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ABSTRACT 

Minimisation of variability of energy delivered from a group of wind plants into the 
power system using portfolio theory approach was studied. One of the assumptions of 
that theory is Gaussian distribution of the sample, which is not satisfied in case of wind 
generation. Therefore, optimisation of a “portfolio” of plants with different goal 
functions was studied. It was supposed that a decision on distribution of a fixed amount 
of generation capacity to be installed among a set of geographical locations with known 
wind statistics is to be made with minimised variability of generation as a goal. In that 
way the statistical cancellation of variability would be used in the best possible manner. 
This article is a brief report on results of such an investigation. An example of nine 
locations in Croatia was used. These locations’ wind statistics are known from historic 
generation data. 
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INTRODUCTION 

Optimisation of wind plant operation regarding temporal variability of generation 
with a portfolio theory approach was studied in past (see e.g., [1] or [2]). It is important to 
use available geographical locations for placement of wind plants in an optimal way 
regarding total variability of generation, because in that way one best utilizes the “natural 
potential” for statistical cancellation of variability. This variability incurs additional costs 
in the value chain of production and delivery of electrical energy. The system costs of 
Renewable Sources (RES) were presented in [3].  

It is worth mentioning that problems with variability of RES such as wind or solar is 
routinely used in “political arena” as an argument against proliferation of RES’s. Also, a 
number of researchers point to various types of problems related to short term variability, 
be it purely technical/operational ones, or the ones related to economic side of the system 
operation. There are numerous research articles dealing with “integration costs”, the
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externalities incurred to the power system by variable renewables. Such studies aim at 
estimation of the costs that need to be added upon Life-time Costs Of Electricity (LCOE) 
from variable renewable sources, to yield a figure called “system Life-time Costs Of 
Electricity” (sLCOE, [3]), that is supposed to be a better metric of RES life-cycle cost. 
However, they do not aim at social welfare analyses of RES integration.  

Gross et al. [4] analyse impacts and costs of intermittent generation on the British grid, 
and conclude that there is no evidence of decreased reliability, although the power system 
operation faces more challenges. Milligan and Kirby [5] aim to separate economic value 
of energy from costs and calculate wind integration costs as the difference between total 
costs with and without wind generation, and conclude that the economic value of 
wind-generated energy is somewhat lower than base load. Smith et al. [6] argue that wind 
integration costs of up to USD 5 to USD 6/MWh of wind energy can be expected for 
capacity penetrations of up to 20% to 30% of peak load. Holttinen et al. [7] build upon 
best practices from wind integration studies and conclude, among others, that system 
operation and functioning electricity markets at less than day-ahead time scales help 
reduce forecast errors of wind power. DeCesaro and Porter [8] find wind integration costs 
at 20% penetration level to be about one tenth of the wholesale value of energy. GE 
Energy [9] finds that both variability, and uncertainty, of wind production impact grid 
operation. However, uncertainty appears to be a bigger challenge. 

Another type of research papers studies the marginal economic value of energy 
produced, to conclude that increase in RES penetration in overall energy mix decreases 
economic value of variable renewables. For instance, Fripp and Wiser [10] find that the 
potential difference in wholesale market value between better correlated and poorly 
correlated wind sites is modest, on the order of 5-10 percent. Borenstein [11] gives an 
interesting study on another type of variable renewable generation (solar), pointing out 
that institutional setting in which capacity costs are recovered through a flat rate per-kWh 
fee, so that the wholesale prices are much less volatile, is not favourable to economic 
value of generated energy. Lamont [12] develops a theoretical framework to find an 
expression for the marginal value of an intermittent technology as a function of the 
average system marginal cost, the capacity factor of the generator, and the covariance 
between the generator’s hourly production and the hourly system marginal cost. Mills 
and Wiser [13] provide a very detailed study of economic value of variable generation at 
high penetration levels and decompose relevant integration costs, concluding, among 
others, that solar-generated energy has high value at low penetrtation rates, whereas wind 
energy can exceed solar and concentrating solar power in value by high penetrations. 
Nicolosi [14] stresses that market organization aspects can have significant impact on 
value of electricity generated from variable renewable sources. Hirth [15] argues that, 
from the standpoint of overall social welfare, the optimal penetration rate of RES occurs 
where increasing sLCOE curve, and decreasing curve of marginal economic value of 
energy, intersect.  

