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ABSTRACT
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| transition to cleaner energy sources has intensified research efforts in energy
storage te@hnologies, particularly lithium-ion batteries, due to their superior energy density and
efficie 1]. With the rising adoption of electric vehicles (EVs), hybrid electric vehicles
(HEVs), and grid-scale storage solutions, ensuring battery safety has become paramount.
Despite their advantages, lithium-ion batteries present significant safety concerns, as failures
such as overheating, over-discharge, and internal short circuits can lead to catastrophic
outcomes [2]. Addressing these challenges requires advanced diagnostic techniques capable of
detecting early signs of failure [3].
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Although electric vehicles (EVs) have existed for more than a century, their large-scale
integration has accelerated only in recent decades due to advances in lithium-ion battery
technology, improved energy density, and stricter environmental regulations. This evolution
underscores the critical importance of ensuring battery safety and reliability under dynamic
usage conditions, where early fault detection becomes essential [4].

Today, electric vehicles (EVs) have re-emerged as a viable solution to environmental
challenges, primarily due to their energy efficiency and zero-emission performance. Unlike
internal combustion engine vehicles, EVs do not emit harmful pollutants such as carbon
dioxide, sulphur oxides, nitrogen oxides, or particulate matter, making them a cleaner
alternative for urban mobility [5]. Furthermore, their electric motors demonstrate superior

isks related to thermal instability,
g¥Malfunctions such as overheating
not identified promptly [11].

making early fault detection a critical yet
and excessive discharge can escalate int
Recent studies have explored varj

users in selecting optimal chargi nsidering factors such as charging cost, waiting
114 eveloped in [12], thereby enhancing charging
efficiency and user satisfag ponship between the state of health of batteries with
liquid electrolytes and chan3g % ttance at specific frequencies was investigated in [ 13],
offering a novel, no e method for assessing battery degradation. A comprehensive
numerical thermg N 2 Wthium iron phosphate (LFP) battery pack for residential

(f&fre. Finally, a method to model the hourly variability of renewable energy
ted assessment models was introduced in [16], bridging operational and long-
needs in decarbonisation scenarios.

on these developments, fault diagnosis techniques for lithium-ion batteries have
been significantly enhanced through the integration of time—frequency analysis and hybrid
signal processing methods. A wavelet packet decomposition approach for identifying faults in
EV power batteries was introduced in [17], demonstrating superior accuracy compared to
traditional Fourier-based techniques. A voltage fault detection strategy using continuous
wavelet transform and image entropy was developed in [18], effectively capturing transient
anomalies in high-resolution battery signals. A comprehensive comparison of nonlinear
estimation algorithms—including Extended Kalman Filter, Unscented Kalman Filter, and
Particle Filter—for online SoC and SoH prediction in lithium-ion batteries was presented in
[19], revealing trade-offs between computational complexity and predictive accuracy under
dynamic load conditions. In [20], a diagnostic method based on half-cell electrode potentials



achieved a maximum state-of-health estimation error of 1.44%, while a recent review in [21]
outlined observer-based and model-driven techniques for improving early-stage battery fault
detection under variable operating scenarios.

Unlike the previous study conducted by the authors, which focused solely on spectral
analysis of voltage signals using the Fourier and continuous wavelet transform (CWT), the
current research introduces a hybrid framework incorporating cross-wavelet transform (XWT)
and wavelet transform coherence (WTC) between voltage and current signals. This dual-signal
analysis provides insight into the time—frequency correlation structure between electrical
variables, enabling more sensitive detection of fault-related spectral coupling. The application
of XWT and WTC allows for identification of both phase and coherence anomalies, which are

predictive diagnostics.

