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ABSTRACT 
This study presents an enhanced spectral framework for early fault detection in lithium-ion 
batteries, focused on analysing voltage and current fluctuations in silicon–carbon half-cells. The 
method integrates fast Fourier transform, continuous wavelet transform, cross-wavelet 
transform, and wavelet transform coherence to extract time–frequency features associated with 
degradation. Results reveal the emergence of low-frequency spectral modulations and phase 
coherence losses that precede critical failure events. The approach was validated across three 
independent silicon–carbon cells, demonstrating high reproducibility of fault indicators. Given 
its low computational footprint and diagnostic accuracy, the proposed method shows strong 
potential for implementation in battery management systems for predictive maintenance and 
real-time health monitoring. 

KEYWORDS 
Lithium-ion battery, Early fault-detection, Wavelet transform, Spectral analysis, Predictive 
maintenance, Half-cells. 

INTRODUCTION 
The global transition to cleaner energy sources has intensified research efforts in energy 

storage technologies, particularly lithium-ion batteries, due to their superior energy density and 
efficiency [1]. With the rising adoption of electric vehicles (EVs), hybrid electric vehicles 
(HEVs), and grid-scale storage solutions, ensuring battery safety has become paramount. 
Despite their advantages, lithium-ion batteries present significant safety concerns, as failures 
such as overheating, over-discharge, and internal short circuits can lead to catastrophic 
outcomes [2]. Addressing these challenges requires advanced diagnostic techniques capable of 
detecting early signs of failure [3]. 
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Although electric vehicles (EVs) have existed for more than a century, their large-scale 
integration has accelerated only in recent decades due to advances in lithium-ion battery 
technology, improved energy density, and stricter environmental regulations. This evolution 
underscores the critical importance of ensuring battery safety and reliability under dynamic 
usage conditions, where early fault detection becomes essential [4]. 

Today, electric vehicles (EVs) have re-emerged as a viable solution to environmental 
challenges, primarily due to their energy efficiency and zero-emission performance. Unlike 
internal combustion engine vehicles, EVs do not emit harmful pollutants such as carbon 
dioxide, sulphur oxides, nitrogen oxides, or particulate matter, making them a cleaner 
alternative for urban mobility [5]. Furthermore, their electric motors demonstrate superior 
efficiency, converting a larger proportion of electrical energy into mechanical motion across a 
wide range of speeds, thereby eliminating the need for complex gearboxes or transmission 
systems [6]. This simplicity in drivetrain design not only enhances efficiency but also improves 
reliability and maintenance [7]. Additionally, the near-silent operation of EVs helps reduce 
noise pollution in densely populated areas, providing a more comfortable and quieter urban 
environment [8]. 

Significant progress in materials science and electronics over the past few decades has 
facilitated the revival of battery technology, initially with nickel-metal hydride (NiMH) and 
later with lithium-ion (Li-ion) cells. These advancements have been crucial in accelerating the 
large-scale adoption of electric vehicles, primarily by improving energy storage efficiency and 
operational safety [9]. Historical data indicate that the energy density of Li-ion batteries has 
increased 2.5-fold since 2008, while production costs have dropped by approximately 81% [10]. 
However, these advancements come with notable safety challenges. The increased energy 
density and faster charging capabilities have introduced risks related to thermal instability, 
making early fault detection a critical yet unresolved issue. Malfunctions such as overheating 
and excessive discharge can escalate into severe failures if not identified promptly [11].  

Recent studies have explored various aspects of battery management and electric vehicle 
integration to address these challenges. A multi-criteria decision-making model to assist EV 
users in selecting optimal charging stations—considering factors such as charging cost, waiting 
time, and energy source sustainability—was developed in [12], thereby enhancing charging 
efficiency and user satisfaction. The relationship between the state of health of batteries with 
liquid electrolytes and changes in transmittance at specific frequencies was investigated in [13], 
offering a novel, non-destructive method for assessing battery degradation. A comprehensive 
numerical thermal model of a lithium iron phosphate (LFP) battery pack for residential 
applications was presented in [14], providing insights into thermal behaviour under various 
operating conditions, which is crucial for safety and efficiency. A simple photovoltaic electric 
vehicle charging management system that considers sun availability time to reduce carbon 
emissions was proposed in [15], supporting the integration of renewable sources into EV 
charging infrastructure. Finally, a method to model the hourly variability of renewable energy 
sources in integrated assessment models was introduced in [16], bridging operational and long-
term planning needs in decarbonisation scenarios. 

Building on these developments, fault diagnosis techniques for lithium-ion batteries have 
been significantly enhanced through the integration of time–frequency analysis and hybrid 
signal processing methods. A wavelet packet decomposition approach for identifying faults in 
EV power batteries was introduced in [17], demonstrating superior accuracy compared to 
traditional Fourier-based techniques. A voltage fault detection strategy using continuous 
wavelet transform and image entropy was developed in [18], effectively capturing transient 
anomalies in high-resolution battery signals. A comprehensive comparison of nonlinear 
estimation algorithms—including Extended Kalman Filter, Unscented Kalman Filter, and 
Particle Filter—for online SoC and SoH prediction in lithium-ion batteries was presented in 
[19], revealing trade-offs between computational complexity and predictive accuracy under 
dynamic load conditions. In [20], a diagnostic method based on half‑cell electrode potentials 



Carbono dela Rosa, M. E., Gómez, J., et al. 