There is no doubt that it is in the best interest of RES industry, the power sector, and 
the society as a whole, to avoid all unnecessary costs. Therefore, utilising all possible 
methods to reduce variability can be important not only from the perspective of increased 
Transmission System Operator’s (TSO’s) costs and operational risks, but from the policy 
and politics point of view. Leaving the variability unmanaged can be regarded as 
irrationality because it incurs more costs and technical problems, without a need to do so. 
If the costs related to balancing of variability were monotonically increasing with the 
variability itself (which is a reasonable proposition), minimization of variability would 
mean minimization of variability-associated costs. The first-line beneficiaries of it would 
naturally be TSOs. They could then, for example, transfer the gain to the consumers by 
lowering transmission tariff, or employ the surplus to serve more variable RES in their 
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networks, or employ it for any other useful purpose, rather than spill it for something that 
could have been managed by purely organizational (i.e., virtually costless) means.  

As it comes to the investors in variable RES, their interest in lowering the variability 
depends on market design. If for example the wind plant operators were exposed to 
balancing costs (like “conventional” generators are), decrease of variability would 
immediately provide financial benefits. By contrast, if the RES were isolated from 
short-term market signals, the investors would still have interest in decrease of total 
variability as the grid would be able to accept more installed capacity, everything else 
unchanged. Thus, there would be more investment opportunities. On the other hand, 
more installed wind plant capacities means more competition, more energy generated 
with (almost) zero variable cost, and thus, lower economic value of energy, which is 
generally not in the investor’s interest. Overall social welfare (that is, the sum of net 
benefits to producers, consumers, and TSOs) undoubtedly increases with optimization of 
variability because it leads to elimination of a part of total costs of electricity, without 
increasing any other cost. 

One possible approach to minimisation of variability is using the portfolio theory, 
formulated first by Markowitz [16], whose theory brought the 1990 Nobel prize in 
economics to its founder, but also received a good measure of criticism (see e.g., in Elton 
and Gruber [17]). One of the most notable problems with it is the one-period assumption, 
that is, the assumption that future statistical properties of varying financial instruments 
would remain the same as in the past period of observed time-series data. While it really 
can be a problem in the financial world, because market conditions, as well as economic 
conditions of institutions that issued the securities involved, can indeed change quite 
abruptly in short periods of time, it may not be of so much importance in case of wind 
speeds because the behaviour of winds and other meteorological phenomena exhibits 
certain periodicity over longer time spans. Thus, knowing the historical data of wind 
speeds at a certain location, which can be easily converted into data on energy generation 
per unit of installed capacity, may allow for a trustworthy portfolio analysis. The second 
major objection on Markowitz’s theory pertains to assumption of Gaussian distribution 
of observed data population. There is a lot of evidence that wind production is not at all 
Gaussian (see for example Sabolić [18]). In Monahan et al. [19] probability density 
function of land surface wind speeds is characterized using a global network of 
observations, to conclude that it is essentially a Weibull distribution, which is skewed 
(non-symmetric about expected value). Ouarda et al. [20] provide comparative analysis 
of goodness-of-fit of different theoretical statistical distributions to actual measured wind 
speed data, to conclude that the two-parameter Weibull model performs the best. 

Methods 

One of the most important goals of research presented in this article was establishing 
whether the portfolio theory, as a conceptual tool, is any good for optimising portfolios of 
wind plants. Our working hypothesis is that the portfolio theory can in principle be used 
as a tool for minimization of generation variability. 

To investigate this, we carried out a simulation on 2014 measured generation data in 
15 minute intervals at nine locations of wind plants in Croatia. It is important to stress 
that the results of the analyses “have really nothing to do with these power plants 
themselves”. The measurements from them were only used to calculate, in the first step, 
the percentage of the plant’s output relative to the amount of energy that could have been 
produced if a plant operated at full installed capacity during a given 15 minute interval. 
The time series obtained in that way were used as a starting point for portfolio analysis.  

In this investigation only the generation variability was used as parameter to minimise. 
In reality, there are other costs related to locations of wind plants, so the future research 
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should include these parameters, as well. However, it was outside the intended scope of 
this paper. 