Incidents such as spontaneous battery fires in electric vehicles, along
cases such as the Boeing 787 failure, have impeded widespread adoption
financial losses for manufacturers. The Boeing investigation highlig
identifying the root causes of lithium-ion battery malfunctions ang
more rigorous qualification procedures and safety assessment Dg

cycle health assessment methods that rely on meg icdl parameters to monitor
degradation and improve capacity estimation & conditions [23]. In parallel,
effective thermal regulation remains essential; paring nanoﬂuld based submerged

safety and enhance the reliability of across varying environmental and
discharge conditions [24].
This study presents a novel hyb

-stage degradation in lithium-ion batteries (LIBs).
Cycling data from silicon—c half-cells are analysed, leveraging spectral
decomposition to identify, icdrequency shifts associated with failure modes. The
results highlight the {ag approach for real-time monitoring and predictive
maintenance in energ ocpplications.

ycling tests. In this context, the computational study focuses on half-
h silicon-carbon anodes, which represent a promising alternative for high-

resents the workflow, which consists of four main phases: (i) data acquisition from
cycling experiments, (ii) signal preprocessing and noise filtering, (iii) spectral
decomposition via Fourier and wavelet transforms, and (iv) fault detection based on characteristic
frequency anomalies. To ensure robust feature extraction, the Morlet wavelet is employed,
offering high temporal and frequency resolution—essential for identifying early-stage battery
degradation. Its proven effectiveness in analysing transient and oscillatory behaviour in non-
stationary signals makes it particularly suitable for this application. This wavelet, composed of a
complex sinusoid modulated by a Gaussian envelope, offers an optimal balance between time and
frequency resolution, making it suitable for identifying subtle variations in battery voltage and
current profiles. Compared to other wavelet families such as Daubechies or Mexican Hat, the
Morlet wavelet maintains better frequency localization while preserving acceptable time
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sensitivity, which is essential for isolating low-frequency degradation patterns and short-lived
anomalies. Previous studies have demonstrated the reliability of discrete wavelet transform-based
methods for feature extraction and fault detection in lithium-ion batteries [25]. Additionally, novel
wavelet-based approaches have proven effective in assessing cell-to-cell consistency through

experimental voltage signal analysis [26].

Battery Cycle

Tests
Charge and

discharge testing

Spectral
Analysis Detection
Fourier and wavelet Power index
decomposition calculation and
methods standardization
Figure 1. Workflow of the propose alytical approach for the early detection of
batt
The analysis of cycling tg S ed on SXC cells (Silicon Experimental Cells),

specifically SXC-1, SXC-& hich utilized silicon mesh as the working electrode
and a lithium metg _ . These evaluations followed a structured

1. Specifications of the evaluated lithium-ion cell (CC: Constant current, CV: constant

voltage)
Charge Discharge
Cell CcC Cut off CcC (Y Cycles T
[mA/g]  voltage[V]  [mA/g] [V] [°C]
SXC-1 100 1.3 100 0.1 100 25
SXC-2 100 1.3 100 0.1 74 25
SXC-3 100 1.3 100 0.1 42 25
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A corresponding discharge cycle was executed in an identical manner to complete the
charge/discharge process. The cycle was systematically repeated multiple times to generate
consistent and reliable experimental data. The SXC cells were designed for the experimental
validation of silicon-carbon anode performance, offering high theoretical capacity and
potential improvements in energy storage efficiency. The summarised findings from these tests
are provided in Table 2.

Table 2. Performance parameters of the evaluated lithium-ion cell

Cell type Cathode Anode Capacity [mAh/g]
Half-cell Si/C Li 300
RESULTS AND DISCUSSION

preceding failure events. Fourier spectra demonstrate that, while the pri
remains stable, additional harmonics emerge prior to critical degradat
transform (CWT) analysis further illustrates transient frequency shi
loss and abnormal electrochemical behaviour.

A range of MATLAB-based resources, including the W

libraries, and specialised FFT and WT functions, were ca#f d3
accordance with the Nyquist-Shannon sampling theorem [® mpling frequency (SF) for

FFT calculations was set to at least twice the maxim, icy detected in the voltage cycle.

synchronisation disruptions prior to failu
that frequency bands associated with da
progressive loss of charge retention cdpability.

