8], thus enhancing detection performance [9]. However, the YOLOv7-tiny model 
performs poorly in identifying small or masked objects in low-contrast underwater data, 
primarily due to its limited attention ability. 

To address these shortcomings, research studies have aimed to improve detection models 
by using lightweight neural network models and special attention mechanisms. For example, 
Chen et al. used the GhostNetv2 framework in WorldOv5s and obtained a significant decrease 
in computational cost at the expense of improving the efficiency with which items are 
recognized in underwater conditions [10]. Qiang et al. improved the Single Shot MultiBox 
Detector (SSD) model by replacing the Visual Geometry Group (VGG) backbone with 
Residual Network (ResNet), achieving higher detection and processing speeds that can be used 
in oceanic surveys [11]. Huang et al. incorporated Mobile Network (MobileNetv2) into the 
YOLOv3 framework, achieving a good balance of speed, feature extraction speed, and 
detection accuracy [12]. Furthermore, Wang et al. developed a lightweight, ocean exploration-
specific attention mechanism that enhances environmental perception ability [13]. 

Attention mechanisms are now particularly relevant. Ge et al. simultaneously added a 
combination of Coordinates Attention (CA) and Squeeze-and-Excitation (SE) module pairs in 
YOLOv5s, effectively improving feature extraction for blurry ocean imagery [14]. Shen et al. 
added CA module units in YOLOv5 in a suitable position for advanced refined identification 
capability while inhibiting unnecessary data [15]. Chen et al. added the Convolutional Block 
Attention Module (CBAM) attention module in YOLOv7, considerably improved detection 
performance for smaller ocean debris fragments [16]. Liu et al. drove the expansion of attention 
strategies in YOLOv8n with Simple Attention Module, improving efficient global feature 
understanding without a greater computational load [17]. As much as these innovations 
individually exhibited a form of performance, many are locally functional within networks, 
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currently with a deficiency in global attention strategies for ensuring enduring sustained 
comprehension within oceanic scenes. 

Parallel developments in surface litter detection have also contributed valuable insights. 
Wang et al. proposed UAV-YOLOv8, integrating Wise- Intersection over Union v3 for 
improved localization, BiFormer attention to enhance critical feature retention, and Focal 
FasterNet blocks for reducing small target miss rates in aerial imagery [18]. Qiao et al. 
introduced Coordinate Attention (CA) into a YOLO-based framework and replaced the 
traditional Feature Pyramid Network (FPN) with a Bidirectional FPN module, achieving 
improved detection precision for very small floating debris [19]. Lin et al. enhanced the feature 
extraction capacity of lightweight detectors by introducing a Feature Mapping Attention layer, 
supported by extensive data augmentation [20]. Hou et al. incorporated the HorBlock module 
and applied a genetic algorithm to optimize model generalization in complex aquatic conditions 
[21]. 

There are also a number of pre-processing techniques, which have brought about significant 
improvements. Li et al. came up with the Retinex-based Global Histogram Stretching algorithm, 
an adaptive histogram -stretching manoeuvre to enhance the contrast of underwater images and 
followed up with a convolutional triple-attention module in the YOLOv5s framework [22]. 
Yue et al. used the CBAM mechanism with a variant of YOLOv5s that used a Non-Weighted 
Distance Intersection-over-Union loss to enhance the accuracy of small floating objects 
detection [23]. Chen et al. introduced unimpeded domain-adaptation framework which can 
further develop feature-extraction of small floating items by focusing on high-resolution 
feature maps [24]. 

Although the design of attention mechanisms, including CA, SE and CBAM, has shown 
clear improvements, existing methodologies continue to be inherently limited in terms of their 
ability to simulate global spatial structure [25]. These schemes mainly enhance the saliency of 
local features but often lead to the effect of the fragmentation or discontinuous distribution of 
attention throughout feature maps. These shortcomings are especially detrimental where data 
are collected in the ocean, where glare, low-contrast, and complicated light scattering hinder 
the precise identification of little, concealed, or morphologically deformed plastic debris. 

