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ABSTRACT

Plastic pollution in the ocean is a widespread issue in the ma
scale monitoring systems. However, extending the gse of d€€p-learning-based detection
methodologies to real-world marine settings is diffi cRgctionsYgom surfaces, small target
objects, and partially blocked debris often hinder nctioning of such systems. To
) built on the You Only Look

bphcwg that requires large-

combines two mutually supportive modud@SNg dirc8g ordinate attention module, which
decodes spatial dependencies along hggi axes, and a Sinkhorn distance-based

ater cameras shows significant performance
-the-art assessments. The proposed system
70 in aerial scenes and a precision of 90% and a
lation study validates the hypothesis that the two

asti§ p®llution has become a pressing issue of the current era, with significant
implidag@s for marine ecosystems. It is estimated that the amount of plastic in the world's
oceans ranges between 100 and 150 million tons, with approximately 6.4 million tons of plastic
deposited in the waters every year [1]. Plastics are difficult to decompose naturally and may
take centuries to break down in the ocean. Over time, these polymers break down into
microplastics and nanoplastics, which are difficult to see with the naked eye but deadly to
marine life, the stability of the marine environment, and human health [2].
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The growing crisis of the plastic pollution is aggravated by the further increasing world
production of plastics and the lack of the recycling facilities. The extensive presence of plastic
debris in the oceans and their deep layers prevents systematic surveillance and reduction
efforts. The complexity of underwater ecology, including low visibility, unstable photic
regimes, and refraction distortions, makes it difficult to successfully identify and taxonomically
assign sunken plastic debris.

To overcome the above issues, more research has been conducted on the use of automated
methods for detecting marine litter. Although manual shoreline monitoring and survey aerial
technology have good datasets, they are labour-consuming, expensive and restricted in space
and time [3]. In its turn, the recent advancements in robotics and sensor technologies namely,
remotely operated vehicle (ROV) and unmanned aerial vehicle (UAV).have m marine
debris detection more effective and feasible. These systems provide safer, more c@gnompical,

C %, visual similarity
edeon i submerged data

The current studies are still centered on the means 0N ) machine learning-based
models to improve adaptability to the marine envirogment. W& . proposed new network

You Only Look Once (YOLO) family of models has been widely
balance between inference speed and detection accuracy [5].
among unequal objects and high intra-class variability still li

[6].

designs, such as Extended Efficient Layer Aggre s, cascaded scaling planning,
and specialized module layouts, to improve t pf general detection [7]. Due to its
small size and simple deployment, the Y inw@del has been highly successful in

locating submerged marine debris. This adaptive anchor-box computation
and massive data augmentation polig

To address these shortgh
by using lightweight ng

eplacing the Visual Geometry Group (VGG) backbone with
Residual N¢ 1), achieving higher detection and processing speeds that can be used

, achieving a good balance of speed, feature extraction speed, and
tec [12]. Furthermore, Wang et al. developed a lightweight, ocean exploration-
spgific Rteion mechanism that enhances environmental perception ability [13].

A n mechanisms are now particularly relevant. Ge et al. simultaneously added a
combination of Coordinates Attention (CA) and Squeeze-and-Excitation (SE) module pairs in
YOLOVSs, effectively improving feature extraction for blurry ocean imagery [14]. Shen et al.
added CA module units in YOLOVS in a suitable position for advanced refined identification
capability while inhibiting unnecessary data [15]. Chen et al. added the Convolutional Block
Attention Module (CBAM) attention module in YOLOvV7, considerably improved detection
performance for smaller ocean debris fragments [16]. Liu et al. drove the expansion of attention
strategies in YOLOv8n with Simple Attention Module, improving efficient global feature
understanding without a greater computational load [17]. As much as these innovations
individually exhibited a form of performance, many are locally functional within networks,



currently with a deficiency in global attention strategies for ensuring enduring sustained
comprehension within oceanic scenes.

