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ABSTRACT 

Projecting of the dewatering system of the open-pit mine “Buvač” (Republic of Srpska, 

Bosnia and Herzegovina) is based on the use of hydrodynamic model of groundwater 

regime. Creating the  hydrodynamic model of the open-pit mine “Buvač“ was made in 

phases, which began by basic interpretation of collected data, along with schematization 

of the groundwater flow and flow conditions, and finally, forming and calibration of 

model. Hydrodynamic model was created as multilayer model with eight layers. 

Calibration of the hydrodynamic model is the starting point for making prognosis 

calculation in order to create the most optimal system of open-pit mine protection from 

groundwater. The results of model calibration indicated that the rivers Gomjenica and 

Bistrica, precipitation and inflow from karstified rocks are the primary sources of 

recharge of the limonite ore body “Buvač”.  
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INTRODUCTION 

The limonite ore body “Buvač” is part of the Omarska deposit that also includes Jezero 

and Mamuze ore bodies SE in Omarska field. The Buvač body is Carboniferous, of 20 

metres average thickness and some 3 km
2
 in surface area. Fig. 1 shows location of the 

research area.  

Extraction of limonite and associated sediments at “Buvač” deposit is being 

performed under complex hydrogeological conditions, thus in the final exploitation 

phase the open pit depth is going to be 150 m. Lowering of mining level will basically 

disclose all water-bearing sediments, which must be previously drained, in order to 

provide level stability, as well as equipment and mining staff protection during the 

deposit exploitation.  

In mining operations carrying out below the water table, mine operators are 

potentially faced with two important water-related problems. These are the amount and 

pressure of groundwater that could flow into an open pit and the effect of pore water 

pressure on the stability of an open pit high wall. Many analytical solutions for prediction 

of water inflow into mine excavations can be found in the literature [1-3]. These models 

often were developed based on some very specific assumptions and boundary conditions 

that restrict their applicability in many mining situations.  

The prediction of the amount of water inflow into the open-pit mine is very important 

for development of a mine dewatering program. Moreover, taking into account that the 

analytical solutions are not as versatile as numerical methods, which can deal with complex 

mining situations, so, it is necessary to develop a numerical (hydrodynamic) model that 
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includes all aquifer conditions [4]. Numerical models have not the limitations of analytical 

solutions and they are suitable for the simulation of all aquifer conditions. Furthermore, 

numerical models can provide a more realistic representation of the interaction between 

groundwater systems and mine excavations. 
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Figure 1. Location map of the researched area 

 

Projecting of the dewatering system of the open-pit mine “Buvač” is based on the use 

of hydrodynamical model of groundwater regime. The results of numerical simulations 

would be used, in future, to develop an appropriate water management strategy in order 

to minimise the operational problems below the water surface and long-term 

environmental problems and solutions to ensure the stability of an open pit high wall [5, 

6].  

HYDROGEOLOGY CHARACTERISTICS 

Characteristics of aquifers, hydraulic and storage properties are deduced from more 

than 550 cored boreholes (Fig. 2). Hydrogeologic characterization of the “Buvač” 

open-pit mine are interpreted from all geological and hydrogeological investigation and 

laboratory test data.  
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Figure 2. Test borehole sites in the Buvač limonite deposit area 
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Figure 3. Hydrogeological map of the Buvač ore body 
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Figure 4. Hydrogeological sections A-A' and B-B' 

 

Basic hydrogeological characteristics of the ore body are frequent alternation of 

permeable and impermeable rocks in the vertical section and four types of aquifers: 

alluvial aquifer, aquifer in Pliocene sands, aquifer in limonite ore body, and confined 

karstic aquifer bellow the limonite ore body. The effects of hydraulic communication 
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between the aquifers in some areas are almost equal water head in each aquifer and 

uniform chemical composition of water, therefore marked three-dimensional movement 

of groundwater within the ore body [7]. Hydrogeological map (Fig. 3) shows the 

boundaries of Quaternary deposits and hydrogeological sections A-A' and B-B' (Fig. 4) 

show the relationship of the aquifers. 

HYDRODYNAMIC MODEL 

Groundwater flow in an unconfined aquifer may be approximately modeled by the 

nonlinear Boussinesq equation, assuming Dupuit’s hypothesis of horizontal flow applies 

[8]. This equation in Cartesian coordinate system is shown below:  

 

 
t

h
SW

z

h
K

zy

h
K

yx

h
K

x
szyx






















































 (1) 

 

where x, y and z are coordinates of Cartesian coordinate system; Kx, Ky and Kz are the 

hydraulic conductivity along x, y and z coordinates which are assumed to be parallel to 

the major axes of hydraulic conductivity in m/s; h is hydraulic head in m; W is unit 

precipitation (precipitation per unit of horizontal spreading of the flow), represents the 

effective intensity of the vertical recharge in m/s and Ss is storage coefficient, -. 