To address the limitations of current disjointed attention and the lack of spatial regularity 
in existing detection models, this paper propose a YOLOv7-based model that incorporates CA 
and Sinkhorn distance regularization. The model's key innovation is its treatment of attention 
alignment as an optimal transport problem. In this context, directional distributions of attention 
are formulated as probability measures, which have to be compatible in spatial dimensions. CA 
combines contextual information in horizontal and vertical orientations through direction-
conscious positional encoding. The design enables the network to obtain long-range 
dependencies without compromising on spatial resolution- which is a requirement in the 
process of recognition of irregular, partially obscured, or ambiguous marine waste [26]. 
However, local attention does not guarantee coherent attention across the entire feature map.  

In order to obtain global structural alignment, the metric applied as a transport measure is 
a Sinkhorn distance, which is a measure that is regularized with entropy. It is a matching 
problem on distributions where attention has consistency minimized by redistributing attention 
in an entropic manner. The theory of this formalism offers a basis toward the attainment of 
globally consistent and semantically compatible distributions of attention that outperform more 
general heuristic integration strategies, which dominate more modern models. The coherent 
components combine to form the unified attention system which works on the optimal transport 
theory and balances sensitivity of features and overall coherence of space. In this way, the 
accuracy and precision of detection under such tough visual conditions, as in ones observed in 
the air and subsurface environment conditions in the sea, is improved tremendously.  

The remaining of the paper will be structured as follows: Section 2 will describe the 
proposed methodology. Section 3 covers such empirical findings points as performance 
standards, ablation experiments, and visual detection examples. Section 4 addresses these 
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findings alongside the rest of the problems of marine data localization. Finally, Section 5 will 
provide the future research directions and implications. 
PROPOSED METHOD 

This section presents the approach to the process of refining the object-detection system to 
recognize marine plastic waste using deep learning and feature-based refinement. First, 
unmanned aerial vehicles equipped with specialized imaging sensors collect data, providing 
high-resolution images of plastic waste on beaches and underwater. After acquiring the image, 
the pre-processing protocol involves enlarging the image through rescaling and augmentation 
to meet the input format requirements of the detection model. The given pipeline is then 
detected using a YOLOv7-based backbone, which is lightweight and optimized for real-time 
use. To improve detection accuracy, CA mechanisms focus on crucial spatial features. 
Sinkhorn-based regularization methods are used to ensure consistent, optimized detection 
results. Figure 1 illustrates the overall methodology, which involves acquiring images with 
UAVs and ROVs, identifying objects, accurately classifying them, and analysing overall 
performance. 

 
 

 
Figure 1: Overview of the proposed detection pipeline for marine plastic litter using UAV and 

ROV imagery. 

In a way to improve the limitations of attention modules using conventional scheme, 
direction-aware CA scheme is used. The scheme records long-range interactions by combining 
the spatial context in the horizontal and in the vertical dimensions separately. Directional 
encodings are then regularised by using Sinkhorn Distance, which is used to enforce global 
consistency amongst the weights of spatial attention. Specifically, the attention maps are 
handled as normalised probability distributions and are trained through the entropy-regularised 
optimal transport and thus consistent and focused attention across feature maps [27]. The 
modulated features are then used by the classification and localization operations of the 
YOLOv7 detection head. Figure 2 illustrates the mechanisms of this attention module, 
emphasizing the extraction of spatial descriptors, the creation of attention masks, and 
regularization via Sinkhorn distance. 
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Figure 2: Directional Coordinate Attention with Sinkhorn regularization. Horizontal and vertical 

descriptors are extracted via GAP, refined by 1×1 convolutions, and aligned using Sinkhorn Distance 
for coherent spatial attention. 

