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ABSTRACT 

Added resistance in waves is the second-order steady force dependant on the ship 

motions. It significantly affects ship operability and causes speed loss. Therefore the 

required power and fuel consumption of a ship advancing in a seaway increase. In this 

paper, additional fuel consumption is approximated in relation to the increased 

resistance, i.e. the difference between the ship resistance in calm water and resistance 

while operating in waves. Ship advancing in regular head waves with different speeds is 

examined. Calm water resistance is calculated according to the potential flow theory and 

ITTC 1957 model-ship correlation line. The added resistance in waves is calculated using 

three-dimensional boundary element method based on the potential flow theory. Motion 

induced resistance due to heave and pitch motions as well as reflection induced resistance 

are taken into account. Therefore, overall assessment of added resistance in regular 

waves is achieved through evaluation of the ship drift forces and quadratic transfer 

function. The so-called near-field formulation is used to determine wave loads acting on 

the ship hull. Evaluation of increased fuel consumption is made on the basis of estimated 

added resistance for different speeds and wave frequencies. Correlation of fuel 

consumption with various wave frequencies that the ship may encounter in its voyage is 

obtained. 
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INTRODUCTION 

Ship added resistance in waves as a part of a total resistance is caused by encountering 

the waves. When a ship navigates in waves, due to increasing resistance the forward 

speed of the ship decreases. The total resistance is composed of resistance in calm water 

constant at a given speed and added resistance in waves [1]. Therefore to maintain the 

ship forward speed, engine power and fuel consumption increase. Added resistance in 

waves has recently become of great importance considering the increasing demands on 

the speed and voyage duration of the sailing merchant ships. Because of that, it is 

necessary to determine the added resistance in waves with great accuracy. More accurate 

ship performance evaluation in actual sea is essential not only from an economic but also 

an environmental aspect [2]. It is possible to predict the fuel consumption and costs [3, 4] 

along with the Carbon dioxide (CO2) emission during the ship voyage at different sea 

states and thus choose the voyage regime with the highest economic benefit [5]. Even the 

empirical approach in fuel consumption estimations can give reasonably good 

predictions [6]. Fuel consumption and thus gas emissions can be predicted based on 

statistical data collected on modern ships by monitoring systems [7]. However, the fuel 

consumption and emission of CO2 when it comes to ships, is highly dependent on ocean 

and weather conditions, sailing routes and regimes [8]. In order to reduce the CO2 

emission International Maritime Organization (IMO) adopted the Energy Efficiency 

Design Index (EEDI) for new ships. Since added resistance in waves causes increased 

fuel consumption and CO2 emission, the precise determination of added resistance 

becomes necessary [9].  

Added resistance in waves can be approximately determined using empirical 

equations [10]. Many numerical and theoretical methods have also been developed 

however with relatively limited application. Currently, many methods used for the added 

resistance determination are based on the linear potential flow theory, boundary elements 

and/or Green’s function [11]. Some of the methods are based on the ship strip theory. 

According to some studies, the strip method provides sufficient accuracy as long as the 

radiation wave effect is dominant but needs to be corrected for the added resistance due to 

bow wave diffraction in short waves [12]. Ship motions in short waves are small so the 

largest contribution to added resistance in waves comes from wave diffraction. There are 

correction methods that take into account the wave diffraction in short waves [13]. Also 

there are devices developed to reduce the added resistance in waves due to wave 

reflection [14]. By reducing the added resistance by 18% in the object condition, the 

amount of CO2 emission is consequently reduced by 2% [14].  It is important to relate the 

added resistance and the wave amplitude function. Careful attention must be paid in 

measuring or predicting wave amplitudes since the slight error in the wave amplitude 

may result in significant difference in added resistance [15]. 

When a ship is oscillating in waves, the damping is caused by the energy spent and 

transmitted by the generated waves which causes increase of the ship resistance. Added 

resistance is mainly caused by hydrodynamic damping of heave and pitch motions [16]. 

It is important to accurately predict the ship motions in waves in order to determine the 

ship added resistance [17]. A part of the added resistance caused by wave diffraction is 

significant at high wave frequencies while the viscous damping can be neglected [18]. 