The code selected to develop the numerical model was MODFLOW-2000; a modular, 

three-dimensional finite difference groundwater flow model developed by US 

Geological Survey [9]. The program used in this work is Groundwater Vistas 5.33b 

(Environmental Simulations International, Ltd.).  

Discretization of flow field 

A hydrodynamic model of the “Buvač” open-pit mine is designed to have eight layers 

in the vertical section. Each layer corresponds to a real stratum, schematized and 

delineated on the basis of observations and abundant field investigation data [10]. With 

respect to the natural strike and dip of the geologic units, the assigned extents of layers in 

plan and their respective thicknesses are different. Geometrization of the layer contours, 

their transposition into the coordinate system of the model, is based on abundant data 

from boreholes all over the research area (Fig. 2). The model layers, downward from the 

ground surface, are given in Tab. 1. The result of the schematized layers transposition 

into the model is represented by spatial distribution of the aquifer types in Fig. 5. 
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Figure 5. Three-dimensional view (eastern) of the system of aquifers in “Buvač” ore body 
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Basic matrix dimensions for the research area are 2,000 m x 1,750 m (Fig. 8). Cell 

size of the flow field discretization in plan is 25 m x 25 m, not further reduced with regard 

to the number and quality of available data [11]. 

Hydraulic properties of porous rocks 

Hydraulic parameters for porous rocks are assigned as representative quantities to 

each discretization cell. Table 1 gives the initial values of the hydraulic parameters in the 

model [12]. 
 

Table 1. Initial values of hydraulic parameters 

 

Layer 
Hydrologic 

function 

Lithostratigraphic 

unit 

Hidraulic 

conductivity 
(at x,y-axis) (m/s) 

Hidraulic 
conductivity 

(at z-axis) 

(m/s) 

Specific 

storage 
(1/m) 

Specific 

yield 
(-) 

Total 

porosity 
(-) 

1 
Impermeable Clay overburden 8.50x10-7 – 

1.00x10-6 
1.00x10-6 0.001 0.037 0.45 

2 
Water-bearing Alluvial gravel 

and sandy gravel 

1.40x10-4  - 

3.80x10-4 
1.00x10-4 

2.25x1

0-5 
0.225 0.3 

3 

Aquiclude Clay and sandy 

clay 

6.20x10-6 

–2.00x10-5 
1.00x10-6 

5.00x1

0-5 
0.06 0.3 

Part of ore body 
2.30x10-4 - 

6.00x1

0-5 
0.06 0.27 

4 

Combines 

impermeable 

and permeable 

 

Clay and sandy 

clay 
5.00x10-6 1.00x10-6 

5.00x1

0-5 
0.06 0.3 

Sand and gravel 1.00x10-4 – 

1.40x10-4 
1.00x10-4 

2.25x1

0-5 
0.23 0.35 

Part of ore body 
2.3x10-4 1.00x10-4 

6.00x1

0-5 
0.06 0.27 

5 

Largely 

aquitard 

Clay and sandy 

clay 
4.0x10-6 1.00x10-6 

5.00x1

0-5 
0.06 0.3 

Part of ore body 
2.3x10-4 1.00x10-4 

6.00x1

0-5 
0.06 0.27 

6 

Largely 

aquitard 

Argillic siltstone 

and sandstone 
1.00x10-6 1.00x10-6 

6.30x1

0-5 
0.06 0.25 

Part of ore body 
2.3x10-4 1.00x10-4 

6.00x1

0-5 
0.06 0.27 

7 

Combined 

permeable-im

permeable 

Aquifer in ore 

body 

 

Limonite and fine 

limonite 

5.0x10-5  - 

2.40x10-4 
1.00x10-6 

5.00x1

0-5 
0.06 0.3 

Argillic siltstone 

and sandstone 
1.5x10-5 1.00x10-6 

6.30x1

0-5 
0.06 0.25 

Limonite ore body 
2.3x10-4 1.00x10-4 

6.00x1

0-5 
0.06 0.27 

8 

Combined 

permeable-im

permeable 

Aquifer in 

carbonate 

rocks 

 

Limestone and 

dolomitic 

limestone, siderite 

and ankerite in 

argillic siltstone 

and siltstone 

3.52x10-4 - 

4.70x10-4 
2.50x10-4 

6.30x1

0-5 
0.06 0.35 

Argillic siltstone 

and siltstone 
1.00x10-6 1.00x10-6 

6.30x1

0-5 
0.06 0.25 

 

Boundary conditions 

Boundary conditions used in the hydrodynamic model of the Buvač ore body are the 

following: river boundary, vertical balance and general head boundary (GHB). 