Coordinate attention with directional context encoding 
Given an input feature map 𝑋𝑋 ∈ ℝ𝐶𝐶×𝐻𝐻×𝑊𝑊, where C, H, and W represent the number of 

channels, height, and width respectively, Global Average Pooling (GAP) is applied separately 
along the horizontal and vertical axes. This yields two aggregated feature descriptors that 
preserve spatial context in their respective directions: 

 

𝑠𝑠ℎ(𝑐𝑐, 𝑗𝑗) =
1
𝑊𝑊
�𝑋𝑋(𝑐𝑐, 𝑗𝑗, 𝑖𝑖),    
𝑊𝑊

𝑖𝑖=1

𝑠𝑠𝑤𝑤(𝑐𝑐, 𝑖𝑖) =
1
𝐻𝐻
�𝑋𝑋(𝑐𝑐, 𝑗𝑗, 𝑖𝑖)
𝐻𝐻

𝑗𝑗=1

 (1) 

 
Where 𝑋𝑋(𝑐𝑐, 𝑗𝑗, 𝑖𝑖) represents the activation value at channel 𝑐𝑐, row 𝑗𝑗, and column 𝑖𝑖 of the 

feature map, where 𝐶𝐶,𝐻𝐻 and 𝑊𝑊 denote the number of channels, height, and width, respectively. 
The terms 𝑠𝑠ℎ ∈ ℝ𝐶𝐶×𝐻𝐻  and 𝑠𝑠𝑤𝑤 ∈ ℝ𝐶𝐶×𝑊𝑊 correspond to the vertically and horizontally 
aggregated descriptors for channel 𝑐𝑐 at position 𝑗𝑗, and 𝑖𝑖, respectively. These descriptors capture 
directional spatial context through global average pooling along the horizontal and vertical 
axes. 

To generate attention maps from these descriptors, independent 1 × 1 convolutional layers 
followed by sigmoid activation are applied: 

 
𝑀𝑀ℎ =  𝜎𝜎 �𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶1×1�𝑠𝑠ℎ�� ,     𝑀𝑀𝑤𝑤 =  𝜎𝜎�𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶1×1(𝑠𝑠𝑤𝑤)� (2) 

 
Here, 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶1×1(∙) denotes a 1 × 1 convolutional operation that refines the direction-aware 

descriptors, and 𝜎𝜎(∙) is the sigmoid activation function that normalizes the output values to the 
range [0,1]. The resulting maps, 𝑀𝑀ℎ and 𝑀𝑀𝑤𝑤 are the vertical and horizontal attention masks, 
respectively, which emphasize the most informative spatial features in each direction. 

Sinkhorn regularization for global attention consistency 
To ensure coherent and balanced attention distributions across spatial dimensions, Sinkhorn 

Distance is introduced as a regularization mechanism. Given the unnormalized attention maps 
𝑀𝑀ℎ ∈ ℝ𝐶𝐶×𝐻𝐻 and 𝑀𝑀𝑤𝑤 ∈ ℝ𝐶𝐶×𝑤𝑤, they are flattened into probability vectors 𝑝𝑝 ∈ ℝ𝑛𝑛 and 𝑞𝑞 ∈ ℝ𝑚𝑚, 
normalized so that ∑𝑝𝑝 = ∑𝑞𝑞 = 1.  

The Sinkhorn Distance is defined as:  
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𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆ℎ𝑜𝑜𝑜𝑜𝑜𝑜(𝑝𝑝, 𝑞𝑞) =  min
𝑀𝑀∈ℝ𝑛𝑛×𝑚𝑚

〈𝑀𝑀,𝐶𝐶〉 −  𝜖𝜖𝜖𝜖(𝑀𝑀) (3) 

 
Where 𝑝𝑝, 𝑞𝑞 represent the normalized attention distributions derived from the horizontal and 

vertical attention maps. The matrix 𝑀𝑀  denotes the transport plan that aligns the two 
distributions, while 𝐶𝐶 ∈ ℝ𝑛𝑛×𝑚𝑚  is a cost matrix based on pairwise spatial distances, The 
notation 〈𝑀𝑀,𝐶𝐶〉 refers to the Frobenius inner product, computed as the element-wise product 
followed by summation. The coefficient 𝜖𝜖  is a small positive scalar controlling entropy 
regularization, and 𝐻𝐻(𝑀𝑀) = −∑ 𝑀𝑀𝑖𝑖𝑖𝑖 𝑖𝑖,𝑗𝑗 log𝑀𝑀𝑖𝑖𝑖𝑖 is the entropy term that encourages smoother 
transport plans. 