The ship speed loss also arises due to some additional causes such as: resistance due 

to the wind acting on the hull and superstructure, resistance due to the diffraction of 

waves, efficiency reduction of the propulsion system caused by propeller operating in 

different conditions from those in calm water as well as due to ship manoeuvrability 

characteristics. In severe sea states an operating propeller can cause additional dynamic 

loads and thrust loss which can roughly be approximated or estimated by experimental 
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results [2]. An increase of the ship resistance in a seaway can reach up to 15-30% and it is 

mainly caused by added resistance in waves [18]. 

Nakayama et al. [19] presented a time domain simulation method for the 

wave-induced motions of a towed ship and the towline tension in head seas. The added 

resistance in waves was obtained from model test results. 

In this paper, the effect of added resistance in waves on additional ship fuel 

consumption is presented. Ship added resistance is calculated for various speeds and 

different incoming wave frequencies and compared with experimental data for the 

container ship model available in the literature [19]. The analysis is conducted using 

hydrodynamic software [20] and added resistance in waves is obtained by the direct 

integration of the second-order pressure components along the wetted surface. 

CALM WATER RESISTANCE 

The lowest approximation of the Navier-Stokes equations is the Laplace equation 

which is valid under assumptions that the fluid flow is steady, inviscid and irrotational. 

Despite the above mentioned limitations, the Laplace equation has many applications. 

The numerical solution of the Laplace equation for simulating the flow over near real 

configurations has remained a basic method in many engineering design activities, the so 

called panel method or Boundary Element Method (BEM). The main advantage of the 

BEM is its unique ability to provide a complete solution in terms of boundary values but 

with substantial savings in modelling efforts. 

The total resistance of the ship consists of viscous and wave resistance. Viscous 

resistance consists of friction resistance and viscous pressure resistance and for practical 

calculations the viscous resistance is calculated through the frictional resistance and a 

form factor which depends on the shape of the hull. The frictional resistance is calculated 

using the model-ship correlation line ITTC 1957, which includes the effect of 

three-dimensional flow.  

The form factor depends on the hull form and is independent of the Reynolds number 

and is the same for all similar models and ships. The size of the form factor has an 

influence on the model-to-ship extrapolation process and the estimation of the total ship 

resistance. Methods of estimating the form factor are experimental, numerical and 

empirical. Many researchers have proposed empirical formulae for calculating the form 

factor based on model test results which may be used for practical purposes. The form 

factor is assumed to be constant over the speed range and between model and ship [21]. 

Holtrop proposed formula for the form factor of the hull by regression analysis that takes 

into account both the form effect on pressure and friction. 

The ship resistance is assessed by in-house free surface potential flow code based on 

the nonlinear ship wave theory. The in-house computer code calculates the steady 

inviscid flow around a ship hull, the wave pattern and the wave resistance. It solves the 

exact, fully non-linear potential flow problem by an iterative procedure, based on a raised 

panel method. The main advantage is the very short calculation time required by these 

methods, compared to Reynolds-Averaged Navier-Stokes (RANS) equations solvers. 

The applied method is based on the nonlinear ship wave calculation using the Raised 

Panel Iterative Dawson (RAPID) approach, developed at MARIN [22]. An iterative 

procedure is used, consisting of a sequence of linear problems, defined such that 

convergence to the solution of the complete steady nonlinear problem is obtained. The 

Laplace problem in each iteration is solved using constant-strength source panels located 

at a distance above the free surface; and the combined free surface condition is treated 

using an essentially DAWSON-like method, modelling derivatives of velocities by 

means of a difference scheme. Details of the procedure can be found in [22, 23]. 
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ADDED RESISTANCE IN REGULAR WAVES 

Added resistance in waves is determined by the drift force as the mean value of 

second-order wave loading through Quadratic Transfer Function (QTF). In accordance 

with the momentum equation, some of the wave energy is transferred to the ship in 

waves. Since only the head waves were taken into account in performed calculations, 

drift force acts in negative direction of longitudinal axis of the ship coordinate system. 