To highlight the prix
abnormalities or potengigiu
Figure 2d illustrates
under controlled gy

components and identify those associated with
the batteries, the Fourier spectrum range was refined.
al spectrum of the SXC-1 battery, evaluated by [IER-UNAM
, while additional spectra for SXC-2 and SXC-3 are provided

Across
dominant B8lred at 0.509 Hz, corresponding to a 1.96-hour cycle. Minor frequency

rly those below 4.24x107 Hz, are difficult to distinguish in Figure 2d. An

The evaluation of battery voltage signals over time, obtained from half-cell (SXC-1) cycling
experiments, was transformed into the time-frequency domain using the continuous wavelet
transform (CWT). This transformation was performed through a set of wavelets generated via
dilation and shifting of the mother wavelet.

For this study, the Morlet wavelet was selected as the mother wavelet due to its effectiveness
in capturing localized spectral power variations across different periodic scales. This choice
enabled an in-depth examination of power fluctuations within the non-stationary time series of
battery voltage, which contains multiple cyclic patterns [28]. The Morlet wavelet provides high
resolution across frequency scales and being a complex wavelet, facilitates signal filtering into
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specific bandwidths [29]. The colour scale on the right side of Figure 2b, Figure 3b and Figure
4b represents spectral power distribution, where deep red indicates the highest power intensity
and blue the lowest.

In Figure 2c, the time-frequency representation of the SXC-1 battery voltage, obtained from
IER-UNAM tests, is illustrated using CWT. A distinct deep red section in the mid-region of the
wavelet spectrum highlights a principal periodicity of approximately 2 hours, aligning with the
global wavelet results (Figure 2b). Disturbances in the cycling pattern distort this spectral region,
altering its shape. Around the 30-hour mark, a shift in the charge rate (C-rate) of the voltage signal
becomes evident, introducing frequency variations that contribute to spectral anomalies.
Additionally, a horizontally extended area of lower spectral intensity, characterized by light green

spectrum shows a gradual decline in primary periodicity relative to thic
increase in the C-rate of voltage cycling, as depicted in Figuse 22
progressive degradation in the battery's ability to store energy
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Figure 2. Time-frequency analysis of the SXC-1 battery voltage using CWT and Fourier
Transform: (a) Battery voltage time series; (b) Global wavelet spectrum (black curve) with the 95%
red-noise confidence threshold (red dashed line); (c) Time-frequency representation obtained via
CWT, where the black curve marks the COI; and (d) Fourier spectrum analysis of the cycling
experiment

As observed in the global wavelet representation, shortly before reaching 100 hours, a set of
higher-frequency components emerges above the primary periodicity, centred at approximately 1
hour. These high-energy spectral intervals coincide with the second most prominent amplitude
peak identified in the non-uniform spectrum shown in Figure 2d. Database records indicate that
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before these frequency variations appeared, the battery had already experienced a capacity loss
exceeding 55%. Figure S1c and Figure S2c in the supplementary materials illustrate the wavelet

spectral power for SXC-2 and SXC-3 cells, neither of which exhibited signs of critical failure
during testing.

Time frequency analysis using the cross wavelet transform

Hudgins et al. [30] developed the cross-wavelet spectrum as a technique to analyse the
interdependent behaviour of two variables, X and Y. This method assesses their phase and
frequency synchronisation, providing insight into their dynamic correlation [31]. The cross-
wavelet function (WXY) is defined by Eq. 1, as follows:

Wey = W, © Wy

In this context, ® represents the Hadamard product, while (*)
conjugation operation. The symbols Wx and Wy correspond to the wav

time series, X and Y, which represent the normalised voltage and cury S - asurements
obtained from the SXC-1 battery cycling test, as illustrated in Figy ) 108y, Figure 3¢
presents the cross-wavelet transform (XWT) results, depicting th petween both time

series through the wavelet power spectrum. The directional
relationship between voltage and current across the time—
pointing directly to the right (—0° ) or left (<—180°
an in-phase or anti-phase association between the
from these alignments suggest a more complex

¢ indicate the phase
. Specifically, arrows
nchronisation, implying
ag a given frequency. Deviations
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Figure 3. Time-frequency analysis of the cycling test for the SXC-1 cell using XWT: (a) Time
series of current and battery voltage; (b) Global wavelet spectrum (black curve) with the 95% red-
noise confidence threshold (red dashed line); and (c) XWT spectral power, where the curved black

line marks the COI
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This analysis demonstrates that the two signals exhibit phase coherence over the studied time
and frequency ranges. Furthermore, Figure 3b of the global wavelet spectrum reveals additional
periodicities at frequencies lower than the primary one. Complementary findings are available in
the supplementary material, where Figure S3c and Figure S4c illustrate the XWT spectral power
for the SXC-2 and SXC-3 cells, both of which remained free from critical failure throughout the
evaluation.

Time — frequency analysis using wavelet transforms coherence

Wavelet transform coherence (WTC) was obtained by applying a smoothing process to both
the temporal and frequency scales of the cross-wavelet spectrum. Its purpose is to identify specific
frequency ranges and time segments where the analysed time series exhibit a relatioghip [33].
This approach enables the evaluation of localised correlation coefficients and phase Mgeragtions

between two time series that display non-stationary power fluctuations across mu encies
[34]. The WTC in [35] is defined as:

|s (W @) .
SUW, (x,)12)s (| (

)

Ryy(1,8) =

Ryy takes values between 0 and 1, while S is a smootht rat®g applied to both time and
frequency (without S, the wavelet coherence would ays b&equal to 1 at all scales). Values
closer to one indicate a stronger correlation, w ics approaching 0 suggest a weaker
relationship [36]. Figure 4a shows the two-ti alised units that were analysed with
the WTC: the first corresponds to the v

and frequency scales. The glo spgetrum highlights a region of maximum spectral
power density occurring be .05 hours, depicted in dark red. Within this zone, a
is associated with the primary cycling periodicities

main periodicity exhi
Additionally, perf@C
87 hours, dis

near 1 hour emerge sporadically between 0—46 hours and 56—
pectral power at moderate-to-low intensity.

orrelation between two time series at varying scales. Arrows oriented
ard or downward—correspond to phase shifts of n/2 and -n/2, respectively,

correlation between voltage and current signals across time and frequency scales. The high-power
regions in dark red (4 to 0.05 hours) indicate strong phase coupling during regular cycling activity.
Within this zone, dominant periodicities between 3.5 and 1.5 hours align with the core cycling
frequencies identified in Figure 4b. Early in the test (0—100 hours), most phase arrows point to
the right at angles near m/4, implying that current variations precede voltage responses—a
behaviour consistent with expected electrochemical dynamics. After 100 hours, the phase angle
progressively approaches zero, denoting increasing synchrony between the two signals. This
transition may be linked to capacity fading or aging-induced impedance shifts.



Carbono dela Rosa, M. E., Gémez, J., et al. Year 2025
Enhanced Spectral Analysis Approaches for Predicting... Volume 13, Issue 4, 1130613

Normalized voltage
Normalized current

0.015625
0.03125
0.0625
0125}
0.25f
05f

1}t
2t
4t
st
16
2p /|
1 05

Period (h)
Spectral power scale (Arb.Units)

Time (h)

Figure 4. Time-frequency analysis of the ¢ or the SXC-1 cell using WTC: (a) Time
series of current and battery voltage; (b) Gl m (black curve) with the 95% red-
noise confidence threshold (red dashed ling); WT@spectral power, where the curved black

ing ma

ure §pc, corresponding to SXC-2 and SXC-3, reveal
ndication of abrupt failures. However, a steady
e dominant frequency band, further confirming that