This formulation ensures that the learned attention weights for horizontal and vertical 
dimensions are mutually aligned, reducing redundancy and enforcing spatial structure. During 
training, the Sinkhorn loss is added to the overall objective: 

 
𝐿𝐿𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝐿𝐿𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌 +  𝜆𝜆 ⋅ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆ℎ𝑜𝑜𝑜𝑜𝑜𝑜(𝑝𝑝, 𝑞𝑞) (4) 

 
Where 𝐿𝐿𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌  represents the standard YOLOv7 detection loss, which combines 

classification, localization, and confidence terms. The parameter 𝜆𝜆 is a balancing coefficient 
that adjusts the contribution of the Sinkhorn regularization term, ensuring that attention 
alignment complements but does not dominate the overall learning objective. 

Feature modulation and integration into You Only Look Once 
After Sinkhorn-based regularization, the attention weights are reshaped and broadcast 

across spatial dimensions to re-weight the original feature. This is achieved through element-
wise multiplication: 

 
𝑌𝑌 = 𝑋𝑋 ⋅ 𝑀𝑀ℎ ⋅ 𝑀𝑀𝑤𝑤 (5) 

 
Where 𝑀𝑀ℎ ∈ ℝ𝐶𝐶×𝐻𝐻×1  and 𝑀𝑀𝑤𝑤 ∈ ℝ𝐶𝐶×1×𝑊𝑊  are the vertically and horizontally broadcast 

attention masks, respectively, ensuring dimensional alignment with the original input feature 
map X. The resulting feature map 𝑌𝑌 ∈ ℝ𝐶𝐶×𝐻𝐻×𝑊𝑊 effectively combines directional context from 
both spatial dimensions, yielding enhanced feature representations with globally coherent and 
spatially attentive focus. 

The obtained modulated feature map is sent to the YOLO detection head, which uses a 
multi-level aggregation scheme based on a path aggregation network and multi-layer, anchor-
based predictions. This combination improves localization accuracy, especially when detecting 
small or indistinct marine debris, by refining attention. 
EXPERIMENTAL RESULTS 

In this section, the proposed method is evaluated through quantitative benchmarks, ablation 
studies, and visual comparisons. Performance is assessed on both aerial and underwater 
datasets, focusing on detection accuracy, robustness, and the impact of the architectural 
enhancements in challenging marine environments. 

Training Configuration 
All the experimental processes were performed on an NVIDIA Tesla T4 card with 15360 

MiB of memory and a NVIDIA driver version of 525.105.17 on Compute Unified Data 
Archucture (CUDA) 12.0 which ensured a smooth hardware acceleration. The training pipeline 
was set to have the batch size of 32 and the model was trained in 50 epochs. 
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Dataset 
To train and test the proposed model, two datasets were utilized, namely TrashCAN [28] 

dataset on underwater detection and an aerial dataset, taken by GreenTech Solution team [29]. 
TrashCAN contains 7212 annotated images of underwater debris and marine life, mainly 
obtained through the JAMSTEC E -Library of Deep Sea Images. The aerial dataset comprises 
6,589 images obtained by drones having 51,840 annotations, which are images of the floating 
litter of different types in diverse marine conditions. The aggregate set of 13,801 images was 
randomly divided into training (70%), validation (15%), and testing (15%) sets. A five-fold 
cross-validation scheme was used to train the model in order to detect model robustness and 
reduce variance. Images were standardized in terms of pre-processing, which involved resizing 
to 640x640 pixels and preserving the aspect ratio by padding, and normalizing with ImageNet 
statistics (mean: 0.485, 0.456, 0.225, standard deviation: 0.229, 0.224, 0.225). Bounding-box 
annotations were scaled in proportion to resizing and corrupt images were filtered before 
partitioning. At training, the data augmentation was only used, which also entailed random 
rotations (90°, -25 to +25%), saturation modifications (-25 to +25%), and brightness 
modifications (0 to +20%). The probability of each augmentation was 0.5 to allow 
combinations of multiple augmentations on any image. These additions increased the 
generalization of the model to underwater and aerial changes in imaging. The sample of both 
datasets is shown in Figure 3. 