Numerical approximation of motions induced by the drift loads demands determination 

of the second-order wave loads at different frequencies of incoming waves. The 

low-frequency loads can be determined by the QTF of the incoming waves and 

diffraction/radiation wave fields. The QTF of the second-order wave load is based on 

drift forces in regular waves. Therefore, it is necessary to determine QTF in order to solve 

the second-order wave loads problem. 

The complete low-frequency wave loads are composed of two parts: one depending 

on the quadratic products of the first-order wave fields, and the second depending on the 

second-order incoming and diffraction potentials, which can be determined by the 

second-order Froude-Krylov force and Haskind integral on the hull surface, as follows 

[24]: 

 

( ) ( ) ( ), , ,
i j q i j p i j

F F Fω ω ω ω ω ω= +  (1)

 

where �����, ��� are first-order loads, �	���, ��� are second-order loads and ��, �� 

are incoming wave frequencies. 

In presented approach, the formulation for �	���, ��� is often called indirect method 

since it provides a way to evaluate the contribution from the second order diffraction 

potential through the Haskind relation such that the second-order diffraction potential is 

not explicitly computed as explained in [25]. 

Haskind integral enables the replacement of the unknown diffraction potential by the 

radiation potential [26]: 

 

0 0

0

7 0 0
d d  , 1...6k

k

S S

S S k
n n

φ φ
φ φ

∂ ∂
= − =

∂ ∂
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where 
� is the diffraction potential, 
� is the radiation potential, 
� is the incoming 

wave potential and �� is the wetted surface. 

Diffraction, radiation and incoming wave potential satisfy the boundary conditions on 

the free surface, bottom and the so called Sommerfeld condition on the radiation waves. 

By satisfying these conditions the integration area is reduced to the wetted surface. 

Considering the QTF to be a regular function of incoming wave frequencies �� and 

�� and taking into account the relation Δ� = �� − ��, QTF is developed as Taylor series 

expansion [10]: 

 

( ) ( ) ( ) ( )( )
2

0 1 2
, / 2 ...

i j i i i
F F F Fω ω ω ω ω ω ω= + ∆ + ∆ +  (3)

 

The zeroth-order term ������ represents the load obtained by the integration of the 

pressure along the hull wetted surface, i.e. the drift force. Approximation proposed by 

Newman which is generally used when calculating the mentioned term can notably 

underestimate the second-order wave loads and also can provide an incorrect phase shift 

given that the approximation is a real function and the QTF is a complex function. 

The term ( )1 i
F ω  is composed of four parts: 
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( ) 1 1 1 1

1 1 2 3i q p p p
F F F F Fω = + + +  (4)

 

where ��
� is the contribution of the first-order wave load, �	�

�  is the contribution of the 

second-order incoming wave load and diffraction waves, �	�
�  is the second-order 

correction of the boundary condition on the hull and �	�
�  is the effect of forcing pressure 

over the free surface. 

Wave frequencies for finite water depth are determined by the dispersion relation: 

 

( )tanhkg kdω =  (5)

 

where � is the wave number, � is the acceleration of gravity and � is the depth. 

The low-frequency wave loading ���� is evaluated in temporal domain after the 

calculation of QTF and complex amplitudes and it is represented by an expression as 

follows [24]: 

 

{ }' *

1 1

( ) exp ( )
ij

N N

i j i j
i j

F t F a a i tω ω
= =

 = ℜ − − ∑∑  (6)

 

where ���
′  is the drift force in waves, �� is the complex amplitude of incoming wave, ��

∗ is 

the complex conjugate amplitude of incoming wave and ��, ��  are incoming wave 

frequencies. 

At each time step, the low-frequency wave loading is evaluated to perform the time 

simulation of motions. Due to the double summation in the eq. (6), the calculation is 

complex and time-consuming so the Newman’s approximation of drift forces in regular 

waves is largely used in practice: 

 

( )' ' '
sign '

ij ii jj
F F F F= ⋅  (7)

 

where sign ���� is the signum function i.e. the sign of wave loading which is assumed to 

remain the same when �� varies. 

Finally, after introducing the approximation eq. (7) into the wave loading eq. (6), the 

time-series reconstruction of low-frequency wave loading becomes: 

 

( )
2

'

1

( ) exp( ) sign '
N

jj j j
j

F t F a i t Fω
=

= −∑  (8)

 

where ���
�  is the wave loading at certain wave frequency or drift force. 