Parallel developments in surface litter detection have also contributed valuable insights.
Wang et al. proposed UAV-YOLOVS, integrating Wise- Intersection over Union v3 for
improved localization, BiFormer attention to enhance critical feature retention, and Focal
FasterNet blocks for reducing small target miss rates in aerial imagery [18]. Qiao et al.
introduced Coordinate Attention (CA) into a YOLO-based framework and replaced the
traditional Feature Pyramid Network (FPN) with a Bidirectional FPN module, achieving
improved detection precision for very small floating debris [19]. Lin et al. enhanced the feature
extraction capacity of lightweight detectors by introducing a Feature Mapping Attention layer,

[21].
There are also a number of pre-processing techniques, which have brought

improvements. Li et al. came up with the Retinex-based Global Histogramstres ¢

an adaptive histogram -stretching manoeuvre to enhance the contrast of u % mages and
Yue et al. used the CBAM mechanism with a variant of YOLQ,

Distance Intersection-over-Union loss to enhance the ac

further develop feature-extraction of small floating it using on high-resolution
feature maps [24].

followed up with a convolutional triple-attention module in the YD LOWN gework [22].
th Al a Non-Weighted
[N floating objects
detection [23]. Chen et al. introduced unimpeded domayj
Although the design of attention mechanisms

ability to simulate global spatial structure
local features but often lead to the effec
attention throughout feature maps. T

morphologically deformed plastic debris.
nted attention and the lack of spatial regularity
pose a YOLOv7-based model that incorporates CA

t promising on spatial resolution- which is a requirement in the
process o itlon of irregular, partially obscured, or ambiguous marine waste [26].

Ho ion does not guarantee coherent attention across the entire feature map.
In tain global structural alignment, the metric applied as a transport measure is
a Syakh istance, which is a measure that is regularized with entropy. It is a matching

prob distributions where attention has consistency minimized by redistributing attention
in an entropic manner. The theory of this formalism offers a basis toward the attainment of
globally consistent and semantically compatible distributions of attention that outperform more
general heuristic integration strategies, which dominate more modern models. The coherent
components combine to form the unified attention system which works on the optimal transport
theory and balances sensitivity of features and overall coherence of space. In this way, the
accuracy and precision of detection under such tough visual conditions, as in ones observed in
the air and subsurface environment conditions in the sea, is improved tremendously.

The remaining of the paper will be structured as follows: Section 2 will describe the
proposed methodology. Section 3 covers such empirical findings points as performance
standards, ablation experiments, and visual detection examples. Section 4 addresses these
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findings alongside the rest of the problems of marine data localization. Finally, Section 5 will

provide the future research directions and implications.

PROPOSED METHOD

This section presents the approach to the process of refining the object-detection system to
recognize marine plastic waste using deep learning and feature-based refinement. First,
unmanned aerial vehicles equipped with specialized imaging sensors collect data, providing
high-resolution images of plastic waste on beaches and underwater. After acquiring the image,
the pre-processing protocol involves enlarging the image through rescaling and augmentation
to meet the input format requirements of the detection model. The given pipeline is then
detected using a YOLOv7-based backbone, which is lightweight and optimized foigpeal-time
use. To improve detection accuracy, CA mechanisms focus on crucial spati
Sinkhorn-based regularization methods are used to ensure consistent, optigg#¥eg, d¢cction
results. Figure 1 illustrates the overall methodology, which involves acquirifjg
UAVs and ROVs, identifying objects, accurately classifying them,
performance.

Unmanned Aerial
Vehicle (UAV)

Remotely Operated
Vehicle (ROV)

Input Debris Image

Object
Detector

------------------------ The Improved Q SN
emove
5 o YoLOv7 oy
) a positive
= . = Performance
E.'_ Region Proposal § \ Viewal: Evaluation
) 5 N
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--------------------- Results S ——
Figure 1: OverviewQ Ctection pipeline for marine plastic litter using UAV and
ROV imagery.

itations of attention modules using conventional scheme,
b used. The scheme records long-range interactions by combining
& horizontal and in the vertical dimensions separately. Directional

In a way to
direction-aw

detection head. Figure 2 illustrates the mechanisms of this attention module,
emphasizing the extraction of spatial descriptors, the creation of attention masks, and
regularization via Sinkhorn distance.
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Figure 2: Directional Coordinate Attention with Sinkhorn regularization. Horizo
descriptors are extracted via GAP, refined by 1x1 convolutions, and aligned using S
for coherent spatial attention.