 

 
To quantitatively assess the performance of the proposed model, three standard metrics 

widely used in object detection were employed: Precision, Recall, and mean Average Precision 
(mAP). 

Precision measures the proportion of correctly identified positive instances among all 
predicted positives, offering a sense of how reliable the detections are. Recall reflects the ability 
of the model to identify all relevant objects, indicating how many true positives were detected 
out of all actual positives. They are defined as: 

 

Figure 3: Sample images from marine debris detection datasets: (a) 
UAV-based images from the MarineLitter dataset and (b) ROV-based 

images from the TrashCAN dataset. 

(b) 

(a) 
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𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
 (6) 

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁
 (7) 

 
The mean Average Precision (mAP) serves as an aggregated measure, averaging the 

precision across all classes and confidence thresholds. It is calculated as: 
 

𝑚𝑚𝑚𝑚𝑚𝑚 =
1
𝑛𝑛
�𝐴𝐴𝐴𝐴(𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

 (8) 

 
Where 𝐴𝐴𝐴𝐴(𝑖𝑖) denotes the average precision for class i, and n is the total number of classes. 

In practice, mAP is reported at specific Intersection over Union (IoU) thresholds. mAP@0.5 
indicates the mAP calculated at an IoU threshold of 0.5, while mAP@0.5:0.95 denotes the 
average mAP over IoU thresholds from 0.5 to 0.95 with a step of 0.05, providing a stricter and 
more comprehensive evaluation. 

Quantitative Evaluation 
The proposed model performance was compared to the most popular baselines of detecting 

(Faster R-CNN) [30], SSD [31], and YOLOv7, on two marine datasets, and the results were 
summarized in Table 1. The model obtained significant gains in all the metrics tested, reaching 
a very high score of 94.00 percent mAP at 0.5 that is a significant improvement over the 
standard YOLOv7 by more than 2.5 percentage points. In a comparable manner, the proposed 
method performed better than all the baselines on the TrashCAN dataset with 92.80 at 0.5 and 
72.00 at 0.5:0.95 mAP. Its sensitivity to difficult or partially occluded objects is further brought 
out by the fact that the recall to 92.30% increased. These findings show that the technique can 
be used to generalize both in aerial and underwater environments with a high detection rate 
even in different visual environments. 

 
Table 1. Performance comparison of the proposed method and baseline models. 

Dataset Model Precision 
(%) 

Recall 
(%) 

mAP@0.5 
(%) 

mAP@0.5:0.95 
(%) 

Submarine 
(MarineLitter) 

Faster R-CNN 87.51 88.30 89.62 70.92 
SSD 86.53 86.22 88.57 70.2 

YOLOv7 88.55 89.90 91.41 71.5 
Proposed 
method 92.01 94.17 94.00 72.2 

Underwater 
(TrashCAN) 

Faster R-CNN 85.20 84.85 87.10 69.8 
SSD 84.35 83.40 86.25 69.2 

YOLOv7 86.80 87.15 89.35 70.5 
Proposed 
method 90.15 92.30 92.80 72.0 

In order to add more information about the performance of the classification, Figure 4 
shows the normalized confusion matrix of the given method on TrashCAN dataset. The 
diagonal entries are an appropriate classification, where the majority of the classes have 
precision values greater than 0.90, which means that they are very discriminant. It is important 
to note that items like “trash_bottle”, “trash_pipe”, and “trashcan” exhibit almost perfect 
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classification as the values are 1.00, 1.00 and 0.96. The categories of marine life such as 
“animal_starfish” (0.93), “animal_etc” (0.80), “animal_fish” (0.86) and ROV (0.94) also have 
strong detection accuracy indicating that the model can differentiate between debris and the 
natural or working objects. The other categories of trash are all performing with a high degree 
of performance, with “trash_bag” (0.93), “trash_clothing” (0.93), “trash_container” (0.93), 
“trash_cup” (0.94), and “trash_rope” (0.94) all having a greater precision of over 0.93. The 
precision of the “trash_net” class is 0.83 and “trash_tarp” is 0.79, which both proves to be very 
useful in detecting flexible and deformable forms of garbage. A plant category reaches values 
of 0.87 accuracy, as the model is able to find the organic marine elements precisely. The 
confusion matrix in general confirms the performance of the Sinkhorn-regularized attention 
scheme in improving feature differentiation, and a low amount of cross-category 
misclassification and high accuracy by classes is observed throughout the various range of 
underwater items. 