Say now that one wants to allocate a fixed amount of new generation capacity, C, to 
install in N available locations with known wind statistics during a certain period of time. 
For the sake of simplicity, let C = 1 (that is, the measurement unit for electrical power 
does not matter). The basic form of portfolio theory optimisation problem can then be 
stated as follows: 

 
min σp

2 = Σi Σj ri rj σi σj ρij  i, j ∈ [1, N] 
 

subject to constraints: Σi ri = 1   i ∈ [1, N]                
         ri ∈ [0, 1]                   ∀  i ∈ [1, N] 

                                       Ep = Σi ri Ei     i ∈ [1, N] 

(1) 

 
where ri is a weight factor, a share in total installed capacity allocated to the location i,  
Ei is expected hourly production expressed as a percentage of capacity allocated to the 
location i, σi is the standard deviation of production (defined in the above described 
manner) in percentage points, ρij is the correlation coefficient between time series of 
production at locations i and j, Ep is expected total hourly production of the portfolio, also 
expressed in percentages of total installed capacity (thus Ep is the load factor of the 
portfolio), and σp

2 is portfolio’s variance. The first constraint states that all the weight 
factors must add up to 1 (that is, actual installation capacities must add up to C). The 
second constraint means that a wind plant cannot be installed with negative capacity. The 
third constraint is simply a definition of expected load factor of a portfolio of wind plants. 
The definition of portfolio’s variance, σp

2, is given in the problem statement line, because 
it is the function to be minimised. 

In the research presented here, analytical solutions without the second constraint were 
also calculated using standard methods (Merton [21]; Lando and Poulsen [22]), because 
they form a hyperbolic “efficient frontier” in σ-E plane (the loci of points with the lowest 
possible σp at any given level of Ep) which is impossible to beat. Although with the 
locations used in this research it was not possible to combine them efficiently without 
negative weights of at least one of them (which is a trait of nature of wind statistics at 
them), this absolute efficiency border is a good orientation regarding the portfolios that 
actually can be achieved. 

As regards the problem with non-Gaussian character of wind generation, we carried 
out portfolio optimisation with four different goal parameters: ordinary standard 
deviation of the portfolio (σp), left semi-deviation (σl), right semi-deviation (σr), and 
skewness (S). Left semi-deviation is a square root of average square of all negative 
deviations of generation, while right semi-deviation is a square root of average square of 
all positive ones. Skewness is simply (σr/σl)2. The solutions were then compared to 
assess the appropriateness of portfolio theory approach to the minimisation of wind 
generation variability. 

As the second constraint brings along mathematical difficulties (that is, application of 
Kuhn-Tucker conditions instead of plain Lagrange multipliers), a numerical approach to 
solving optimisation problem was used. The portfolios were randomly generated by 
repeating random assignments of weight factors to the nine plant locations one million 
times. The population of portfolios obtained in that way was then searched for the best 
solutions for a given value of Ep (that is, within a narrow strip of 0.99 Ep < Ep < 1.01 Ep). 
By “the best” we understood a solution with the lowest σp, σl, σr, or S, depending on 
which parameter was to be minimised. Sometimes, a subset of one hundred thousand 
portfolios was used for purposes of comparison of results obtained by different number of 
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stochastically generated portfolios. The random generation of weight factors was 
performed like this: a sequence of N – 1 random numbers were drawn from an interval  
[0, 1], using a uniform distribution. They were then ordered by ascending value. Then the 
interval [0, 1] was divided into N sub-intervals delimited with that points. The length 
between each pair of adjacent points was then assigned as weight factor to a respective 
location. Such randomisation strategy was proven to generate diversely valued weight 
factors, which was good from the computational efficiency point of view. 

The nine locations used for study will be kept in anonymity, as their identity is not 
important for the analyses. However, Tables 1-3 list their basic statistical properties.  

In the continuation of this article the results will be displayed in the briefest possible 
form. Then the discussions on contributions, as well as conclusions, will be given. 