The added resistance force in waves is defined as: 

 
' 2( )
jj j

F t F a=  (9)

 

where �� is the amplitude of head incoming waves. 

The added resistance coefficient is given by the following equation: 

 

2 2

( )

/
xw

j

F t
C

ga B Lρ
=  (10)
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where ρ is the density of water, � is the gravity acceleration, � is the model breadth and 

  is the model length. 

In this paper previously described numerical procedure is used to calculate constant 

part of second-order wave load that represents the added resistance in waves. 

CASE STUDY 

Model test description 

On the basis of the presented mathematical model and hydrodynamic software [20], 

ship added resistance in waves for the S-175 container ship model in regular head waves 

is calculated for various wave lengths. In order to verify and validate the mathematical 

model, the obtained results are compared with model test results [19]. Tests were 

conducted on a stationary model and at three different speeds. Wave height was set to  

30 mm and the ratio between wave length and model length varied in the range  

λ/L = 0.3-2.0. 

The sway and yaw motions of the ship model were fixed by guide equipment, so the 

slewing motion never occurred. The ship model was free to move in surge and heave 

directions and it was able to rotate around a lateral axis (pitch). The ship model could 

experience surge, heave, and pitch motions only. Therefore, it was possible to measure 

heave, pitch and surge motions of the ship model. The surge and heave motions were 

measured by laser range-finders and the pitch motion by a potentiometer. 

The principal dimensions of the full scale S-175 container ship and its model are 

given in Table 1 and the body plan is shown in Figure 1. The position of the Longitudinal 

Centre of Gravity (LCG) and the radius of gyration in Table 1 represent actual 

measurement values obtained from model tests [19]. 

 
Table 1. Principal dimensions of the S-175 container ship 

 
 Full scale Model 

Length   [m] 175.00 3.00 

Breadth � [m] 25.40 0.435 

Draft of fore peak !"  [m] 7.00 0.120 

Draft of midship ! [m] 9.50 0.163 

Draft of aft peak !# [m] 12.02 0.206 

Displacement volume ∇ [m3] 24,154.13 0.122 

Block coefficient $% 0.572 0.572 

Position of LCG &'  [m]  −0.141 

Radius of gyration �((/   0.239 

 

 
 

Figure 1. Body plan of the S-175 container ship 
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Calm water resistance calculation 

The calm water resistance is assessed by an in-house computer code as described in 

[27]. The hull panelling consists of 1,280 panels and free surface panelling consists of 

1,275 panels for one symmetric half, in total 2,555 panels. Figure 2 shows the hull and 

free surface panelling for the nonlinear wave resistance calculation as generated by the 

automatic adaptation. The free surface elevations are ten times magnified. 

The form factor k = 0.153 is calculated according to Holtrop’s method for predicting 

the form factor [21]. 

 The results regarding calm water resistance are given in Table 2. 

 

 
 

Figure 2. Hull and the free surface panelling for the S-175 container ship model at Fn = 0.198 

 
Table 2. Calm water resistance of the S-175 container ship 

 

 Fn Cw × 103 v [m/s]   Rn × 10-8 CF × 103 CT × 103 RT [kN] 

0.087 0.0849 3.604 5.3077 1.6584 1.9970 71.3766 

0.148 0.2318 6.131 9.0292 1.5502 2.0192 208.8475 

0.198 0.4932 8.202 12.080 1.4954 2.2173 410.4827 

 

Figure 3 shows the three-dimensional steady wave pattern around the S-175 container 

ship model at Fn = 0.198. The wave heights are ten times magnified and normalized by 

the length of the ship model. 

 

 
 

Figure 3. Wave pattern around the S-175 container ship model at Fn = 0.198 

Added resistance calculation 

Hydrodynamic software [20] used for calculations is based on the linear potential 

flow theory and it provides a complete solution of the first-order problem of wave 

diffraction and radiation and also the QTF of second-order low-frequency wave loads for 

Y

X

Z
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floating body with or without forward speed in deep water and in water of finite depth. 