 

 
Figure 4. Normalized confusion matrix of the proposed method on the TrashCAN dataset, 

showing high classification accuracy across marine debris and biological classes. 

Ablation study 
Quantitative evaluation of each of the proposed architectural improvements was done 

through an ablation study on the TrashCAN dataset. The results of four model configurations, 
including the baseline YOLOv7, the YOLOv7 with CA, the YOLOv7 with Sinkhorn 
Regularization and the complete proposed method combining the two modules, are provided 
in Table 2. The precision and recall with the addition of CA alone showed the advantage of 
directional spatial information encoding in feature maps. The use of Sinkhorn Regularization 
also helped to achieve better alignment and stability in attention maps and performance 
improvement was found especially in mAP. The model scored the best when both the 
enhancements were realized, which is indicative of the complementary nature of the localized 
attention focus and global spatial coherence. 
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Table 2. Ablation results showing the impact of each module on detection performance. 

Model variant Precision (%) Recall (%) mAP@0.5 (%) mAP@0.5:0.95 (%) 
Baseline YOLOv7 86.80 87.15 89.35 70.50 

+ Coordinate 
Attention 88.05 89.50 90.60 71.10 

+ Sinkhorn 
Regularization 87.40 88.70 90.05 70.95 

Proposed method 90.15 92.30 92.80 72.00 
 
Figure 5 depicts train loss curve of all the ablation variants. The original YOLOv7 model 

has lower convergence speed and final loss than the improved ones. Either CA or Sinkhorn 
regularization has a minor effect on accelerating convergence but the largest acceleration is 
seen when the two modules are used together. The offered method does not only yield the final 
lowest loss but also has a more stable and regular descent progression over the training epochs, 
which is a better sign of optimization dynamics and better feature learning during the training 
process. 

 
 

 
Figure 5. Loss curves for ablation variants on the TrashCAN dataset. 

 
Meanwhile, Figure 6 demonstrates the curves of the mAP progression of both the baseline 

YOLOv7 (Figure 6a) and the proposed approach (Figure 6b) during the training period. The 
suggested model has more of an initial accuracy increase and stays on a higher mAP during the 
training. This implies the model has better intermediate representations during the initial 
training phase and thus it is more likely to converge faster and prevent overfitting or plateauing. 
The more continuous and high mAP curve indicates better generalization and efficient 
acquisition of discriminative features, even on difficult underwater imagery. 
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Detection Visualizations 
To estimate the strength of the proposed approach in real-life settings, problematic 

situations requiring visual comparisons are offered: reflection artifacts, small object detection, 
and underwater clutter. These examples are typical sources of error in the detection of plastic 
litter in the sea. 

In aerial imagery, Figure 7 illustrates the effects of surface reflections on the accuracy of 
detection. The original YOLOv7 baseline (Figure 7a) incorrectly identifies the reflective region 
as “soft plastic”, assigning it a predetermined confidence score. In contrast, the proposed 
method (Figure 7b) completely prevents this error, enhancing the certainty of true positive 
findings. This makes the model less sensitive to noise, especially in images with high-
frequency water textures, which can confuse conventional convolutional filters. The direction-
aware CA process ensures that the purely spatial functionality pays more attention to horizontal 
and vertical directions than to other appearance variations. This enables the network to 
distinguish structured debris from dynamic surface distortion in a dynamically evolving surface. 
Attention maps, further smoothed by Sinkhorn distance, introduce spatial coherence and 
effectively reject non-salient patterns that generally resemble floating litter. 

 

 

 

Figure 6. mAP curves during training: (a) for the standard 
YOLOv7 model and (b) for the proposed method. 

(a) (b) 

Figure 7. Detection results in the presence of surface reflection artifacts: (a) results obtained 
with the standard YOLOv7 model and (b) results obtained with the proposed method. 