Coordinate attention with directional context encoding

Given an input feature map X € RV where C, H, ang
channels, height, and width respectively, Global Average Poqg
along the horizontal and vertical axes. This yields two
preserve spatial context in their respective directions:

w
. 1 . .
sh(c,])=W2X(c,],L), s, A X(c,j, 1) (1)
i=1

Where X(c, j, i) represents the a ion Wglue ¥t channel ¢, row j, and column i of the
feature map, where C, H and W dgpotg the nynbe®of channels, height, and width, respectively.
The terms s" € RE*H and espond to the vertically and horizontally
aggregated descriptors for ¢ n j, and i, respectively. These descriptors capture
directional spatial contex{§ average pooling along the horizontal and vertical
axes.

To generate attent these descriptors, independent 1 X 1 convolutional layers
followed by sig tionare applied:

r

(Conv1X1(sh)), MY = og(Conv™™1(s")) (2)

1(-) denotes a 1 X 1 convolutional operation that refines the direction-aware
d o(*) is the sigmoid activation function that normalizes the output values to the
The resulting maps, M" and MY are the vertical and horizontal attention masks,
respectively, which emphasize the most informative spatial features in each direction.

Sinkhorn regularization for global attention consistency

To ensure coherent and balanced attention distributions across spatial dimensions, Sinkhorn
Distance is introduced as a regularization mechanism. Given the unnormalized attention maps
MM € RE*H and MW € RS>V, they are flattened into probability vectors p € R™ and g € R™,
normalized so that).p = ), q = 1.

The Sinkhorn Distance is defined as:

J



Sinkhorn(p,q) = Mg]]g&m(M’ C)— eH(M) (3)

Where p, q represent the normalized attention distributions derived from the horizontal and
vertical attention maps. The matrix M denotes the transport plan that aligns the two
distributions, while € € R™™ is a cost matrix based on pairwise spatial distances, The
notation (M, C) refers to the Frobenius inner product, computed as the element-wise product
followed by summation. The coefficient € is a small positive scalar controlling entropy

regularization, and H(M) = — },; ; M;; log M;; is the entropy term that encourages smoother
transport plans.

This formulation ensures that the learned attention weights for horizontal vertical
dimensions are mutually aligned, reducing redundancy and enforcing spatial structig. during

training, the Sinkhorn loss is added to the overall objective:

Ltotar = Lyoro + A - Sinkhorn(p, q) (4)

ights are reshaped and broadcast
his is achieved through element-

)

are the vertically and horizontally broadcast
mensional alignment with the original input feature
map X. The resultingd REHXW effectively combines directional context from
both spatial dimepsi inA¢nhanced feature representations with globally coherent and
spatially attentiv

The obtaa
multi-level
based predy

eature map is sent to the YOLO detection head, which uses a
eme based on a path aggregation network and multi-layer, anchor-
is combination improves localization accuracy, especially when detecting
rine debris, by refining attention.

AL RESULTS

ction, the proposed method is evaluated through quantitative benchmarks, ablation
studies, "and visual comparisons. Performance is assessed on both aerial and underwater
datasets, focusing on detection accuracy, robustness, and the impact of the architectural
enhancements in challenging marine environments.

Training Configuration

All the experimental processes were performed on an NVIDIA Tesla T4 card with 15360
MiB of memory and a NVIDIA driver version of 525.105.17 on Compute Unified Data
Archucture (CUDA) 12.0 which ensured a smooth hardware acceleration. The training pipeline
was set to have the batch size of 32 and the model was trained in 50 epochs.
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Dataset

To train and test the proposed model, two datasets were utilized, namely TrashCAN [28]
dataset on underwater detection and an aerial dataset, taken by GreenTech Solution team [29].
TrashCAN contains 7212 annotated images of underwater debris and marine life, mainly
obtained through the JAMSTEC E -Library of Deep Sea Images. The aerial dataset comprises
6,589 images obtained by drones having 51,840 annotations, which are images of the floating
litter of different types in diverse marine conditions. The aggregate set of 13,801 images was
randomly divided into training (70%), validation (15%), and testing (15%) sets. A five-fold
cross-validation scheme was used to train the model in order to detect model robustness and
reduce variance. Images were standardized in terms of pre-processing, which involved resizing

rotations (90°, -25 to +25%), saturation modifications (-25 to +2§f
modifications (0 to +20%). The probability of each augmentat
combinations of multiple augmentations on any image. Thest
generalization of the model to underwater and aerial changes ygs
datasets is shown in Figure 3.

BAYAS 12:50:54 1° 0
LR

\( B | —_

Figure 3: Sample images from marine debris detection datasets: (a)
UAV-based images from the MarineLitter dataset and (b) ROV-based
images from the TrashCAN dataset.