 
Table 1. Basic statistics of energy production in nine Croatian wind plant locations during 2014 

(source: authors’ calculation) 
 

 Loc. 1 Loc. 2 Loc. 3 Loc. 4 Loc. 5 Loc. 6 Loc. 7 Loc. 8 Loc. 9 
E [%] 32.7804 19.8216 30.1873 14.1026 21.0105 28.7657 21.1031 28.5285 26.8451 

σp [%points] 33.8036 24.4705 34.8772 21.6247 29.4103 33.0175 27.6059 31.1503 29.6501 
σl [%points] 26.0323 16.4927 25.1501 11.7777 17.0633 23.1354 17.2803 23.0299 22.8466 
σr [%points] 43.2632 35.0594 47.1265 36.5015 47.1673 45.7594 41.5016 40.9118 37.6786 

S 2.7619 4.5188 3.5112 9.605 7.6411 3.9121 5.768 3.1558 2.7199 

 
Table 2. Correlation matrix of the parameters from Table 1 (source: authors’ calculation) 

 
 E σp σl σr S 

E 1 0.94359 0.99521 0.52193 −0.87475 
σp  1 0.93682 0.76709 −0.72015 
σl   1 0.49542 −0.89332 
σr    1 −0.13616 
S     1 

 
Table 3. Correlation matrix of 15 minute resolution time series of energy production at nine 

locations in Croatia in 2014 (source: authors’ calculation) 
 

 Loc. 1 Loc. 2 Loc. 3 Loc. 4 Loc. 5 Loc. 6 Loc. 7 Loc. 8 Loc. 9 
Loc. 1 1 0.6755 0.587 0.6575 0.4849 0.7234 0.5422 0.7529 0.3849 
Loc. 2  1 0.7097 0.6459 0.586 0.8632 0.7601 0.6077 0.1714 
Loc. 3   1 0.673 0.7161 0.7735 0.7475 0.6569 0.0775 
Loc. 4    1 0.6733 0.6823 0.5937 0.7064 0.1436 
Loc. 5     1 0.6623 0.6248 0.6178 0.0965 
Loc. 6      1 0.7964 0.6644 0.1892 
Loc. 7       1 0.5481 0.0582 
Loc. 8         1 0.2654 
Loc. 9         1 

RESULTS 

Figure 1 displays a sample of twenty thousand randomly generated portfolios of the 
aforementioned nine wind plant locations. In reality, a total of one million portfolios was 
generated, but for the sake of picture’s clarity, only every fiftieth was plotted. The 
population illustrated by this graph was searched to find portfolios that are optimal by 
various criteria, in a procedure explained above. The resulting efficient frontiers, one 
obtained from a subset of 100,000 portfolios, and the other from the whole one million 
ones, are plotted on Figure 2 together with an analytically calculated Markowitz’s 
efficient frontier, the one obtained by solving the optimisation problem without 
non-negativity constraints on ri values. While the non-constrained curve is smooth, the 
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constrained efficient borders are step-wise functions because they were obtained by 
approximate numerical procedure. If the number of randomly generated portfolios was 
much higher, say hundreds of millions, or billions, the width of the strip around target Ep 
values could be proportionally narrower to obtain on average the same number of 
portfolios to compare within a strip, and consequently, the constrained efficient frontier 
would tend to become smooth, too. However, this additional computational complication 
would not bring any new information of value into our analysis. As one can see from 
Figure 2, increasing total number of random portfolios by a factor of ten contributed only 
slightly to more accurate estimation of efficient frontier. 

 

 
 

Figure 1. A sample of randomly generated portfolios, total number of program runs: 1 million, 
number of plotted portfolios: 20 thousand, small dots: random portfolios, large dots: nine individual 

locations, solid line: unconstrained efficient frontier 
 

 
 

Figure 2. Efficient frontiers with and without (“Markowitz”) non-negativity constraints, and with 
different size of randomly generated portfolio population 

Stability of algorithm 

A very important issue to tackle is stability of numerical estimation of efficient 
portfolios. Namely, if there were no non-negativity constraints, the relation between any 
of the ri’s and the Ep would be linear, as it can be seen from the third constraint of the 
above stated optimisation problem, or from Figure 3, where analytically calculated 
values are displayed. Clearly, in non-constrained case the ri values change ideally 
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smoothly along the efficiency border. However, in our case, where we must forbid 
negative values, the resulting weight factors of efficient portfolios cannot change linearly, 
anymore. However, none of the ri values should change too much, especially not in an 
abrupt way, when one moves along the efficient frontier from one efficient portfolio to a 
near another one. Note that in the presented example it is not possible to achieve 
unconstrained efficiency without at least one negative weight factor. This means that 
constrained efficiency frontier assumes strictly larger σp values for any given Ep than the 
non-constrained one. Figure 4 gives an example of the course of ri values in the vicinity 
of Ep = 25%. Note that all the transitions are smooth, indicating that the “process of 
portfolio selection is stable” even with relatively coarse resolution along the efficient 
border (that is, relatively wide strips) for portfolio search. That would improve still more 
with growing number of random portfolios. 

