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ABSTRACT 

One of the top strategic objectives and research areas in Europe is recovering wood from 
processing and end of life products. However, there are still several ‘contaminated’ wood 
products that are not or only partly reused/recycled. Particle board waste which is 
contaminated with aminoplasts is one of these products. In addition, a considerable 
amount of aminoplast waste resinis produced for the production of particle board that 
cannot be re-used or recycled. The chemical properties of these wastes (high nitrogen 
content of 5.9 wt% and 54.1 wt% for particle board and melamine formaldehyde 
respectively) make them ideal precursors for the production of nitrogenised activated 
carbon. The profitability of the produced activated carbon is investigated by calculating 
the net present value, the minimum selling price and performing a Monte Carlo 
sensitivity analysis. Encouraging results for a profitable production are obtained even 
though the current assumptions start from a rather pessimistic scenario. 
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INTRODUCTION 

The world population has increased significantly since the start of the industrial 
revolution and thereby also the waste production and the depletion of the world’s resources. 
In an ideal society there is no waste generation, however in today’s society large quantities 
of waste cannot be eliminated. Improper management of this waste can lead to serious 
health threats as a result of fires, explosions, and contamination of air, soil, and water [1]. 
Sustainable management needs to reduce the amount of waste that is discharged to the 
environment. These advanced waste management systems include prioritized management 
strategies to minimize environmental problems and preserve resources [1]. In decreasing 
order of importance and with respect to the final disposition of the waste, these strategies are 
[1]: 
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– Minimization or prevention of waste 
– Recycling of waste 
– Thermal treatment with energy recovery 
– Land filling 

 
It is thus necessary to search for new recycling/reengineering methods for waste 

products that are still landfilled or burned. 
Recovering wood from processing and end of life products is recognised as one of the 

top strategic objectives and research areas in Europe [2]. This recovered wood provides a 
high volume resource for recycled products and new advanced materials, with further 
enhancing the environmental profile of wood [2]. One could say that, it is not necessary to 
maximize the utilisation of wood because it is the most abundant biodegradable and 
renewable material available on this planet [2]. However, there are numerous reasons to 
maximize its utilization like economic concerns, social preoccupation with the climate 
change and greenhouse gas emissions as well as threats to forests due to adverse effect of 
climate change, pollution abatement and efficient savings of fossil primary energy [2-4].  

There are already different recycling and reengineering practices for clean wood like 
fuel briquettes, animal bedding, mulch, salvaged timber, recycling into particle board, etc. 
However there are still some wood products that are not or only partly reused/recycled. One 
of these products is particle board (PB) which is chemically contaminated with aminoplasts 
(melamine formaldehyde (MF), melamine urea formaldehyde (MUF) and urea 
formaldehyde). These products can be partly recycled in the production of ‘new’ PB; loss of 
mechanical properties of the final product will not allow to use significant quantities of 
board off-cuts and wood dust (chips between 3 mm – 50 mm) as an incoming wood stream 
[2, 5]. In Australia for example the panel board off-cuts (on average 8% of the PB is wasted 
as off cuts) and wood streams contaminated with glues are currently not used [2]. In the UK 
75% of the wood waste from the furniture industry consists of board off-cuts and sawdust 
[6]. In addition the produced furniture ends up eventually as waste. In the UK, the end of 
life furniture (board materials account for 80% in weight) is estimated between 1.9 and 
2.2 Mtonnes [7]. The annual production of new PB in 2004 by the European PB industry 
was 34.3 million m³ [8].  

Furthermore a considerable amount of aminoplast waste resin is produced for the 
production of particle board (PB) that cannot be re-used or recycled at this moment. 

In addition, combustion of wood waste containing these aminoplasts resins might 
cause pollution because it results in the production of toxic gases like ammonia, 
isocyanic and hydrocyanic acid and nitrous oxides [9-13]. To avoid environmental 
problems and landfilling costs, and to turn this waste stream into a rather profitable 
material resource, a sustainable solution is mostly required [13].Based on the properties 
of the waste sources (e.g. PB and MF) the production of high value nitrogenised activated 
carbon (AC) is considered as a possible opportunity. 

