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ABSTRACT 

This study proposed a prediction model for power consumption using linear programming to 

optimise return air and supply air temperatures while minimising total power consumption 

across different time zones. A multiple linear regression training analysis was conducted to 

examine the correlation between power consumption and five air-side parameters, namely are 

the ambient temperature, return air temperature, supply air temperature, and humidity ratios. 

The results indicated a strong correlation and low root mean squared error, suggesting that these 

parameters significantly influence power consumption and provide a better-fitting model. From 

the optimal results of the linear programming model, optimised supply air temperature ranged 

from 17 °C to 18 °C, with return air temperature consistently at 21 °C, achieving a 4.26% energy 

saving compared to actual power consumption. In conclusion, the optimised values for return 

and supply air temperatures can be used to manage air temperature resets for the efficient 

operation of the air conditioning and mechanical ventilation system. 

KEYWORDS 
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INTRODUCTION 

The air conditioning and mechanical ventilation (ACMV) system is designed to provide 

cooling solutions by using air as the primary medium for heat exchange. This ensures thermal 

comfort, maintains good indoor air quality, and provides adequate ventilation in modern 

buildings. These systems are typically integrated with internal control mechanisms to maintain 

interior space temperatures within the desired comfort range, usually around 23 °C. One major 

concern for the ACMV system is ineffective energy management caused by high power 

consumption. The main cause of this problem is that the interior space temperature set point is 

maintained at a constant value across all time zones, without examining the impact of the 
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air-side parameters for the ACMV system. The air-side parameters such as the ambient 

temperature, supply and return air temperatures and humidity ratio are often ignored when 

analyzing energy management to propose suitable energy conservation measures (ECM) for the 

ACMV system [1]. This is because the air-side parameters are considered a minor influence 

compared to water-side cycles in the chiller's operation [2]. In the ACMV system's controls and 

monitoring loop, the air-side parameters concern only the return and supply air temperatures in 

the AHUs. External factors outside the control loop, such as ambient temperatures and 

humidity, can affect power consumption too but are typically not included in the proposal of the 

ECM. Despite the availability of smart controls and automation for real-time monitoring and 

optimisation, the high investment cost remains a burden compared to traditional control systems 

[3]. The fastest and most effective way to reduce power consumption through ECM is by 

implementing zero-cost measures. The zero-cost measure is the initiative to reduce the power 

consumption of the system without additional cost [4]. This study proposes a zero-cost measure 

related to optimisation of the current condition of the ACMV system. The proposed zero-cost 

measure is to optimise return and supply air temperature settings in the ACMV system by taking 

into account ambient temperature, space air temperatures, and humidity. This approach focuses 

on developing a linear programming (LP) model aimed at minimising power consumption. The 

LP model is formulated by leveraging multiple linear regression (MLR) techniques from the 

historical data for power consumption and air-side parameters from the morning, afternoon, and 

late afternoon to produce accurate predictions about power consumption for the ACMV system. 

This study is the extended version of the previously published paper on identifying the 

relationship between power consumption and air-side parameters [5]. In the previous paper, a 

strong correlation was observed between power consumption and air-side parameters for each 

time zone. This extended version expands the study by applying machine learning software to 

analyse the linear regression between power consumption and air-side parameters. The goal is 

to develop a predicted power consumption model with high squared correlations and low 

RMSE across all time zones. Additionally, further analysis is conducted to identify the optimal 

minimum power consumption and optimised return air temperature (RAT) and supply air 

temperature (SAT) by formulating a linear programming (LP) model based on the predicted 

power consumption model from the MLR technique. The abovementioned explanation of the 

expansion study in this paper contributes a clear distinction from previous research. 

Table 1 provides the literature review summary on the method used for predicting and 

optimising power consumption considering air-side parameters of the ACMV system. The 

robust statistical method of multiple linear regression is utilised to predict interior space 

temperature and optimise heating strategies, resulting in a 43% improvement in thermal comfort 

with an adjusted R² close to 0.9 [6]. In a similar study, cooling load prediction accuracy and 

efficiency are significantly enhanced using physics-based multiple linear regression (PB-MLR) 

models with a minimal mean absolute percentage error (MAPE) of 2.64% [7]. In a recent study, 

Zulkafli et al. [8] effectively uses piecewise linear and multiple linear regression models to 

estimate power consumption in ACMV systems, achieving high accuracy and demonstrating 

significant potential for electricity cost savings through optimisation models. 