 

 
 

Figure 3. Weight factors of nine locations resulting from a non-constrained optimisation, note that 
there are no portfolios without at least one ri negative  

 

 
 

Figure 4. Weight factors of nine locations resulting from a constrained optimisation in the vicinity of 
Ep = 25%, note there is no abrupt changes in any of the ri’s 

Participation of individual locations in a mix 

An interesting feature of optimisation for minimum variability is that a process of 
finding most efficient portfolios itself selects individual plant locations that are present 
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with high weights in almost all portfolios. See for example r9 or r7 on Figure 3. On the 
other hand, there are locations that contribute only minutely to any of the efficient 
portfolios, like r5. In the constrained case the “blocks” of “good” and “bad” locations are 
even more distinctive, because, naturally, the non-negativity constraint pushes at least the 
locations which assume negative values in non-constrained optimisation pretty close to 
zero. One way to quantify this phenomenon is to define “average participation” of each 
location in efficient portfolios, mean values of weight factors ri over the entire observed 
range of Ep values. Table 4 gives the average participation across the set of nine locations, 
as well as standard deviations of their respective weight factors. Then, the correlation 
coefficient between the two nine-component row vectors were also calculated. As a rule 
of thumb, “the higher the i-th location’s average participation, the lower the spread of its 
ri values”. Thus, there are some locations that, “in the context of all observed ones”, are 
considerably “better” than the others (here, especially Loc. 9 and 7), and there are some 
that are notably “worse” (here, especially Loc. 6 and 5). It should, however, be stressed 
that this is a consequence of “both” individual “and” group statistical behaviour of wind 
at the locations in question. In some other group’s context the situation regarding any of 
the individual plant locations could in principle turn out to be different. To conclude, the 
portfolio selection algorithm “produces information on location quality”, within the 
context of all available locations. 

 
Table 4. Average participations of wind plant locations, and their standard deviations  

(expressed as percentages relative to the former), in portfolios along the efficient frontiers derived by 
minimisation of σp (source: authors’ calculation) 

 
 Loc. 1 Loc. 2 Loc. 3 Loc. 4 Loc. 5 Loc. 6 Loc. 7 Loc. 8 Loc. 9 Corr. # 

No constraints 
Av. part. 0.0598 0.1718 0.1428 −0.013 0.0722 −0.152 0.1923 0.1077 0.4177 

−0.457* 
St. dev. 84.310 40.963 41.852 −1,074.0 1.2132 −35.39 8.0767 28.120 6.9949 

Constraints ri ≥ 0 
Av. part. 0.0605 0.0425 0.1186 0.1173 0.0368 0.011 0.1352 0.0627 0.4156 

−0.889 
St. dev. 155.2 119.61 99.399 118.15 110.38 155.08 71.983 99.906 12.152 

# Correlation between average participations and their respective standard deviations 
* This correlation coefficient was derived from averages and deviations of absolute values of ri’s, for otherwise it would not be comparable to the other 
figure. However, the averages and deviations listed in the two rows left from the * -marked cell were calculated from true values of ri’s 

How non-Gaussian nature of wind generation affects optimisation? 

The next question to address, as it comes to application of portfolio optimisation 
theory to wind plants, pertains to the fact that distributions of energy produced by a 
system of wind plants are notoriously non-Gaussian (Sabolić [18]). Markowitz’s theory, 
on the other hand, relies on an assumption of normal distribution of data. It is important to 
stress that this fact itself is not important if we use a numerical (or analytical, if we can) 
method to minimise some other parameter, rather than “plain” deviation σp. However, the 
question is whether the standard Markowitz’s theory applies in case of skewed 
distribution type encountered in wind generation. To investigate this, we compared 
standard deviations of optimal portfolios found by searching for the ones with various 
parameters minimised. Ideally, there should be no difference, at all, because if the 
minimisation criteria were not important, minimisation of any of them would lead to 
exactly the same solutions, with exactly the same standard deviations. Consider Figure 5, 
where outcomes of optimisations by different criteria are illustrated. Let σp