The software uses panel method based on the boundary integral equations. 

Once the hull form is defined, the software creates a hull mesh under the waterline. 

Visualization of the mesh for the S-175 container ship model as obtained by the software 

is shown in Figure 4. 

 

 
 

Figure 4. The S-175 container ship model mesh 

 

Based on model test results [19], the regular head waves having the constant wave 

height of 30 mm with incoming wave frequencies based on the defined ratios λ/L were 

applied. The ratio between wave length and model length varied in the range 

λ/L = 0.3-2.0, with step size 0.1. Incoming wave frequencies, for which the calculations 

were performed, were determined using the dispersion relation (5) for finite water depth, 

considering that the towing tank depth equals 3.5 m. 

The calculation was performed for four Froude numbers given in Table 3. 

 
Table 3. Froude numbers and corresponding model speeds 

 

Froude number Fn Model speed v [m/s] 

0 0 

0.087 0.472 

0.148 0.803 

0.198 1.074 

 

Second-order low-frequency wave loads using hydrodynamic software can be solved 

using three formulations [20]: 

• The near field formulation requires the evaluation of the first-order wave field 

around the hull and along the waterline, as well as the first-order motions caused 

by that field. Drift load is determined by direct numerical integration of pressure 

along the defined hull form wetted surface. Longitudinal components of the 

oscillating hydrodynamic pressure are integrated along the wetted surface. The 

pressure integration consists of two parts: pressure integration along the wetted 

surface defined by mean position of the ship since the first order effects cause 

mainly the motion responses, and the integration of the pressure cause by 

changing wetted surface area due to ship motions in waves. The 

diffraction-radiation problem is solved by Green’s function source distribution 

method. Using the dynamic free surface boundary condition, pressure in hull 

panels along the waterline is obtained and the relative wave elevation is 

determined based on the total motions of the ship related to the wave elevation; 
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• Another formulation based on the momentum theorem for the horizontal drift 

forces involves first-order wave field in the far field and is often called far field 

formulation and is preferable in practice thanks to its better convergence of drift 

forces and stability. However, the far field formulation cannot provide the 

accurate vertical drift loads and the low-frequency loads QTF which can be both 

of great importance in shallow water. The method is considering a control volume 

around the hull and since the incoming wave potential is familiar it is necessary to 

calculate the potential that satisfies the linearized free surface condition and ship 

hull boundary condition. The force acting on the ship hull is determined through 

momentum flow through the control volume around the hull. The wave field 

potential consists of the regular wave field potential and the potential determined 

with the singularities that represent the ship hull; 

• The middle field formulation combines the advantages of both near field and far 

field formulation providing sufficiently accurate numerical results and possibility 

of calculating all components of drift loads and low-frequency loads QTF as the 

near field formulation. The method is based on the analysis in a finite volume 

limited by the hull and a control surface surrounding the hull. Pressure integration 

over the hull surface is evaluated with a semi-analytical method using the far field 

potentials like the previous formulation. Gauss theorem is applied to control 

volume limited by a control surface around the ship hull. Horizontal components 

of drift loads involve a surface integral on the mentioned control surface and a line 

integral along the intersection of the control surface and the free surface. 

RESULTS 

Comparison of the calculated added resistance coefficients in regular head waves 

with coefficients obtained from model test results, as a function of the ratio between wave 

length and model length, is shown in Figures 5-8. In the Figures 5-8 only the results 

obtained by direct numerical integration of pressure along the defined hull form wetted 

surface are given, since near and middle field formulations give identical results. The 

results obtained by far field formulation differ significantly from the results obtained by 

two previously mentioned formulations. Also evaluation of the second-order wave loads 

using the far field formulation based on momentum theorem gives the highest deviations 

from experimental results. Considering that it is a formulation that uses far potentials, it 

does not provide sufficiently accurate results in finite water depth (which was the 

assumption of this analysis). It is obvious that by increasing the ship speed or Froude 

number, the deviations between numerical and experimental results also increase.  