For the prediction model for power consumption, most of the studies use various machine 

learning techniques of artificial neural networks [9], deep learning [10], and particle swarm 

algorithm [11]. However, this study only focuses on finding the predicted power consumption 

without integrating with optimisation model to find optimal minimum power consumption and 

optimised air-side or water-side variables for the ACMV system. In another study, employing 

control strategies such as intelligent control models [12] and model predictive controls [13] 

shows a significant reduction in power consumption, despite the expensive nature of these 

mechanisms. For example, Wang W. et al. [14] show that a nonlinear model predictive control 

(MPC) strategy for Chiller-AHU systems optimises power consumption and reduces costs, 

achieving a 6.2% saving in total power consumption and a 12.3% reduction in electricity bills. 

Some studies the relationship between indoor air quality[15], occupancy levels [16], and 
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humidity to significantly reduce power consumption and promote a more sustainable 

environment. For example, Anand et al. [15] reveals that implementing occupancy-based 

operational strategies for VAV systems can lead to significant energy savings, ranging from 

19% to 38%, while maintaining acceptable Indoor Air Quality (IAQ). Piereci et al. compared 

energy performance using two different sets of standards, namely are European and 

Montenegrin standards. The European standard predicts more energy use, leading to higher 

carbon emissions for cooling than the other standard [17]. 

Table 1. Literature review summary 

Author Power 

Consumption 

Prediction Optimisation Ambient 

Condition 
Parameter 

Ambient 

T 

Humidity Air 

temperature 

Abdellat

if M. et 

al. [6] 

Multiple 

Linear 

Regression 

√ √ √ √ x √ 

Afroz Z. 

et al. 

[11] 

Particle Swarm 
Optimisation 
Algorithm 

√ X √ √ √ √ 

Anand 

P. et al. 

[15] 

MATLAB X X X √ X √ 

Chen S. 

et al. [7] 

Multiple 
Linear 
Regression 

√ X √ √ X √ 

Lin et al. 

[9] 

Artificial 
Neural 
Network 
(ANNs) 

X X √ √ X √ 

Matsuda 

et al. 

[10] 

MLR  
Deep neural 
networks 
(DNN) 

√ X X X X √ 

Saleem 

S. et al. 

[5] 

PWL and MLR X X √ √ √ X 

Tien et 

al. [16] 

Deep  
learning 

√ X X X √ X 

Wang K. 

et al. 

[12] 

Support Vector 
Regression 
(SVR) 

√ X √ √ X √ 

Wang 

W. et al. 

[14] 

Nonlinear 
Model 
Predictive 
Control (MPC) 

√ X X √ √ √ 

Zulkafli 

et al. [8] 

Linear 
Regression 

X √ √ X X X 

 

The findings of this study highlight the importance of understanding the relationship 

between power consumption and air-side parameters to effectively prepare for and adapt to the 
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impacts of ambient conditions. Although extensive literature exists on using machine learning 

or statistical analysis to predict and estimate power consumption based on various energy and 

environmental factors, only a limited number of studies have examined integrated parameters 

for predicting power consumption. Furthermore, there is a lack of research focused on 

developing an optimisation model to minimise predicted power consumption in air 

conditioning and mechanical ventilation (ACMV) systems. 

Research novelty and objectives 

The main aim of this study is to predict energy saving for air conditioning and mechanical 

ventilation (ACMV) system considering the correlation of power consumption with air-side 

parameters for different time zones. While numerous studies have focused on predicting power 

consumption for ACMV systems, there remains a significant gap in knowledge regarding the 

influence of air-side parameters to predict the power consumption. Such correlation is not 

thoroughly explored for air-side parameters in the ACMV system, including ambient 

temperature, air temperatures, and humidity ratios. The novelty of this study is divided into 

three main novelty domains on conceptual, methodological, and operational novelties for 

predicting energy saving for ACMV system: 

 Conceptual novelty – prediction on future and optimal minimum power consumption 

based on optimised return and supply air temperatures considering the influence of 

ambient temperature and humidity ratio for different time zones. The achievable 

optimal minimum power consumption sets a clear benchmark for predicting energy 

saving of ACMV system. 

 Methodological novelty – establishment of a linear programming model formulation 

from the multiple linear regression training analysis for determining the optimal 

minimum power consumption for each time zone. 

 Operational novelty – utilisation of advanced machine learning software to predict 

power consumption and a state-of-the-art optimisation tool for developing a linear 

programming model to minimise power consumption for ACMV system. 
 