 

River boundary.  Surface streams, primarily the rivers Gomjenica and Bistrica, are 

important for the groundwater flow system. For the influence of surface streams on 

groundwater flow, the monitoring data for a period of 2.5 years were collected and 
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analysed. The analysis used mean monthly levels in the Gomjenica; data for the Bistrica 

stage were fewer than for the Gomjenica or for precipitation. All this was used as initial 

data for calibration of the model. A result of the model calibration was quantification of 

the Bistrica influence on the groundwater flow.  

Figure 6 compares fluctuations of the measured level in the Gomjenica and water 

surface in alluvial gravels. Diagrams give monthly amounts of precipitation recorded at 

the Prijedor rain-gauging station also for 2.5 years. Influence of the Gomjenica on the 

groundwater flow is seen to exist in the alluvial aquifer, phase-shifted, delayed from the 

river stage fluctuation. The delay was considerable through the considered period, which 

suggested the likely high clogging of the riverbed (where it is cut in gravels). In contrast, 

groundwater in the alluvium reacts sooner to the changes caused by precipitation 

intensity. 
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Figure 6. Fluctuations in the Gomjenica stage, precipitation and water table in alluvium 

 

Figure 7 compares fluctuations of the measured level in the Gomjenica and water 

surface in limonite ore body. It shows fluctuations in the Gomjenica stage and in water 

tables within the limonite ore body. Groundwater surface oscillates with the fluctuation 

in the Gomjenica and “senses” effects of precipitation, which is evidence of the hydraulic 

communication between this aquifer and alluvial gravel. 

The flow between Gomjenica nad Bistrica and aquifers was calculated through the 

Modlow RIVER package, on the basis of the following equation: 

 

QR = CR · (hR − d)         (2) 

 

where QR is the flow between river and the aquifer in m
3
/s. The value of flow is positive if 

it is directed into aquifer. In above equation, hR is simulated aquifer head along the river 

in m. 

River conductance CR  is given by equation: 

 

d

bLK

R
C


           (3) 

where K is hydraulic conductivity of river bottom sediments in m/s, L is length of river 

cell in m, b is width of river cell in m and d is thickness of river bottom sediments in m. 
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Figure 7. Fluctuations in the Gomjenica stage, precipitation and water table in limonite ore 

body 

 

Hydraulic effect of surface streams, the rivers Gomjenica and Bistrica in particular 

because their influence on groundwater is the greatest within the extent of “Buvač” ore 

body, was simulated in the model as the river boundary, a boundary condition depending 

on the river stage. 

In view of the riverbed elevations, or that rivers traverse aquifers and the overlying 

strata, the rivers as a boundary condition are assigned to second model layer – the alluvial 

gravels and sand. The direction of water flow from the river to the aquifer depends on the 

altitudinal difference between the groundwater surface and the river stage. Either the 

river feeds the aquifer, when water flows from the river into the aquifer if water in the 

river is higher than the groundwater surface, or the river drains groundwater from the 

aquifer to the river. This boundary condition is assigned to the first model layer (Fig. 8). 

 

Vertical Balance.  Total or vertical balance is an essential element of the groundwater 

budget. It is the effective, resultant infiltration, the amount of percolated precipitation, 

evaporation from groundwater surface and evapotranspiration. Besides, also very 

important are depth to groundwater, moisture and lithology of the overlying strata. 

Effective percolation is considerable in the study area at the conditions for which data 

were available, because groundwater levels are at small depths from ground surface. 

Average percolation is 5 l/s/km
2
, or 14.29% of the amount of precipitation. Data used for 

the mathematical model were precipitation records from the Prijedor rain-gauging 

station, averaged out to monthly level. 

Like the river boundary condition, the influence of precipitation and evaporation 

expressed as effective percolation in real monthly amounts is assigned for the whole 

groundwater flow simulation period. 

 

General Head Boundary (GHB).  General Head Boundary is similar in mathematical 

terms the river boundary. It is used to simulate the impact of external sources of 

groundwater located outside the flow field covered by mathematical model. Flow rate to 

or from the observed model’s cell is calculated by the formula: 

 

GHB GHB GHBQ C (H h)          (4) 
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where QGHB is flow rate to or from model’s cell in m
3
/s; HGHB is hydraulic head in 

model’s cell in m; h is calculated value of hydraulic head in m and CGHB is conductance of 

model’s cell m
2
/s. 