(a) (b) 
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Figure 8  demonstrates the ability of finding small-scale and low-contrast debris, which 
creates serious difficulties when using models that were trained on larger or bright objects. The 
standard yolov7 model (Figure 8a) does not identify several targets and gives the others with 
low confidence scores; one “soft plastic” object is found (Figure 8b) identifies all of the visible 
objects of the scene, which is masks, “soft plastics”, and “bottles” but with much higher 
confidence approaching 0.90 and even higher in the vast majority of cases. The performance 
of this model is an indicator that this has been better in discrimination of features, especially 
the objects that consume fewer pixels or become partially covered by water. Lightweight CA 
module helps to conserve fine spatial features in the extraction of features and Sinkhorn based 
regularization maintains the focus and consistency of attention. 

 

 

The output of detections on underwater images with cluttered background and overlapped 
objects like trash, aquatic life, and the structure of the seabed is shown in Figure 9. The 
proposed approach effectively localizes and categorizes such objects as “trash nets”, “bottles”, 
and marine animals and generates narrow confined boxing with a confidence score that is 
always over 0.80. Such outcomes emphasize the fact that the model can be resilient to low-
visibility and low-contrast conditions where the boundaries of objects are usually diffuse and 
the labels of the classes are semantically nearly similar. The spatially enriched attention to 
sympathetic with the entropy-regularized alignment enables the model to process the visual 
entropy in deep-sea imagery, preventing the model to be confused with what looks similar to a 
particular object. 

 

Figure 8. Detection performance on small and low-contrast floating debris: (a) results obtained 
with the standard YOLOv7 model and (b) results obtained with the proposed method. 

(a) (b) 
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Figure 9. Detection on cluttered underwater scenes from the TrashCAN dataset. 

DISCUSSION 
The proposed method shows an enhancement in detection of marine plastic litter both in 

aerial and underwater setting as compared to baseline models. According to the per-class 
analysis, there are high recognition results of the categories with a clear visual appearance. 

These performance improvements are achieved through two complementary architectural 
elements. CA breaks down context extraction in horizontal and vertical directions, and long-
range structure is preserved, with positional accuracy, which is more effective in identifying 
elongated objects. Sinkhorn regularization follows a global coherence principle on the attention 
distributions by applying entropy-regularized optimal transport, which encourages smooth 
attention assignment and discourages disjointed focus patterns, which are prevalent in 
underwater scenes with cluttered backgrounds. Ablation experiments demonstrate that the use 
of both modules is more effective in detection accuracy than either of the two, where visual 
analysis has proven that the model reduces false positive due to surface reflection, small debris 
occupying few pixels in the image and ability to see visual similarities to categories in difficult 
underwater conditions. 

To identify the statistical significance of reported performance gains between the proposed 
approach and baseline YOLOv7 paired Wilcoxon signed-rank tests were performed in both 
datasets. Table 3 provides the average performance values, standard deviations, 95% 
confidence intervals, and p-values of all evaluation measures. The analysis shows that all 
measures indicate statistically significant improvements (p < 0.05) in both datasets, and most 
results are highly significant (p < 0.01). The small confidence interval and low standard 
deviations support the execution of patterns across cross-validation folds, which justifies the 
stability of the Sinkhorn-regularized attention mechanism in working marine monitoring 
systems. 
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Table 3. Statistical analysis using Wilcoxon signed-rank tests across 5-fold cross-validation. Mean 
± Std (standard deviation), 95% CI (Confidence Interval), and p-values are reported. 