 
 Cold Stream Hot stream 

Chiller water   

Condenser Water   

Air   

Figure 1. ACMV system components 
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Figure 2. Methodological framework for predicting energy saving for ACMV system 

3. Predicting Energy Saving using LP Model 
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METHOD 

Figure 1 shows the ACMV system, which includes two chiller units, two cooling towers, 

and 17 AHUs in a 5-story academic building. The ACMV system distributes its 17 AHUs 

across the building as follows: i) 5 AHUs on the lower ground floor; ii) 3 AHUs on the ground 

floor; iii) 2 AHUs on Level 1; iv) 2 AHUs on Level 2; v) 2 AHUs on Level 3; and vi) 3 AHUs 

on the rooftop. It features three material cycles: the chilled water cycle for cooling, the 

condensed water cycle for rejecting heat to the ambient air, and the indoor air cycle in the 

AHUs for regulating temperatures and improving ventilation within the building. 

The methodological framework for predicting energy saving for ACMV system by 

considering air-side parameters of the AHU system is displayed in Figure 2. The air-side 

parameters under study are the ambient temperature, return, and supply air temperatures, and 

return and supply air humidity ratio. The methodology for this study consists of three main 

stages. The first stage involves data collection and correlation between the power consumption 

and air-side parameters. The second stage focuses on multiple linear regression (MLR) 

analysis to find coefficients for air-side parameters that define the relationship with power 

consumption in a single model equation. Finally, the third stage predicts energy savings using a 

linear programming (LP) model. 

Data collection and correlation analysis 

In the initial stage, historical air-side parameters such as ambient temperature, return air 

temperature, and supply air temperature are gathered from the building management system 

(BMS). A power logger is employed to collect data on power consumption. The dataset is 

collected over a period of two weeks, with recordings taken at 10-minute intervals. To measure 

supply and return air humidity ratios, an air sensor is utilised to record the humidity ratio for 

each AHU and for each time zone. There are 17 AHU units in the academic building involved 

in this study. The correlation analysis is done between the power consumption and the air-side 

parameters to find if a strong correlation exists for each time zone in the morning, afternoon, 

and late afternoon. If the correlation is weak with R-squared less than 0.7, the respective 

air-side parameters will be excluded from the next stage. 

Multiple linear regression using Al Studio 

In the second stage, the predicted power consumption model is developed using multiple 

linear regression (MLR) analysis. The MLR analysis is performed using Altair AI Studio, 

which is a visual, drag-and-drop machine learning software. A single model is created that 

represents the predicted power consumption based on the coefficient values of the air-side 

parameters. The dataset is split into two types of data, namely the training data and the testing 

data. The process involves selecting strongly correlated data as the training data and weakly 

correlated data as the testing data. A linear regression model is applied to the training data, 

which demonstrates a high squared correlation and a low RMSE compared to the testing data. 

In other words, the training data is the important data to consider for multiple linear regression 

(MLR), while the testing data is considered insignificant. 

Predicting energy saving using linear model formulation 

The linear programming model (LP) is formulated to solve the optimisation problem of 

identifying the minimum predicted power consumption for ACMV system considering 

independent air-side parameters such as ambient temperature, supply, and return air humidity 

ratios for three different time zones. The LP model is designed to determine the optimised RAT 

and SAT for three different time zones while minimising the predicted power consumption of 

the system. The LP model assumes that the selected air-side parameters are the dominant 

factors affecting the power consumption and other potential influences such as occupancy, heat 

loss are negligible. It is assumed that the developed LP model can be generalized to other 
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similar ACMV system in various types of buildings for a broader optimisation application. The 

generalizability of the LP model is characterized by the scalable formulation, as the objective 

function and constraints are expressed in a general form. The linear LP model consists only of 

continuous variables and parameters. For easy reference, symbols for continuous decision 

variables are represented in capital Roman letters, while parameters are denoted using small 

Roman or Greek letters. This will be achieved by using a multiple linear regression model to 

predict minimum power consumption while establishing minimum and maximum bounds for 

both RAT and SAT. The simple linear programming model is solved using advanced 

optimisation software called General Algebraic Modelling System (GAMS) v38.2.1 until it 

reaches optimality. The model formulation that is designed for this study is discussed in the 

following section. 

 

Objective function.  The objective function refers to the main goal of the model 

formulations, which is to identify the minimum predicted power consumption for the ACMV 

system. The equations for objective function are shown in eq. (1): 

 

     {∑      
       

   

} (1) 

 

Power consumption model.  Eq. (2) shows the power consumption model from the MLR 

analysis. For every time point, the return air temperature (   
          ) and supply air 

temperature (  
           

) are declared as decision variables, while the other air-side parameters 

such as ambient temperature (  
       ) and air humidity ratio for return (   

          ) and 

supply air (   
          

) are defined as the fixed parameters in the model formulation: 

 

      
       

        
            

                
               

           

      
          

 
(2) 

                 
       

            (3) 

 

Minimum and maximum bounds for return and supply air temperatures.  Eqs. (4) and (5) 

display the minimum and maximum bounds for return and supply air temperatures. The bounds 

are obtained from historical data for three different time zones: morning, afternoon, and late 

afternoon. 