* be standard 
deviation of a portfolio that has some of the other three parameters minimised, rather than 
“normal” σp. In the ideal case, all the curves would be constant and equal to 1. One can 
see on the graph that minimisation by skewness leads to almost the same results as the 
one by standard deviation. Next, portfolios optimal by criterion of minimal right 
semi-variance are also very near (sometimes not different, at all) to the ones with 
minimised standard deviation, σp. However, minimisation of left semi-variance gives 
somewhat more notable differences in resulting portfolios. 
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Figure 5. Ratio σp
*/σp along the efficiency frontier for different optimisation criteria used, σp is 

standard deviation of portfolio with minimal σp, while σp
* is standard deviation of portfolio with 

minimal σl (semisig left), σr (semisig right), or S (skew)  
 

To assess by what degree the actual solutions for optimal portfolios differ, one can 
devise several methods. Here, the following one will be applied: Take the solution  
r* = [r1

* r2
* … rN

*], obtained by minimisation of one of the parameters σr, σl, or S. Then, 
take the solution obtained by minimisation of “plain” standard deviation: r = [r1 r2 … rN]. 
Compute the following quantity: MPD = (1/N) Σi |ri

* – ri|, where summation goes from  
i = 1 to N. Here, MPD stands for Mean Portfolio Distance. It measures how far actual 
solutions are from each other (that is, what is the average absolute difference of a weight 
factor obtained by minimisation of one of the three alternative parameters from the one 
obtained by minimisation of standard deviation). The ray chart for nine locations 
observed in this research is given on Figure 6. Note that optimisations by either skewness, 
or right semi-variance, give solutions very close to those coming out of the σp 
minimisation. The left semi-variance optimisation again leads to somewhat bigger 
average differences in r factors. Yet, as the maximum possible difference equals 1, they 
are generally not too big. 

 

 
 

Figure 6. Mean portfolio distances for various minimisation criteria: semisig left (σl),  
semisig right (σr), skew (S) 
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Table 5 shows correlations between standard deviations of portfolios optimised by 
any of the aforementioned criteria, including the “ordinary” minimisation of variance 
without non-negativity constraints imposed. Note quite high values, although a bit lower 
when σl is involved. These results suggest that “optimisation by any of the criteria yields 
similar results”. 

 
Table 5. Correlation matrix between strings of σ values of efficient portfolios  

obtained by minimisation of different parameters (σp, σl, σr, and S), for Ep between 20 and 30 
(source: authors’ calculation) 

 
Optimisation criterion σp, Markowitz σp σl σr S 

σp, Markowitz 1 0.9942 0.9708 0.9939 0.9945 
σp  1 0.9706 0.9997 0.9960 
σl   1 0.9709 0.9659 
σr    1 0.9956 
S     1 

The solutions were found using analytical algorithm in no-constraint case (σp, Markowitz), or numerically in constrained cases  
(σp, σl, σr, S) 

An example: Outcome of Croatian policy 

Table 6 enables one to compare an outcome of Croatian policy regarding the nine 
locations observed in this article to what would be optimal allocation of capacity between 
them for minimised variance. Croatian authorities did not have any particular strategy 
regarding capacity allocations, so that the policy outcome may be safely deemed random. 
Random decision may lead to any of the outcomes within the feasibility set visible on 
Figure 1. In the example studied here, the allocation yielded portfolio’s standard 
deviation about ten percent worse than optimal. It does not look too much, but still, the 
cost of regulation is about ten percent higher than it could have been. This is a cost of 
pure managerial inefficiency as there is no other principle reason for it. The financial 
resources dissipated in such a way could have been used, for example, to regulate more 
wind plants, or to do anything else useful. In Table 6 a comparison between 
mean-variance ratios is given, too. This ratio, Ep/σp

2, is often used as a measure of 
satisfaction with the portfolio. By that criterion, Croatian policy outcome turned out to be 
“slightly worse than the optimal solution”, but it is also slightly better than “centre of 
gravity” of feasibility set (which was estimated by calculating mean values of Ep, and σp, 
of all randomly generated portfolios from Figure 1). The latter is only relevant as a 
benchmark for expected outcome of random portfolio selection. 