The influence of karstified limestone beneath the ore body is assigned to the model 

through this boundary condition, and this only in the eighth layer of karstified rocks in the 

north where they are actually replenished, and in the second model layer with alluvial 

gravel and sands in the east (Fig. 8). 
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Figure 8. River boundary and general load boundary conditions of the model 

Legend: 1. River boundary condition for alluvial gravel and sand; 2. GHB for carbonate rocks; 

3. GHB for alluvial gravel and sand 
 

MODEL CALIBRATION 

The model was calibrated under the condition of unsteady flow with the one-month 

time step through 2.5 years. Groundwater flow was calculated and simulated real flow, 

under pressure, or free water table, individually in each discretization field, with the 

model flow conditions simulating the real conditions. For verification of results during 

the model calibration, mainly the water table records were used. Figure 9 shows sites of 

the observation wells in which groundwater levels were measured. Initial values of 

natural rock characteristics (permeability and specific storage or effective porosity) and 

characteristics of the cell to which the river boundary condition was attributed were 

modified during the calibration process. Figure 9 shows also the pattern of groundwater 

levels for the ore body, resulting from the model calibration. The agreement of registered 

and calibrated groundwater levels was fairly good (±0.2 m). For the purpose of a more 

detailed analysis, Fig. 10 shows recorded and calculated groundwater levels during the 

simulation for wells in the alluvial aquifer, and Fig. 11 for aquifer in the limonite ore 

body. Figure 10 show a generally good accordance of the mathematical simulation results 
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with the measured groundwater levels for the investigated area. However, there are a few 

deviations, in locations of BU-48, BU-58 and BU-148, where the calculated hydrographs 

are higher than those measured by 30 cm at the most. A better agreement could not be 

achieved with the given quality of the available data. Any reduction of the discrepancy 

between the calculated and measured groundwater levels would be associated only with 

local changes in the hydraulic properties and would not affect the flow pattern in the 

investigated area. 
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Figure 9. Map of observation wells and groundwater levels in the end of the model calibration 

period 

 

The presented groundwater surface hydrographs in the limonite body (Fig. 11) show 

good correspondence of the calculated and registered stages.  
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Figure 10. Measured and calculated well hydrographs for alluvial aquifer 
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Figure 11. Measured and calculated well hydrographs for limonite body 

GROUNDWATER BALANCE 

A result of model calibration is the quantification of groundwater balance elements 

(Tab. 2).   

The groundwater balance in the end of the period used for calibration led to the 

conclusion that the alluvial aquifer is recharged from the rivers Bistrica and Gomjenica, 

from precipitation and in part from subsurface inflow. The karstified limestone aquifer is 

subsurface recharged from the north, and the limonite ore body includes an underground 

reservoir naturally fed from water in carbonate rocks and partly from alluvial aquifers. 

Alluvial groundwater partly drains to the rivers and partly through the SW model 

boundary and seepage to ore body Mamuze. Groundwater in carbonate rocks drains 

partly into the limonite ore body. Table 2 gives main elements of the groundwater 

balance in the period considered by calibration. 

 
Table 2. Groundwater balance elements for the area of the Buvač mineral deposit 

 

Boundary condition Model inflow, l/s Model outflow (drainage),  l/s 

Gomjenica River 8.32 10.52 

Bistrica River 6.92 7.58 

Subsurface inflow from north 

(alluvial deposits) 

2.26 - 

Subsurface inflow from north  

(carbonate rocks) 

4.38 - 

Subsurface inflow from east 

(alluvial deposits) 

2.57 - 

Subsurface inflow from south 

(alluvial deposits) 

3.22   

Subsurface outflow to west 

(alluvial deposits) 

- 8.48 

Subsurface outflow to south  

in ore body Mamuze 

  4.81 

Percolation from precipitation 4.22 - 

Total  31.89 31.39 

CONCLUSION 

The spatial pattern of groundwater flow is related to the vertical lithological 

stratification and the variable horizontal extent of geologic units. This is particularly true 

of the ore body and alluvial sediments and of the ore body and limestone contact areas. 

This was the reason why we developed an eight-layer model. Verification of the model 

calibration results used well records of the groundwater tables. Mathematical simulation 

results agreed fairly well with the water table records.  
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The results of the model calibration are quantification of the Bistrica and Gomjenica 

influence on the groundwater flow and determining the groundwater balance elements 

for the Buvač ore body. As the result of the model calibration, it has been quantified that 

the karstified limestone aquifer is subsurface recharged from the north (4.38 l/s). The 

account of percolation from precipitation is 4.22 l/s, water infiltration (summary) of the 

Bistrica and Gomjenica rivers is 15.24 l/s. It has also been confirmed that aquifers are 

drained by subsurface outflow from west (8.48 l/s) and south (4.81 l/s). Total model 

inflow is 31.89 l/s, and model outflow is 31.39 l/s. 

The hydrodynamic model so calibrated is an initial tool in forecasting groundwater 

behaviour for an optimum protection of the mine pit. 
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