 

  
             

             
          

 (4) 

              
           

             (5) 

RESULTS AND DISCUSSION 

This study focuses on estimating the power consumption of the ACMV system by 

identifying the correlation of power consumption with the air-side parameters in the AHU 

system for different time zones, namely in the morning, afternoon, and late afternoon. The 

identified air-side parameters focused on the AHU system include the SAT, RAT, return air 

humidity ratio, and supply air humidity ratio. The linear function finds correlations between 

power consumption and air-side parameters. The strong correlation trend is indicated by 

obtaining an R
2
 greater than 0.7. The trend demonstrates how the air-side parameters affect the 
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ACMV system's power consumption. The figure is divided into four quadrants to represent the 

correlation at different times of the day: morning (08:00-11:50), afternoon (12:00-14:00), and 

late afternoon (14:10-17:00). In the data distribution graph, morning is represented by green, 

afternoon by orange, and late afternoon by grey. 

Correlation of power consumption with supply air temperature 

Figure 3 displays the correlation of total power consumption with the SAT. SAT refers 

to the temperature of air being delivered into the space for cooling from the vent of ACMV 

system. According to Figure 1, a low SAT value does not necessarily indicate high power 

consumption. The majority of value points are found in the third quadrant (i.e., bottom-left 

corner). A strong positive correlation is noted in the morning and late afternoon with an R
2
 

of 0.8264 and 0.785, respectively, while a strong negative correlation is present in the 

afternoon with an R
2
 of 0.785. High power consumption is observed in the morning to start 

up the system at high SAT. As the ACMV system continues its operations until it reaches a 

steady condition, the SAT reduces to the desired temperature ranges, and so does the power 

consumption. 
 

 

Figure 3. Total power consumption trends with supply air temperature 

Correlation of power consumption with return air temperature 

Figure 4 shows the correlation of power consumption with return air temperature (RAT). 

RAT refers to the temperature of air being returned from the cooling space to the vent of the 

ACMV system. Similar to Figure 1, most of the value points for power consumption versus 

RAT in Figure 2 are in the third quadrant. It is observed that a strong positive correlation with 

R
2 
of 0.9025 and 0.8176, respectively in the morning and late afternoon, and a strong negative 

correlation in the afternoon with R
2 
of 0.862. The air conditioning operation starts early in the 

morning, leading to high power consumption during starts up at a higher return air temperature. 

After a few hours of operation, the return air temperature continues to drop, as does the power 

consumption. In the afternoon, the RAT remains around 21.5 °C to 22 °C at lower power 

consumption as the air conditioning system reaches a steady condition. In the late afternoon, 

power consumption increases slightly to maintain the RAT within the desired range. 
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Figure 4. Total power consumption trends with return air temperature 

Correlation of power consumption with supply air humidity 

Figure 5 displays the correlation of power consumption with the supply air humidity ratio. 

The supply air humidity ratio refers to the humidity ratio of the air in a supply duct of the AHU 

system that supplies cool air to the cooling space. Similar to Figure 1 and Figure 2, the 

correlation trends are the same. There was a strong positive correlation in the morning and late 

afternoon with an R
2
 of 0.7629 and 0.834, respectively, while a strong negative correlation in 

the afternoon with an R
2
 of 0.7211. 

 

 

Figure 5. Total power consumption trends with supply air humidity ratio 

Correlation of power consumption with return air humidity 

Figure 6 displays the correlation of power consumption with the return air humidity ratio. 

The return air humidity ratio is the moisture content of the air in a return vent that is drawn 

from the cooling spaces to the AHU system. There is a significant positive correlation between 

power consumption and return air humidity ratio in the morning with an R
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value of 0.9017. 

This indicates that as the return air humidity ratio increases, power consumption also rises 
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negative correlation with an R
2
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consistently, lower power consumption is observed within a specific range of return air 
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humidity ratios. In the late afternoon, there is a strong positive correlation with an R
2
 value of 

0.8634, indicating a slight increase in power consumption. 
 

 

Figure 6. Total power consumption trends with return air humidity ratio 

Correlation of power consumption with ambient temperature 

Figure 7 shows total power consumption with ambient temperature. In the morning, a 

strong negative correlation is displayed with an R
2 
of 0.8659 due to high power consumption 

recorded during operation start-up at lower ambient temperature in the early morning. As the 

ambient temperature starts to rise, the power consumption is lower when the operation reaches 

steady condition. In the afternoon, a strong negative correlation is observed as the ambient 

temperature continues to increase until it reaches a peak of around 30 to 31°C, while power 

consumption increases slightly. The strong positive correlation, with an R
2
 value of 0.8004, 

was observed in the late afternoon when the ambient temperature slightly decreased, leading to 

a reduction in power consumption. 
 