 
Table 6. Comparison of the outcome of Croatian policy regarding the nine locations observed in 
this research, and the optimal solution at Ep = 25.6%, which is actual portfolio's measured load 

factor (source: authors’ calculation) 
 

 Loc. 1 r1 Loc. 2 r2 Loc. 3 r3 Loc. 4 r4 Loc. 5 r5 Loc. 6 r6 Loc. 7 r7 Loc. 8 r8  Loc. 9 r9 Ep σp Ep/σp
2 

Actual relative 
shares in total 

capacity 
0.139 0.038 0.113 0.066 0.129 0.042 0.163 0.151 0.159 25.6 22.8 0.049 

Optimal shares  
for the same Ep 

0.010 0.086 0.147 0.034 0.021 0.007 0.176 0.065 0.454 25.6 20.7 0.060 

 More data for comparison: 
Standard deviation is worse than optimum by 10.1%  
Mean-variance ratio for „centre of gravity“ of random portfolios: 0.046 

Influence of temporal resolution of data 

The next issue to address is how the optimal solution changes if one uses more coarse 
time series of data to extract statistical properties (means, variances, and co-variances) of 
wind plant locations. The original 15 minute time series for 2014 were converted to  
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60 minute ones simply by summing each four consequent data points. Then, to compare 
outcomes, the non-constrained efficient frontiers were calculated for both data sets. 
Figure 7 shows the two, while Figure 8 displays error of σp of an efficient portfolio. As 
one can see on both pictures, using rougher time resolution leads to a bit too optimistic 
results, meaning that the standard deviation of any efficient portfolio would be slightly 
underestimated. “In reality, deviation, and associated regulation costs, would be slightly 
higher than what optimisation results would suggest. However, the error is rather minute”, 
and given other possible sources of imprecision, it seems not to have too much practical 
significance. Naturally, it is always better to use finer data if one has them available.  

 

 
 

Figure 7. Comparison of unconstrained efficient frontiers calculated for the same nine  
wind plant locations, based on their 2014 data, with 15 minute or 60 minute time resolution 

 

 
 

Figure 8. Error of σp estimated from 60 minute time series, relative to the one computed from  
15 minute ones 

Optimal upgrading of a system with already operating variable sources 

Finally, one can ask what if there is already a set of already operating wind plants, and 
there are plans to build more. Usually, a policy maker cannot deprive owners of existing 
plants of the rights granted to them in the past. They must be taken into account as given. 
The set of existing plants as a whole has historically measured data on energy production, 
probably in 15 minute resolution. So, the total installed power, average production, and 
deviations from average, are known. If the policy maker had data of wind speeds at new 
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locations in the same roster, he could easily “optimise allocation of intended new 
capacity between new locations by taking the pre-existing situation as just another 
constraint” in problem formulation, that is: 

 
r0 = C0/(C0 + C) (2)

 
where r0 is the weight factor assigned to the set of pre-existing plants, C0 is the total 
installed capacity of the same set, and C is new capacity to be assigned to the new 
locations. Now, in the problem formulation (1), all summations must run from 0 to N 
(instead from 1 to N, as before). 

CONCLUSIONS AND FUTURE RESEARCH 

The research described in this article led to the following contributions: 
• Modern portfolio theory can be successfully used as a conceptual tool for deciding 

on optimal allocation of new generation capacity to be installed at new plant 
locations with a goal of minimisation of generation variability; 

• Application of the basic form of portfolio theory (that is, minimisation of “plain” 
standard deviation in spite of the non-Gaussian nature of wind plant energy output) 
will lead to only slightly sub-optimal solution; 

• Using right semi-variance, or the distribution skewness, as goal functions to be 
minimised gives practically the same solutions as minimisation of portfolio’s 
standard deviation; 

• Statistical reduction of variability is limited in nature, and it should be utilised as 
much as possible, hence the need to perform optimisation as the one described here; 

• Blindfold allocation of new capacities to be installed among several new locations 
leads by necessity to inefficiency, and thus to unnecessarily increased costs of 
regulation of generation variability. Policy measures aiming at elimination of costs 
that can be avoided by organisational measures are, naturally, socially useful and 
desirable, but they provide benefits to the industry, too, as avoiding unnecessary 
costs releases resources for other more useful purposes. 

It should be stressed that this work deals with minimisation of one single variable – be 
it standard deviation, or some other measure of production variability. An obvious 
direction for further research is introduction of other possible components into the goal 
function, because there may as well be other costs related to locations of wind plants. 
However, such a multidimensional analysis was outside the intended scope of our 
research. 
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