To quantitatively assess the performance of the proposed model, three standard metrics
widely used in object detection were employed: Precision, Recall, and mean Average Precision
(mAP).

Precision measures the proportion of correctly identified positive instances among all
predicted positives, offering a sense of how reliable the detections are. Recall reflects the ability
of the model to identify all relevant objects, indicating how many true positives were detected
out of all actual positives. They are defined as:
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Precisi True Positives ©6)
recision =
True Positives + False Positives

Recall = True Positives 7
eeatt = True Positives + False Negatives 7

The mean Average Precision (mAP) serves as an aggregated measure, averaging the
precision across all classes and confidence thresholds. It is calculated as:

1w
mAP ZE;AP(O )

asses.
mAP@0.5
denotes the
Jing a stricter and

Where AP (i) denotes the average precision for class i, and # is the tofg
In practice, mAP is reported at specific Intersection over Union (Igj#n
indicates the mAP calculated at an IoU threshold of 0.5, while
average mAP over IoU thresholds from 0.5 to 0.95 with a ste
more comprehensive evaluation.

Quantitative Evaluation

The proposed model performance was comparg
(Faster R-CNN) [30], SSD [31], and YOLOV7,

Precision Recall mAP@0.5 mAP@0.5:0.95

Datase (%) (%) (%) (%)
ter R-CNN 87.51 88.30 89.62 70.92
) SSD 86.53 86.22 88.57 70.2
) YOLOv7 88.55 89.90 91.41 71.5
MarNgINte Proposed
P 92.01 94.17 94.00 72.2
method
Faster R-CNN 85.20 84.85 87.10 69.8
Underwater SSD 84.35 83.40 86.25 69.2
YOLOvV7 86.80 87.15 89.35 70.5
(TrashCAN) Proposed
P 90.15 92.30 92.80 72.0
method

In order to add more information about the performance of the classification, Figure 4
shows the normalized confusion matrix of the given method on TrashCAN dataset. The
diagonal entries are an appropriate classification, where the majority of the classes have
precision values greater than 0.90, which means that they are very discriminant. It is important
to note that items like “trash bottle”, “trash pipe”, and “trashcan” exhibit almost perfect



classification as the values are 1.00, 1.00 and 0.96. The categories of marine life such as
“animal_starfish” (0.93), “animal_etc” (0.80), “animal fish” (0.86) and ROV (0.94) also have
strong detection accuracy indicating that the model can differentiate between debris and the
natural or working objects. The other categories of trash are all performing with a high degree
of performance, with “trash bag” (0.93), “trash clothing” (0.93), “trash container” (0.93),
“trash_cup” (0.94), and “trash_rope” (0.94) all having a greater precision of over 0.93. The
precision of the “trash _net” class is 0.83 and “trash_tarp” is 0.79, which both proves to be very
useful in detecting flexible and deformable forms of garbage. A plant category reaches values
of 0.87 accuracy, as the model is able to find the organic marine elements precisely. The
confusion matrix in general confirms the performance of the Sinkhorn-regularized attention
scheme in improving feature differentiation, and a low amount of croggf€ategory
misclassification and high accuracy by classes is observed throughout the variot§ ramge of

underwater items. m

1.0

animal_crab 0.02 0.04 0.05
animal_eel -  [§810.02 0.02 0.01
animal_etc - 0.80 0.02
animal_fish - 014 0.86 X3 0.07

animal_shells - 0.75 0.05 0.8
animal_starfish - 0.93 0.06
plant - 0.02 0.03

rov - 0.07 0.37

trash_bag - 0.02 0.01 0.06
trash_bottle - 0.01 0.6
2 trash_branch - 0.01 0.03
2
.}é trash_can - 0.01 0.02
;‘{ trash_clothing -
trash_container - 0.01 0.01 0.4
trash_cup -
trash_net - 0.01
trash_pipe -
trash_rope - 0.01 0.03

trash_snack_wrapper - -0.2

trash_tarp - 0.01
trash_unknown_instance -  0.02 0.02 0.04 0.04 0.06 0‘12 0.15
trash_wreckage - 0.81

o
5
w

background -0.25 0.12 0.13 0.11 0.23 0.07 0.13 0.05 0.04 0.01 0.04 0.07 0.03 0.06 0.07 0.08 0.09 0.07
| '

-0.0

p-

g-
trash_net -

trash_bottle -
g

trash_container -
-

trash_unknown_instance -
ge -

pper -
background -

pe -
trash_ta

>
=]
=

plant
trash_ba
trash_can -
trash_cu

trash_pipe -

animal_crab -
animal_eel -
animal_etc -
animal_fish -
trash_ro

trash_branch -

animal_shells -
animal_starfish -

trash_clothin
trash_wrecka

trash_snack_wra

Malized confusion matrix of the proposed method on the TrashCAN dataset,
high classification accuracy across marine debris and biological classes.