 

Figure 7. Total power consumption trends with ambient temperature 
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considered explanatory variables in an air conditioning system, while power consumption is 

the dependent variable. The five air-side parameters in this study include the SAT, RAT, 

supply humidity ratio, return humidity ratio, and ambient temperature. The data science tool 

known as Altair Al Studio 2024.1.0 is designed for creating machine learning models and 

features a visual drag-and-drop workflow for interactive data pre-processing capabilities. In 

this study, the linear regression tool was used. Figure 8 shows the process workflow for using 

the MLR model in Altair Al Studio 2024.1.0. 
 

 

Figure 8. Process workflow using MLR model in Altair Al Studio 2024.1.0 

Table 2. MLR Results for three different time zones 

 Morning Afternoon Late afternoon 

Performance Training 

Squared correlation (R
2
) 0.941 0.831 0.914 

Root mean squared error (RMSE) 4.310 1.692 1.350 

Coefficients 

Ambient temperature (  ) 6.834 -36.106 10.114 

Return air temperature (  ) 88.931 -79.277 148.049 

Return air humidity ratio (  ) -8819.770 -16.120 72.804 

Supply air temperature (  ) -37.335 26.886 -62.449 

Supply air humidity ratio (  ) 24643.268 590.832 452.051 

Intercept (  ) -1447.490 2520.860 -2197.472 

 

Table 2 shows the MLR results for three different time zones: morning, afternoon, and late 

afternoon. The purpose of segregating the operational time of the ACMV system into three 

distinct time zones is to achieve a higher squared correlation of over 0.7 and a lower RMSE. 

Table 2 demonstrates the strong performance of MLR analysis in terms of squared correlation 

and RMSE during MLR training analysis. A high R
2
 value signifies a strong fit of a model to 

the data, indicating that the model accounts for a substantial amount of variability in the 

dependent variable based on the independent variables. The highest squared correlation was 

observed in the morning at 0.941, followed by the late afternoon at 0.914, and in the afternoon 

at 0.831. Low RMSE indicates that the predicted values from a regression model are close to 

the actual values in the dataset, meaning a better model fit. For RMSE, the lowest value is in 

the late afternoon at 1.35, followed by the afternoon at 1.692, and finally the morning at 4.310. 

In MLR analysis, Table 2 illustrates the coefficients to identify the relationship between 

the explanatory variables and the power consumption as the dependent variable. The 
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coefficients identify the interactions and relationships among independent variables that can 

influence the predicted dependent variable. The mathematical expression for MLR is shown in 

eq. (6): 

 

                  
           

               
              

          

     
           

(6) 

 

The Appendix is provided for data used for calculation for predicted power consumption. 

Another graphical technique for analysing power consumption is the cumulative sum chart 

(CUSUM). The CUSUM chart tracks power consumption performance and quantifies both 

saved and wasted power consumption. Figure 9 indicates the cumulative sum of the difference 

in power consumption between actual and predicted power consumption that randomly 

fluctuates around zero level. A cumulative sum chart (CUSUM) is a type of control chart 

designed to detect deviations of individual values or subgroup means from a specified target 

value. The CUSUM chart illustrates an increasing trend in the cumulative sum of the 

differences, indicating that energy is being wasted in the operation of the ACMV system. This 

result suggests opportunities for saving power consumption through energy conservation 

measures (ECM). One potential energy-saving strategy for an ACMV system is optimising its 

operation by applying the concept of air temperatures reset. The temperature reset is done by 

changing the set point of an indoor space temperature control loop based on an indicator that is 

not part of the control loop. For example, the ambient temperature and humidity ratio can be 

used as the indicators to reset the space temperature set point for achieving energy saving for 

ACMV system. 
 

 

Figure 9. CUSUM chart for predicted power consumption compared with actual  

power consumption 

Energy conservation measures by resetting air temperatures to minimise power 

consumption of the ACMV system 

The proposed energy conservation measure (ECM) focuses on optimising decision 

variables to minimise power consumption. Table 3 presents the summary of the model's 

statistical results for the validation of the optimality of the optimisation model. The linear 

model (LP) is formulated to aim to obtain minimum predicted power consumption for the 

ACMV system, considering the air-side parameters of the AHU system. The LP model is 

written in GAMS v38.2.1 and solved by a CPLEX solver at a zero-optimality gap using an 

Intel(R) Core (TM) i7. Table 3 shows the model statistics for three different time zones with 

non-zero elements around 81 to 121 with single variables around 30. The model's status across 

all time zones is optimal, with extremely rapid generation times of less than one second. This 
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optimal model status proves the validity and feasibility of the optimisation model framework; 

otherwise, it results in an infeasible outcome. 