The aim of this work is to evaluate the profitability of AC production from PB and MF 
waste based on preliminary research results and an economic feasibility study before up 
scaling the research. For this purpose a process design and an economical model has been 
developed in a previous work [13]. After production of AC from different blends of PB and 
MF a low concentration phenol adsorption test has been carried out. Based on the obtained 
results, the Net Present Value (NPV) of the cash flows generated by an investment in an AC 
production facility and the minimum selling price of this AC has been calculated. The key 
variables for the profitability of the AC plant are identified. Finally, Monte Carlo sensitivity 
analysis is carried out to take uncertainties into account. 
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METHODOLOGY 

Economical feasibility model 

The feasibility of the AC production facility is investigated by building a cost-benefit 
model (in EUR 2009) and a process design for estimating the total capital investment, the 
production costs, the possible revenues and the NPV based on various literature sources. 
This model is extensively detailed in ref.[13]. An overview of the economical strategy is 
presented in Fig. 1. 

Investors use various investment criteria to evaluate the profitability of an investment 
before they want to invest. According to [14] the NPV is the best criterion for selecting or 
rejecting an investment, either industrial or financial. By using the NPV the expected 
profit is estimated using today’s value of current and future cash flows generated by the 
AC production plant during a certain time period using a predetermined discount rate 
[15]. The NPV formula is given in Eq. 1: 

 

 	 ∑  (1) 

 
With: T - life span of the reactor (20years[15-17]), I0 - initial total capital investment 

in year zero, CFn - Cash Flows generated in year n, i - discount rate is set at 9% 
incorporating the market interest rate and some risk premium[18]. 

The cash flow in a given year can be calculated by using Eq. 2[15,17]. It is the 
difference between revenues (R) and expenditure (E) after tax (t) generated by the 
investment taking depreciation into account because it lowers tax payments. To calculate 
the cash flow, depreciation (D) also needs to be taken into account because it lowers tax 
payments[15,17]. 

 
 1 ∗ ∗  (2) 

 
All the results of the base case are based on an average operation time of the reactor of 

7000 hours per year without shutdown due to maintenance; etc. (80% operating + 20% 
maintenance, etc.). In general, when the NPV is positive, the investment is a good 
decision.  

The NPVs are only valid if the calculated revenues and expenses are 100% certain. 
Because all the different variables are the most likely values obtained from literature, 
these are prone to uncertainty. Monte Carlo sensitivity analysis is performed to have an 
idea about the impact of these uncertainties on the NPV. For each run of the simulation, a 
random value of all the uncertain variables is drawn following a presupposeddistribution 
resulting in a NPV. In this study 10000 runs are carried out using the @Risk software 
from Palisade Decision Tools. The total uncertainty of the NPV than can be explained by 
the corresponding range of values and the obtained distribution.  

Finally, taking into account all these uncertainties the minimum selling price at which 
the AC should be sold in order to guarantee a 95% chance on a positive NPV is 
calculated. 

Sample preparation 

The PB samples are prepared from industrial water-resistant PB panels (glued with 
MUF) which have been sawn to strips of 1 cm and then cut (≤ 2.0 mm) with a high-speed 
rotary cutting mill (Retsch SM 100). The provided waste samples of MF have particle 
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size ≤ 2.0 mm. For characterisation of the input materials they are further reduced in size 
by milling to ≤ 0.5 mm with a IKA Werke Yellow Line A10 mill. Prior to pyrolysis and 
characterisation the samples are oven dried (110 °C) and mixed. 

 
 

Figure 1.Economical strategy 

Characterisation of the input materials 

The PB and MF ratios are analysed by a DuPont Instruments 951 thermal analyser 
(TGA). The input materials are heated in inert atmosphere (with a N2-gasflow of 30 
ml/min) from room temperature to 800 °C at a ramp of 20 °C/min followed by an 
isothermal period of 10 min, then heated to 900 °C at a ramp of 20 °C/min. The ash 
residue of the pure PB and MF are analysed by the TGA with the following temperature 
program: heating from room temperature to 800 °C at a ramp of 20 °C/min in N2-flow (30 
ml/min), then 10 min isothermal in O2-flow (30 ml/min), heating to 900 °C at a ramp of 
20 °C/min in O2-flow (30 ml/min).The elemental composition (C, H, N, S) of the samples 
is analysed by a Thermo ElectronFlashEA1112 elemental analyzer. BBOT (2,5-bis 
(5-tert-butyl-benzoxazol-2-yl) thiophene) is used to calibrate the instrument. Oxygen is 
determined by difference. 