Dataset Metric (%) YOLOv7 
Mean ± Std 

Proposed 
Mean ± Std 95% CI p-value 

Submarine 
(MarineLitter) 

Precision 88.55 ± 1.23 92.01 ± 0.87 [2.89, 4.03] 0.0043 
Recall 89.90 ± 1.45 94.17 ± 0.92 [3.51, 5.03] 0.0021 

mAP@0.5 91.41 ± 1.12 94.00 ± 0.76 [1.98, 3.20] 0.0035 
mAP@0.5:0.95 71.50 ± 1.67 72.20 ± 1.21 [0.12, 1.28] 0.0412 

Underwater 
(TrashCAN) 

Precision 86.80 ± 1.56 90.15 ± 1.08 [2.54, 4.16] 0.0038 
Recall 87.15 ± 1.72 92.30 ± 0.95 [4.23, 6.07] 0.0015 

mAP@0.5 89.35 ± 1.34 92.80 ± 0.89 [2.67, 4.23] 0.0028 
mAP@0.5:0.95 70.50 ± 1.89 72.00 ± 1.34 [0.71, 2.29] 0.0187 

 
Although, there are a number of considerations that will guide the future research directions. 

Combined size of these data of about 14,000 images is enough to justify the proposed method, 
but small with regards to large-scale benchmarks in computer vision. Future research will 
consider semi-supervised training or synthetic data generating to increase training diversity, 
especially to low-represented debris groups. The existing structure uses only the RGB images, 
which reduces the possibilities of detection in the case of high turbidity or in the dark. The 
combination of multimodal sensing capabilities like sonar to map volumetric debris, 
hyperspectral imaging to analyse material composition or thermal sensors to distinguish litter 
on the surface are all potential solutions in strengthening the detection capability in a variety 
of ocean environments. 

CONCLUSION 
This study presented an enhanced YOLOv7-based framework for automated marine plastic 

litter detection that integrates direction-aware CA with Sinkhorn Distance regularization. By 
formulating attention alignment as an entropy-regularized optimal transport problem, the 
proposed method addresses critical limitations in existing detection systems, particularly the 
fragmented attention distributions and lack of global spatial coherence that impair performance 
in challenging marine environments. 

Validation experiments show a significant increase in value compared to baseline methods 
for both aerial and underwater approaches. The proposed approach performed better in terms 
of surface and submerged imagery. Recall improvement was significantly larger, and 
sensitivity to small, occluded, or low-contrast debris improved as well. Cross-validation 
statistically validated that the improvements found are significant and consistent across all 
evaluation metrics, proving that the proposed architectural improvements are robust and 
reliable. 

In terms of architecture, this work has two contributions. First, CA enables the model to 
extract long-range spatial dependencies through independent horizontal and vertical context 
aggregation, which is critical for identifying irregularly shaped marine debris due to its 
positional accuracy. Second, Sinkhorn regularization applies global structure consistency, 
reducing transportation costs between directional attention distributions with entropic hedges. 
This essentially handles frigid activations due to reflections on the surface, turbidity of the 
water, and complicated seabed structures. Ablation experiments and visual analysis show that 
the interactive combination of both elements provides better performance than either module 
alone. The hybrid structure of the two modules generalizes well in varying visual conditions. 

Despite these developments, there are still areas in which future research can be conducted. 
Using semi-supervised learning or physics-based synthetic data to increase the variety of data 
might enhance the robustness of the models to underrepresented debris types and severe 
environmental impacts. Using a combination of multimodal sensing such as sonar for low-



Khriss, A., Kerkour Elmiad, A., et al. 

An Improved Deep Learning Method for Detecting Marine…  
Year 2026 

Volume 14, Issue 1, 1130635 
 
 

Journal of Sustainable Development of Energy, Water and Environment Systems 15 

 

visibility detection, hyperspectral imaging for material identification, and thermal sensors for 
surface detection would be superior to using RGB imagery for object detection. 
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NOMENCLATURE 

Symbols 
H  height of feature map 
W width of feature map 
X input feature map 
Y modulated feature map 
λ regularization weight for Sinkhorn loss 
𝐿𝐿𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌 YOLOv7 loss 
𝐿𝐿𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 total loss (detection + regularization) 

Greek letters 
 

ϵ entropy regularization factor 
ρ Density 

Subscripts and superscripts 
 

h Horizontal 
w Vertical 

Abbreviations 
 

GAP   Global Average Pooling 
UAV       Unmanned Aerial Vehicle 
ROV Remotely Operated Vehicle 
SGD   Stochastic Gradient Descent 
SSD   Single Shot MultiBox Detector 
YOLO   You Only Look Once 
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