Table 3. Model statistic for LP model for different time zone 

Model statistic Morning Afternoon Late afternoon 

Non zero elements 121 81 91 

Single variables 37 25 28 

Model status Optimal Optimal Optimal 

Generation time (seconds) 0.015 0.016 0.016 

 

In this model, the SAT and RAT are designated as the decision variables, while parameters 

such as ambient temperature, return air humidity ratio, and supply air humidity ratio remain 

fixed. SAT and RAT are selected as decision variables because they are control parameters that 

can be adjusted to achieve optimal results toward minimising power consumption. For instance, 

SAT can be adjusted by regulating airflow using air volume dampers in the AHU. The AHU 

uses a supply fan to circulate cold air into the indoor space through the supply duct. The speed 

of the fan can be modified using a variable speed drive. Table 4 illustrates the average optimal 

results for the optimised RAT and SAT. From the optimal results, SAT is higher in the late 

afternoon compared to the morning and afternoon with higher minimum predicted power 

consumption. The optimised RAT maintains a consistent temperature of 21 °C aross all time 

zones. 

Generally, a higher or lower SAT is influenced by the cooling coil that provides cold air by 

exchanging its heat with the chilled water in the chiller. The fan in the AHU needs to decrease 

or increase the speed to provide sufficient airflow to the indoor space to ensure the ACMV 

system can deliver the same amount of cooling. If the SAT is lower than the optimised value 

because more heat is being absorbed by the chilled water, the fan speed in the AHU should be 

adjusted to align with the optimised SAT. This adjustment will lead to achieving minimum 

power consumption. 

The indoor space temperature reset is achieved by adjusting the indoor temperature using 

the optimised RAT. The ACMV system controls the indoor temperature based on return air 

temperature sensors. The system continues to cool the room until the RAT matches the desired 

setpoint temperature. The optimal minimum power consumption establishes the lowest 

acceptable benchmarks for power consumption determined by an optimisation process without 

violating any constraints, determined by optimised RAT and SAT with the influence of 

ambient temperature and humidity. It is important to note that any power consumption below 

this threshold is considered infeasible. 

Table 4. Average optimised RAT and SAT at optimal minimum power consumption 

Average optimal results 
Optimised RAT 

[°C] 

Optimised SAT 

[°C] 

Optimal minimum power 

consumption [kWh] 

Morning 21.87421 17.53 200.27 

Afternoon 21.38018 16.28 202.25 

Late afternoon 21.76456 18.04 208.13 

 

Figure 10 clearly illustrates the differences between the optimised values and the actual 

values of SAT and RAT across all time zones. Generally, the optimised SAT and RAT values 

are lower than the actual values. However, both the actual and optimised values of SAT and 

RAT exhibit a similar pattern throughout the different time zones. This consistency indicates 
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that the optimised SAT and RAT fall within the allowable range of values, further confirming 

the effectiveness of the optimisation results. 

 

 

Figure 10. Actual and optimised SAT and RAT 

To further verify the effectiveness of the optimisation linear programming (LP) model, a 

CUSUM chart as in Figure 11 is plotted to display the cumulative sum of the differences 

between minimum power consumption and predicted power consumption. The downward 

trend in the cumulative sum difference indicates that energy is being saved compared to the 

predicted power consumption, which means that the actual power consumption of the ACMV 

system is lower than the predicted power consumption for the same amount of cooling demand. 

Implementing an air temperature reset for the RAT and SAT based on the optimised values 

outlined in Table 2 for each time zone will effectively result in significant energy savings. 
 

 

Figure 11. CUSUM chart for optimal minimum power consumption compared with  

predicted power consumption 

Figure 12 displays the final result of the comparison analysis between the power 

consumption trends for the actual, predicted, and optimal predicted values across all time zones. 