Preparation of the activated carbon 

The waste blends (2 g – 5 g) are pyrolysedin triplicatein a horizontal quartz tube 
reactor (Nabertherm), with a heating rate of 20 °C/min from room temperature to 800 °C 
under nitrogen atmosphere (30 ml/min) followed by a 30 min isothermal activation under 
steam atmosphere (water flow of 2 ml/h direct injected in the reactor). The produced 
gases are combusted. 

Batch adsorption experiments 

The phenol adsorption of the different ACs against a commercial AC (Norit GAC 
1240) were evaluated by introducing 50 ml of a 100 ppm unbuffered phenol solution with 
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different quantities of AC in a hermetically closed flask. The phenol was of analytical 
grade and Milli-Q Millipore water (18.2 MΩ/cm conductivity) was used. The flasks 
where placed in a thermostatic water bath (25°C) and stirred for 24 h. It is assumed that 
equilibrium is reached in this time period. The solution was filtered and the residual 
phenol concentration was analysed using a Pharmacia Biotech Ultraspec 2000 UV-VIS 
spectrophotometer at 270 nm. Calibration is carried out using a number of phenol 
standard solutions(concentration range: blank, 1 ppm, 5 ppm, 10 ppm, 30 ppm, 50 ppm, 
80 ppm and 100 ppm). Each experiment was done in quadruplicate, with an average 
scatter in the results of 5%. 

RESULTS AND DISCUSSION 

Characterisation of the input material 

 
The thermal behaviour of PB and MF is investigated by TGA-analysis in 

N2-atmosphere. In the literature, limited information is provided concerning the thermal 
degradation of the MF. The TG and DTA curves of PB and MF (Fig. 2) show respectively 
a small weight loss of  2 wt% and 3 wt% because of fixed moisture (25 – 150 °C) 
followed by a major weight loss step. For PB this corresponds to the degradation of 
hemicellulose, cellulose and lignin and can be observed from 194 °C – 385 °C (weight 
loss of 62 wt%), followed by a further slow degradation until a fixed carbon content of 
13wt% (at 800 °C). For MF a small loss (5 wt%) is observed from 125 °C till 372 °C. 
Girods et al. [12] found mainly N-compounds such as isocyanic acid and ammonia as 
degradation products below 350 °C. Additionally a loss of 35 wt% (between 372 °C – 
424 °C and) is observed with a maximum degradation rate at 400 °C. In this temperature 
range the detected degradation products are formaldehyde, methanol, amine, ammonia 
and sublimated melamine[12]. In the temperature range starting at 424 °C the resin 
undergoes extensive degradation. Devallencourt et al.[19] assumed that the resin 
progressively deaminates forming cyameluric structures in the range of 410 °C – 525 °C 
with evaporation of HCN and CH3CN. Above 660 °C the MF resin undergoes extensive 
degradation with production of HCN, CO, CO2 [19]. Fixed carbon content at 800°C of 
11wt% is obtained. 
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the successive range [PB – MF (5/0)  PB – MF (1/4)] with a burn-off between 18.5 
wt% and 59 wt%. Nevertheless, the char yields are lower (with exception of PB – MF 
(1/4)) than predicted in Vanreppelen et al. [13] and higher AC yields are achieved for all 
the ratios except for the pure PB which is somewhat lower.  

The chemical composition of the produced ACs with their standard deviations is 
given in Table 2. By increasing the fraction of MF in the mixture a significant higher 
N-content is obtained with an increase of 84% from 2.2 wt% to 14 wt%. 
 