Supplementary Figure S5c
similar spectral coherence stru

—,

current leads voltage eyen if?c cells. The evolution of phase synchronization and
coherence loss suppo as a diagnostic indicator of electrochemical degradation.
A comparativges sWerformed across the three half-cells (SXC-1, SXC-2, and

SXC-3) to eval
figures corrg transform (Figure S1-S6) demonstrate that SXC-2 and SXC-3

signatures observed in SXC-1. In the FFT domain (Figure 2), all

consistent degradation behaviour. The CWT analysis (Figure S1 and
d time-localized anomalies near the end of life for each cell, with the Morlet-
capturing envelope fluctuations and transient events at comparable scales.

components during late-stage cycles, consistent with the degradation-induced coupling
observed in SXC-1. Moreover, the WTC maps (Figure S5 and Figure S6) show coherence
decay and shifts in phase alignment in the 0.002—0.008 Hz range, particularly during cycles
beyond 200, reinforcing the interpretation of fault progression. These consistencies validate the
robustness of the proposed hybrid spectral approach for early fault detection in Si—C half-cells
under dynamic load conditions.

CONCLUSIONS

A spectral analysis was performed on the charge/discharge test cycle voltage of lithium-ion
batteries with a silicon-carbon anode. The Fourier transform was employed to identify the primary
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frequencies of the cycles and the harmonic components present in the voltage signal. A
complementary analysis using continuous, cross, and coherence wavelet transforms revealed
significant patterns in the battery cycling tests.

Firstly, prior to an irregular event, critical failure, or battery degradation, the continuous and
cross wavelet transform figures exhibit the emergence of new frequency components following a
change in the main periodicity of the voltage signal. Secondly, the coherence wavelet transform
reveals discontinuous periodicity intervals with medium-to-low spectral power, a time lag
between the time series where the current precedes the voltage, and a declining trend in the main
periodicity associated with a loss of battery capacity.

This study reinforces the potential of spectral analysis for early fault detection in lithium-ion

spectral analysis methodology could be extended to other energy stora
fault detection is crucial. By enhancing the safety and reliabilit
supports the broader adoption of energy storage in renewable e
longevity of storage solutions are paramount.

Future research should explore the scalability of this'g

into real-time battery management syste
distortions serve as early indicators of
efficient, practical deployment wou
ensuring an adequate data acquisiti
optimizing processing resourc
minimize signal noise. Thes
implementation and testin,

execution, and ensuring sensor accuracy to
will guide future work focused on embedded
oad conditions.

The authors &t owledge to Universidad Nacional Abierta y a Distancia de
Colombia, Univel : al Autonoma de México, Universidad de la Costa, Universidad del
Magdalena cgeck IBgenieria for their support in the development of this research.

cC stant Current [mA/g]
charge/discharge current)

cv Constant Voltage [V]

T Temperature [°C]

W Wavelet transform of time  —
series X (e.g. voltage signal)

w, Wavelet transform of time  —
series Y (e.g. current signal)

® Hadamard product operator —

* Complex conjugation —
operator

Ry Wavelet coherence coefficient—

between time series X and Y
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S Smoothing operator (applied —
to time and frequency scales
in WTC)
Abbreviations
EVs Electric Vehicles
HEVs Hybrid Electric Vehicles
CWT Continuous Wavelet Transform
SF Sampling Frequency
COl Cone of Influence (limit for reliable period
detection in the time—frequency domain)
Corate Charge rate (indicator of  battery Q
charging/discharging intensity)
XWT Cross-Wavelet Transform
WTC Wavelet Transform Coherence
FFT Fast Fourier Transform
BMS Battery Management System
LIBs Lithium-Ion Batteries
SXC Silicon Experimental Cell
DC Direct Current
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