Using eq. (1), the predicted power consumption is plotted alongside the actual power 

consumption. The predicted power consumption profile closely follows the actual profile, with 

an average difference of about 2 kWh for each time point. The total RMSE between the actual 

and predicted power consumption is around 3, which is considerably low. The objective of 

obtaining predicted power consumption that closely matches actual power consumption is to 

accurately estimate power consumption based on the coefficients and actual values of the 

independent variables and the intercept, as illustrated in eq. (1) and Table 2. 
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The observed difference between the optimal predicted power consumption and the actual 

and predicted trends can be addressed by recognizing that the minimum and maximum bounds 

for power consumption remain consistent within each time zone. Understanding this 

relationship can enhance predictions and align trends with actual power consumption by 

adjusting the minimum and maximum bounds for each time point. The daily energy savings 

from implementing optimised RAT and SAT based on the optimal solution (see Table 4) are 

approximately 4.26%. This savings amount is significant for the daily operation of the ACMV 

system. To contextualize the observed 4.26% daily energy saving, similar studies in the field is 

reviewed. For instance, Wang W. et al. [14] reported a 6% reduction using MPC method, while 

Zheng M. [18] achieved 4% under heating demand forecasting. Compared to these, this result 

is within a comparable range, suggesting the effectiveness of the approach. 
 

 

Figure 12. Optimal minimum power consumption compared with predicted and  

actual power consumption 

CONCLUSIONS 

The proposed study aims to predict future total energy savings by incorporating a MLR 

equation for power consumption in relation to air-side parameters into the linear programming 

model. The aim is effectively accomplished by achieving energy savings through the 

implementation of an optimised air temperature setting for the ACMV system. The important 

results are underscored in the following key points: 

 The analysis of the MLR training shows a strong correlation, with a squared correlation 

coefficient exceeding 0.7, between power consumption and five types of air-side 

parameters. Specifically, ambient temperature, return air temperature, supply air 

temperature, return humidity ratio, and supply humidity ratio significantly influence 

power consumption across all time zones: morning, afternoon, and late afternoon. 

Additionally, the model demonstrates a better fit, as indicated by the significantly low 

values of the RMSE across all time zones. 

 The cumulative sum difference (CUSUM) chart for predicted and actual power 

consumption shows an increasing trend, which suggests opportunities for saving power 

consumption through energy conservation measures (ECM). The proposed ECM is 
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Total saving 4.26 % 
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applying the air temperature reset of return and supply air temperatures (RAT and SAT) 

for ACMV system. 

 The optimised RAT and SAT are determined using a linear programming (LP) model 

that takes into account the minimum and maximum limits for air temperatures, as well 

as the predicted power consumption from a MLR training analysis. The optimal results 

indicate that the optimised SAT is approximately 17 °C to 18 °C, while the optimised 

RAT remains consistently at 21°C across different time zones. 

 Implementing a reset for the RAT and SAT based on optimisation results will lead to 

significant energy savings of approximately 4.26% per day of ACMV operation. 

In general, the proposed energy conservation measure (ECM) by applying the air 

temperature resets for RAT and SAT according to optimised values in different time zones. 

This approach serves as a guideline for building owners to save more electricity bills while at 

the same time satisfying the cooling requirement and thermal comfort of the building. The 

presented work can be expanded for a better representation of real-life scenarios and propose 

more accurate solutions for the efficient operation of the ACMV system: 

 The other independent parameters for the cooling towers that may influence power 

consumption can also be considered such as the supply and return condensed water 

temperature in cooling towers, air mass flow rate, and cooling tower effectiveness. 

 Different minimum and maximum values for air temperature and humidity ratio should 

be considered for each time point in the optimisation model. This approach will result in 

a more accurate analysis of future predicted power consumption by accounting for the 

influence of ambient conditions. The most effective way to minimise power 

consumption is by conducting an on-site demonstration. This involves adjusting the air 

set point temperatures based on the optimised decision variables derived from linear 

programming solutions. Throughout the operation of the ACMV system, power 

consumption should be monitored to assess the impact of these adjustments. 

 The LP model can be enhanced into a more robust framework by incorporating 

stochastic modeling techniques to account for uncertainties such as seasonal 

fluctuations and weather conditions for different types of buildings, using known 

probability distributions for these uncertain factors. 
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NOMENCLATURE 

   
           return air humidity ratio [-] 

   
          

 supply air humidity ratio [-] 

t time [hour] 

  
           return air temperature [°C] 

  
          

 supply air temperature [°C] 

Z 
objective function minimise 

total power consumption 

 [kWh] 

Greek letters 

           
minimum bound for power 

consumption 

[kWh] 

           
maximum bound for power 

consumption 

[kWh] 
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minimum bound for return air 

temperature 

[°C] 

  
          

 
maximum bound for return air 

temperature 

[°C] 

            
minimum bound for supply air 

temperature 

[°C] 

            
maximum bound for supply 

air temperature 

[°C] 

Abbreviations 

ACMV Air Conditioning and Mechanical 

Ventilation 

ECM Energy Conservation Measures 

MLR Multiple Linear Regression 

MPC Model Predictive Control 

RAT Return Air Temperature 

SAT Supply Air Temperature 
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APPENDIX 

Table A1. Air-side parameters data 

Time 

Ambient 

Temperature 

(°C) 