Part of the ship resistance is accounted for by the aerodynamic drag of the 

superstructure and the above water part of the hull. Since only a moderate sea state is 

considered, added resistance due to wind can be neglected [28]. According to [28] the 

contribution from the wind is quite small compared with the increase in resistance due to 

the waves in moderate sea state. 

Additional fuel consumption for full scale ship in regular head waves as a function of 

the ratio between wave length and model length for different Froude numbers is given in 

Figure 9. The calculation of fuel consumption is made on the basis of added resistance 

coefficients obtained from model test results. To overcome the added resistance in waves 

obtained by the hydrodynamic software at given speed, increase in power is required. 

Based on the required power and specific fuel consumption (200 g/kWh) the additional 

fuel consumption at given speed is obtained as a difference between the real fuel 

consumption and the one in calm water. 

Figure 10 shows the comparison of the increase of fuel consumption in regular head 

waves over the fuel consumption in calm water as a function of the ratio between wave 
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length and model length for different Froude numbers. Since some values reach as much 

as 85% of the fuel consumption in calm water, it can be concluded that the added 

resistance due to waves should be included in total estimation of ship fuel consumption. 

 

 
 

Figure 5. Comparison of added resistance coefficients in regular head waves for Fn = 0 

 

 
 

Figure 6. Comparison of added resistance coefficients in regular head waves for Fn = 0.087 

 

 
 

Figure 7. Comparison of added resistance coefficients in regular head waves for Fn = 0.148 
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Figure 8. Comparison of added resistance coefficients in regular head waves for Fn = 0.198 

 

 
 

Figure 9. Comparison of additional fuel consumption in regular head waves for different  

Froude numbers 

 

 
 

Figure 10. Comparison of the increase of fuel consumption in regular head waves for different 

Froude numbers 

CONCLUSIONS 

The S-175 container ship added resistance in waves is calculated using 

three-dimensional boundary element method based on the potential flow theory and 

compared to the available experimental results. The additional fuel consumption due to 
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increased resistance is obtained at three different speeds. Correlation between wave 

frequency and ship fuel consumption is obtained for the presented case study. By 

overview of the obtained results, it can be concluded that maximum fuel consumption is 

related to a specific wave frequency or wave length. In other words, shifting from the 

peak the fuel consumption decreases rapidly. This fact can be very useful when planning 

the trip of a ship so as to avoid those parts of the waterway where the unfavourable wave 

frequencies can occur. 

The plans for future research is to correlate the sea state or the significant wave height 

and zero crossing wave period with added resistance in waves i.e. with increased fuel 

consumption. 
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NOMENCLATURE 

��  complex amplitude of incoming wave  [m] 

��  amplitude of head incoming waves   [m] 

��
∗  complex conjugate amplitude of incoming wave [m] 

�  model breadth      [m] 

$%  block coefficient       [-] 

$*+  added resistance coefficient     [-] 

�  depth       [m] 

����  added resistance force    [N] 

����, ���  wave load      [N] 

���
�   drift force in waves     [N] 

�	  first-order loads     [N] 

��  second-order loads     [N] 

��  zeroth-order term in wave load   [N] 

��  first-order term in wave load    [N] 

�	�
�   

contribution of second-order incoming 

wave load and diffraction waves 
[N] 

�	�
�  

second-order correction of the boundary  

condition on the hull  
[N] 

�	�
�   effect of forcing pressure over the free surface [N] 

��
�  contribution of first-order wave load   [N] 

�  acceleration of gravity              [m/s2]  

�  wave number                 [1/m] 

�((  radius of gyration     [m] 

   model length       [m] 

��  wetted surface                 [m2] 

!  draft of midship     [m] 

!#  draft of aft peak     [m] 

!"  draft of fore peak     [m] 

,  model speed                [m/s] 

&'   position of LCG     [m] 

Greek letters 

λ  wave length      [m] 

ρ  density                [kg/m3] 



Journal of Sustainable Development of Energy, Water  

and Environment Systems 

Year 2017 

Volume 5, Issue 1, pp 1-14  
 

13 


�  radiation potential               [m2/s] 


�  diffraction potential               [m2/s] 

��  incoming wave frequency              [rad/s] 

��  incoming wave frequency              [rad/s] 

∇  displacement volume                [m3] 
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