Ablation $tudy

Quatttitative evaluation of each of the proposed architectural improvements was done
through an ablation study on the TrashCAN dataset. The results of four model configurations,
including the baseline YOLOv7, the YOLOv7 with CA, the YOLOv7 with Sinkhorn
Regularization and the complete proposed method combining the two modules, are provided
in Table 2. The precision and recall with the addition of CA alone showed the advantage of
directional spatial information encoding in feature maps. The use of Sinkhorn Regularization
also helped to achieve better alignment and stability in attention maps and performance
improvement was found especially in mAP. The model scored the best when both the
enhancements were realized, which is indicative of the complementary nature of the localized
attention focus and global spatial coherence.



Table 2. Ablation results showing the impact of each module on detection performance.

Model variant Precision (%)  Recall (%) mAP@0.5 (%) mAP@0.5:0.95 (%)

Baseline YOLOV7 86.80 87.15 89.35 70.50
+ Coordinate 88.05 89.50 90.60 71.10
Attention
+ Sinkhorn 87.40 88.70 90.05 70.95
Regularization
Proposed method 90.15 92.30 92.80 72.0,

Figure 5 depicts train loss curve of all the ablation variants. The original &M
has lower convergence speed and final loss than the improved ones. Either @A 1
regularization has a minor effect on accelerating convergence but the 14PEC33
seen when the two modules are used together. The offered method does n§ jcl@he final
lowest loss but also has a more stable and regular descent progressiq % 5 i

process.

3.10
—— Baseline YOLOv7
3.05 —— + Coordinate Attention
+ Sinkhorn Regularization

3-00‘\ Proposed Method (Complete)
n \
& 2.95/ T}
— \

290 - \MA\W\AVW\,V

V>
285 \/‘\L’R\\n‘\;‘y"vv\ e S Sy i R
280 25 50 75 100
Epoch

igure NS curves for ablation variants on the TrashCAN dataset.

Figlie 6 demonstrates the curves of the mAP progression of both the baseline
YO and the proposed approach (Figure 6b) during the training period. The
as more of an initial accuracy increase and stays on a higher mAP during the
implies the model has better intermediate representations during the initial
train se and thus it is more likely to converge faster and prevent overfitting or plateauing.
The mofe continuous and high mAP curve indicates better generalization and efficient
acquisition of discriminative features, even on difficult underwater imagery.
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Figure 6. mAP curves during training: (a) for the standard
YOLOvV7 model and (b) for the proposed method.

Detection Visualizations

o

To estimate the strength of the proposed approach in
situations requiring visual comparisons are offered: reflection
and underwater clutter. These examples are typical sour 3
litter in the sea.

In aerial imagery, Figure 7 illustrates the effec
detection. The original YOLOvV7 baseline (Figur;

object detection,
detection of plastic

reflections on the accuracy of
rectlyMdentifies the reflective region
score. In contrast, the proposed

face distortion in a dynamically evolving surface.
nkhorn distance, introduce spatial coherence and

softplastic 0.10

(a) (b)

Figure 7. Detection results in the presence of surface reflection artifacts: (a) results obtained
with the standard YOLOv7 model and (b) results obtained with the proposed method.
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Figure 8 demonstrates the ability of finding small-scale and low-contrast debris, which
creates serious difficulties when using models that were trained on larger or bright objects. The
standard yolov7 model (Figure 8a) does not identify several targets and gives the others with
low confidence scores; one “soft plastic” object is found (Figure 8b) identifies all of the visible
objects of the scene, which is masks, “soft plastics”, and “bottles” but with much higher
confidence approaching 0.90 and even higher in the vast majority of cases. The performance
of this model is an indicator that this has been better in discrimination of features, especially
the objects that consume fewer pixels or become partially covered by water. Lightweight CA
module helps to conserve fine spatial features in the extraction of features and Sinkhorn based
regularization maintains the focus and consistency of attention.