Return air 

temperature 

(°C) 

Return air 

humidity 

(kg/kg(d.a) ) 

Supply air 

temperature 

(°C) 

Supply air 

humidity 

(kg/kg(d.a) ) 

8:20:00 AM 25.5500 22.8005 0.0125 20.4800 0.0130 

8:50:00 AM 26.7000 21.7900 0.0117 17.2184 0.0111 

9:20:00 AM 27.2000 21.7900 0.0112 16.5700 0.0098 

9:40:00 AM 27.5000 21.7900 0.0115 17.2801 0.0109 

9:50:00 AM 27.5500 21.7900 0.0113 17.2045 0.0107 

10:00:00 AM 27.6200 21.7900 0.0114 17.1937 0.0107 

10:30:00 AM 27.9500 21.7900 0.0113 17.2117 0.0106 

10:40:00 AM 28.0000 21.7900 0.0113 17.2869 0.0107 

10:50:00 AM 28.2000 21.7900 0.0113 17.3235 0.0107 

11:00:00 AM 28.3500 21.7900 0.0114 17.5913 0.0111 

11:10:00 AM 28.4000 21.7900 0.0113 17.3601 0.0107 

11:30:00 AM 28.8700 21.7900 0.0113 17.7101 0.0111 

12:00:00 PM 29.2500 21.4509 0.0114 16.0600 0.0109 

12:10:00 PM 29.3000 21.4260 0.0112 16.0600 0.0106 

12:20:00 PM 29.4000 21.3804 0.0112 16.0600 0.0106 

12:30:00 PM 29.4600 21.3538 0.0112 16.0600 0.0107 

1:00:00 PM 29.6800 21.2522 0.0111 16.0600 0.0105 

1:10:00 PM 29.7000 21.2445 0.0111 16.0600 0.0107 

1:20:00 PM 29.8000 21.1990 0.0111 16.0600 0.0107 

1:30:00 PM 29.9200 21.7346 0.0107 17.8200 0.0098 

2:00:00 PM 30.2100 21.9235 0.0113 18.4400 0.0112 

2:20:00 PM 30.2800 21.9194 0.0111 18.4400 0.0110 

2:40:00 PM 30.2800 21.9181 0.0114 18.4400 0.0114 

3:00:00 PM 30.1800 21.9262 0.0112 18.4400 0.0110 

3:30:00 PM 30.0100 21.6700 0.0112 17.8051 0.0110 

3:40:00 PM 30.0100 21.6700 0.0112 17.8051 0.0110 

3:50:00 PM 30.0000 21.6700 0.0114 17.8066 0.0114 

4:10:00 PM 29.9800 21.6700 0.0112 17.8002 0.0110 

4:40:00 PM 29.8800 21.6728 0.0112 17.7900 0.0109 
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Table A2. Values for actual, predicted and optimal minimum power consumption 

Time 
Actual Power 

Consumption (kWh) 

Predicted Power 

Consumption (kWh) 

Optimal Minimum 

Power Consumption 

(kWh) 

8:20:00 AM 263.200 262.089 200.272 

8:50:00 AM 232.699 231.852 200.273 

9:20:00 AM 218.136 216.704 200.273 

9:40:00 AM 200.670 211.770 200.273 

9:50:00 AM 209.805 204.728 200.273 

10:00:00 AM 208.912 204.674 200.273 

10:30:00 AM 204.157 203.390 200.273 

10:40:00 AM 197.756 200.879 200.273 

10:50:00 AM 202.559 206.017 200.273 

11:00:00 AM 203.014 205.103 200.273 

11:10:00 AM 204.227 202.724 200.273 

11:30:00 AM 205.080 200.283 200.273 

12:00:00 PM 204.932 205.087 202.254 

12:10:00 PM 206.020 208.207 202.256 

12:20:00 PM 206.379 204.356 202.211 

12:30:00 PM 204.331 203.170 202.221 

1:00:00 PM 200.111 202.237 202.233 

1:10:00 PM 213.361 210.868 202.219 

1:20:00 PM 211.608 212.981 202.235 

1:30:00 PM 210.725 210.562 202.210 

2:00:00 PM 207.015 209.009 208.155 

2:20:00 PM 210.072 208.147 208.130 

2:40:00 PM 218.958 218.686 208.137 

3:00:00 PM 218.014 219.974 208.138 

3:30:00 PM 220.056 218.482 208.129 

3:40:00 PM 220.521 220.183 208.145 

3:50:00 PM 220.062 219.123 208.135 

4:10:00 PM 219.399 219.337 208.155 

4:40:00 PM 215.031 216.186 208.152 
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