Table 2. AC yield and ultimate analysis 

 PB – MF 
(5/0)

PB – MF 
(4/1)

PB – MF 
(3/2)

PB – MF 
(2/3) 

PB – MF 
(1/4)

Pyrolysis products (wt%)      
 - char 27± 0.5 28± 0.3 28± 0.7 26± 0.9 27± 0.9
 - gases 73 72 72 74 73
Activation (wt%)      
 - activated carbon 22± 0.4 21± 0.7 19± 0.6 15± 0.9 11± 0.6
   % burn-off 18.5 25 32 42 59
 - gases 78.0 78.6 80.7 84.7 89.1
Ultimate analysis (%) (dry 
and ash free) 

     

C 91 ± 1 85 ± 4 86 ± 2 83 ± 2 83.4 ± 0.7
N 2.24 ± 0.04 4.3 ± 0.2 7.35 ± 0.07 9.6 ± 0.3 14 ± 1
H 1.14 ± 0.06 1.32 ± 0.06 1.3 ± 0.1 1.5 ± 0.2 1.65 ± 0.08
S 0.1 ± 0.1 0.07 ± 0.01 0 ± 0 0 ± 0 0 ± 0
O* 6 ± 1 8 ± 4 6 ± 2 6 ± 3 1.4 ± 0.8
N/C atomic ratio 0.02 0.05 0.09 0.12 0.17
O/C atomic ratio 0.07 0.09 0.07 0.07 0.02

* Calculated by difference 

Low concentration phenol adsorption 

Phenol is an important raw material and/or product of the chemical and allied 
industries [20]. Phenol and phenolic compounds are very toxic with a fixed low 
admissible level following the Flemish regulation of 0.1 mg/l of surface water for the 
production of drinking water, ≤ 0.05 mg/l of surface swimming water and 0.5 mg/l of 
groundwater [21]. It is well known that ACs containing nitrogen-containing surface 
groups, have a basic nature and thus have enhanced adsorption capacity toward phenol 
[22]. To evaluate the performance of the produced AC, phenol adsorption tests have been 
performed.  

The effect of the adsorbent dosage on the phenol removal against a commercial AC is 
shown in Fig. 3. It can be seen that the performance of AC PB – MF (5/0 & 4/1) are 
similar but somewhat lower than the commercial AC. At anadsorbent dosage of 0.1 g, 
phenol removal efficiency for all the produced carbons is higher than 90%.  

When combining Fig. 3 and Table 2 no correlation can be found with the incorporated 
N. This is probably due to a decrease of surface area by blocking of pores [23-25]. 
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Energy 
- Power 
 
 
- Heat 

 
1 t/h facility theelectricity consumption is 160 kW with a price of 0.0725 
EUR/kWh 

provided by combustion of the gases 

Nitrogen gas 8 kg nitrogen gas per ton input materiala cost of 2.5 EUR/kg 
 
NPVs have been calculated for different blends of PB and MF resin waste for a 

processing capacity of 1 t/h. These different ratios result in different yields (see Table 2), 
different qualities and hence different costs are incurred. The total capital investment and 
the total expenditure for this facility are displayed in Table 4. The total capital investment 
is about the same for every facility except for the pure MF resin (PB – MF 0/5). 
Compared to the predicted values in Vanreppelen et al. [13], the lower char yields (with 
exception of PB – MF (1/4)) result in a lower total capital investment than predicted in 
Vanreppelen et al. [13]. There is a very little difference in the sum of the operating costs 
and the yearly interest payments for all the ratios. Due to the gate fee from the delivered 
feed, the total expenditure cost decreases with a decrease of MF in the mixture. The total 
expenditure is similar to the total investment cost and is lower than predicted with 
exception of the PB – MF (1/4) ratio. The corresponding NPVs for selling prices between 
1 kEUR/t and 4.5 kEUR/t are presented in Fig. 4. The minimum selling price (NPV = 0 
EUR) of the produced AC can be found in Fig. 4 and Table 4. Fig 5 shows the discounted 
cumulative cash flow of an AC production facility operating at 1 t/h and a selling price of 
2.5 kEUR/t. With increasing share of MF the minimum selling price increases from 1.6 
kEUR t-1 until 3.9 kEUR/t. Girods et al. [22] estimated the selling price of AC from PB ( 
N-content 1.5 wt% - 2 wt%) to be around 2.0 kEUR/t. They state that by optimising their 
activation conditions a higher N-content could be obtained and hence yield a higher 
quality (better adsorption properties) and thus yield a higher value. 
 