F

masks 0.75
masks 0.69

softplostic 0.371
@

softplostic 0.76

ﬂ!TzM—"

(b)
Figure 8. Detection performance on small and low-contrast floating debris: (a) results obtained
with the standard YOLOv7 model and (b) results obtained with the proposed method.

The output of detections o derWages with cluttered background and overlapped
objects like trash, aquatic L e sttacture of the seabed is shown in Figure 9. The
alNgesdfld categorizes such objects as “trash nets”, “bottles”,
ow confined boxing with a confidence score that is
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DISCUSSION

The proposed method shows an enhancement in detec of marine plastic litter both in
g modRls. According to the per-class
with'a clear visual appearance.
two complementary architectural
and vertical directions, and long-
hich is more effective in identifying

optimal transport, which encourages smooth
nted focus patterns, which are prevalent in

analysis has proven t
occupying few pixg
underwater cond

To ident] [ ignificance of reported performance gains between the proposed
approach afd bas
aBle 3 Qrovides the average performance values, standard deviations, 95%

and p-values of all evaluation measures. The analysis shows that all
statistically significant improvements (p < 0.05) in both datasets, and most

ces false positive due to surface reflection, small debris
and ability to see visual similarities to categories in difficult

systems.
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Table 3. Statistical analysis using Wilcoxon signed-rank tests across 5-fold cross-validation. Mean

+ Std (standard deviation), 95% CI (Confidence Interval), and p-values are reported.

YOLOvV7

Proposed

Dataset Metric (%) Mean + Std ~ Mean + Std 95% CI p-value
Precision 88.55+1.23 92.01+£0.87 [2.89,4.03] 0.0043
Submarine Recall 89.90+1.45 94.17+0.92 [3.51,5.03] 0.0021
(MarineLitter) mAP@0.5 91.41+£1.12 94.00+£0.76  [1.98, 3.20] 0.0035
mAP@0.5:0.95 71.50+1.67 7220+1.21 [0.12, 1.28] 0.0412
Precision 86.80+£1.56 90.15+1.08 [2.54,4.16] 0.0038

Underwater Recall 87.15£1.72 9230+£0.95 [4.23,6.07]
(TrashCAN) mAP@0.5 89.35+1.34 92.80+0.89 [2.67,4.23] 8

mAP@0.5:0.95 70.50+1.89 72.00+1.34 [0.71,2.29

Although, there are a number of considerations that will guide the fut
Combined size of these data of about 14,000 images is enough to JuStl
but small with regards to large-scale benchmarks in computer v
consider semi-supervised training or synthetic data generating
especially to low-represented debris groups. The existing st
which reduces the possibilities of detection in the case Qf
combination of multimodal sensing capabilities liké
hyperspectral imaging to analyse material compositi
on the surface are all potential solutions in streng
of ocean environments.

chsors to distinguish litter
gtection capability in a variety

CONCLUSION

This study presented an enhance Ov¥gbasd@iramework for automated marine plastic
with Sinkhorn Distance regularization. By
y-regularized optimal transport problem, the
s in existing detection systems, particularly the

of global spatial coherence that impair performance

formulating attention ahgnme
proposed method addresses
fragmented attention distri

Validation experi
for both aerial a
of surface and

proaches. The proposed approach performed better in terms
imagery. Recall improvement was significantly larger, and

-Pange spatial dependencies through independent horizontal and vertical context
, which is critical for identifying irregularly shaped marine debris due to its
positional accuracy. Second, Sinkhorn regularization applies global structure consistency,
reducing transportation costs between directional attention distributions with entropic hedges.
This essentially handles frigid activations due to reflections on the surface, turbidity of the
water, and complicated seabed structures. Ablation experiments and visual analysis show that
the interactive combination of both elements provides better performance than either module
alone. The hybrid structure of the two modules generalizes well in varying visual conditions.
Despite these developments, there are still areas in which future research can be conducted.
Using semi-supervised learning or physics-based synthetic data to increase the variety of data
might enhance the robustness of the models to underrepresented debris types and severe
environmental impacts. Using a combination of multimodal sensing such as sonar for low-



visibility detection, hyperspectral imaging for material identification, and thermal sensors for
surface detection would be superior to using RGB imagery for object detection.
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