Table 4. Total capital investment, annual expenditure and minimum selling price for the 
production of AC 

 PB – MF ratio 
 5/0 4/1 3/2 2/3 1/4 
Total capital investment 10,420 

kEUR 
10,503 
kEUR 

10,572 
kEUR 

10,455 
kEUR 

10,605 
kEUR 

Expenditure       
- Gate fee delivered 
feed 

490 kEUR 392 kEUR 330 kEUR 196 kEUR 98 kEUR

- Operating cost + 
yearly interest  

1,581 kEUR 1,586 kEUR 1,589 kEUR 1,573 kEUR 1,579 
kEUR 

- Total 1,091 kEUR 1,194 kEUR 1,295 kEUR 1,377 kEUR 1,481 
kEUR 

Minimum selling price 1.6 kEUR/t 1.8 kEUR/t 2.0 kEUR/t 2.6 kEUR/t 3.9 
kEUR/t 

 
Vanreppelen et al. [13] expect that optimized AC from PB could yield a selling price 

of maximum 2.5 kEUR/t. When looking at Fig. 4, Fig. 5 and Table 4 in the interval 2.0 
kEUR/t – 2.5 kEUR/t only the ratios where the share of  PB is greater than the share of 
MF are profitable. For example the pure PB would yield a NPV of the cash flows of 3.6 
MEUR - 8.4 MEUR when the product is sold at a price of 2.0 kEUR/t and 2.5 kEUR/t 
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Economies of scale 

Another important factor determining the profitability of the process is the processing 
capacity. As a consequence of the economies of scale, which are incorporated in the total 
equipment cost equation, doubling the processing capacity augments the total capital 
investment with only 57%. The total expenditure with only 36% to 53% and the 
break-even selling price decreases on average with 22.5% to 25.9% (compare Fig. 4 [1 
t/h] with Fig. 6 [2 t/h]). 

Monte Carlo sensitivity analysis 

The economic viability of the AC production facility, i.e. the calculated NPVs, is also 
dependent on the accuracy of the predicted variables of the base case. Nevertheless some 
of these values are uncertain by definition, additionally other variables might strongly 
influence the NPV if their value changes slightly.  

In order to investigate the effect of possible changes of the variables on the NPV a 
Monte Carlo sensitivity analysis is performed. Ten variables are selected and listed 
below: 

- Total Capital Investment 
- Electricity Cost 
- Water Cost 
- Delivered feed cost 
- Discount rate 
- Liquid nitrogen cost 
- Char output 
- AC output 
- Staff cost / shift 
- Annual working hours facility 
 

The selected variables are now allowed to change with 10 % above or below their 
initial value following a triangular distribution (characterized by a most likely, a 
minimum and a maximum value). Monte Carlos simulation calculates numerous (10000 
per ratio) NPVs, for which in each run of the simulation a random value for each variable 
is drawn from the triangular distribution.  

The minimum selling prices in order to guarantee a 95 % chance on a positive NPV 
are calculated from the NPVs distributions. This distribution for a 1 t/h processing plant 
is characterized by the mean with their respective standard deviations as shown in Fig. 7. 
In the successive range [PB – MF (5/0)  PB – MF (4/1)] the minimum selling prices are 
respectively 2.0 kEUR/t, 2.2 kEUR/t, 2.5 kEUR/t, 3.1 kEUR/t, 4.5 kEUR/t. These are 
somewhat higher than defined in the base case (Table 4). The results indicate that in the 
2.0 kEUR/t to 2.5 kEUR/t price range no supplementary ratios are rejected compared to 
the base case. At the expected selling price of 2.0 kEUR/t only the AC produced from 
pure PB is profitable in order to guarantee a 95 % chance on a positive NPV. The mean 
NPV calculated for the Monte Carlo simulation at this price is 3,5 MEUR. 

Nevertheless, the same considerations (gate fee, N-content and economies of scale) as 
in the base case need to be taken into account to analyse these results. 
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i Discount rate 
R Total revenues 
E Total expenditure 
t Tax rate 
D Yearly depreciation of the initial investment 
TGA Thermal gravimetric analysis 
DTA Differential thermal analysis 
Ychar The char yield from the pyrolysis step 
Qfeed input pyrolysis The flow ratio of the input feed (ton dry matter per hour) 
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