Enhanced Spectral Analysis Approaches for Predicting…  
Year 2025 

Volume 13, Issue 4, 1130613 
 
 

Journal of Sustainable Development of Energy, Water and Environment Systems 3 

 

achieved a maximum state‑of‑health estimation error of 1.44%, while a recent review in [21] 
outlined observer-based and model-driven techniques for improving early-stage battery fault 
detection under variable operating scenarios. 

Unlike the previous study conducted by the authors, which focused solely on spectral 
analysis of voltage signals using the Fourier and continuous wavelet transform (CWT), the 
current research introduces a hybrid framework incorporating cross-wavelet transform (XWT) 
and wavelet transform coherence (WTC) between voltage and current signals. This dual-signal 
analysis provides insight into the time–frequency correlation structure between electrical 
variables, enabling more sensitive detection of fault-related spectral coupling. The application 
of XWT and WTC allows for identification of both phase and coherence anomalies, which are 
not accessible through single-signal analysis techniques. To our knowledge, this is the first 
study to apply this integrated spectral framework to Si–C half-cell degradation signals for 
predictive diagnostics. 

Incidents such as spontaneous battery fires in electric vehicles, along with high-profile 
cases such as the Boeing 787 failure, have impeded widespread adoption and led to significant 
financial losses for manufacturers. The Boeing investigation highlighted the challenges in 
identifying the root causes of lithium-ion battery malfunctions and underscored the need for 
more rigorous qualification procedures and safety assessment methodologies [22]. One of the 
main contributors to such failures is the limited capability of current battery management 
systems (BMS) to accurately predict and mitigate critical faults—such as overheating, over-
discharge, or internal short circuits—in real time. Recent research has proposed on-line life-
cycle health assessment methods that rely on measurable electrical parameters to monitor 
degradation and improve capacity estimation under dynamic conditions [23]. In parallel, 
effective thermal regulation remains essential; studies comparing nanofluid-based submerged 
and circulated cooling strategies have demonstrated their potential to maintain operational 
safety and enhance the reliability of battery systems across varying environmental and 
discharge conditions [24]. 

This study presents a novel hybrid spectral analysis approach that integrates Fourier and 
wavelet transformations to detect early-stage degradation in lithium-ion batteries (LIBs). 
Cycling data from silicon–carbon anode half-cells are analysed, leveraging spectral 
decomposition to identify characteristic frequency shifts associated with failure modes. The 
results highlight the feasibility of this approach for real-time monitoring and predictive 
maintenance in energy storage applications. 

MATERIALS AND METHODS 
This study proposes a multi-stage time-frequency analysis to extract failure-related features 

from lithium-ion battery cycling tests. In this context, the computational study focuses on half-
cell configurations with silicon-carbon anodes, which represent a promising alternative for high-
capacity energy storage. The experimental protocol follows standardised charge/discharge cycles 
while capturing voltage and current variations for subsequent spectral analysis. 

Figure 1 presents the workflow, which consists of four main phases: (i) data acquisition from 
controlled cycling experiments, (ii) signal preprocessing and noise filtering, (iii) spectral 
decomposition via Fourier and wavelet transforms, and (iv) fault detection based on characteristic 
frequency anomalies. To ensure robust feature extraction, the Morlet wavelet is employed, 
offering high temporal and frequency resolution—essential for identifying early-stage battery 
degradation. Its proven effectiveness in analysing transient and oscillatory behaviour in non-
stationary signals makes it particularly suitable for this application. This wavelet, composed of a 
complex sinusoid modulated by a Gaussian envelope, offers an optimal balance between time and 
frequency resolution, making it suitable for identifying subtle variations in battery voltage and 
current profiles. Compared to other wavelet families such as Daubechies or Mexican Hat, the 
Morlet wavelet maintains better frequency localization while preserving acceptable time 
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sensitivity, which is essential for isolating low-frequency degradation patterns and short-lived 
anomalies. Previous studies have demonstrated the reliability of discrete wavelet transform-based 
methods for feature extraction and fault detection in lithium-ion batteries [25]. Additionally, novel 
wavelet-based approaches have proven effective in assessing cell-to-cell consistency through 
experimental voltage signal analysis [26].  

 

 
Figure 1. Workflow of the proposed time-frequency analytical approach for the early detection of 

battery failures 

The analysis of cycling test data was performed on SXC cells (Silicon Experimental Cells), 
specifically SXC-1, SXC-2, and SXC-3, which utilized silicon mesh as the working electrode 
and a lithium metal counter electrode. These evaluations followed a structured 
charge/discharge framework (refer to Table 1), where the charging phase was conducted under 
a direct current (DC) protocol, ensuring a steady flow until the designated cut-off voltage was 
attained. The cycling experiments were carried out using an 8-channel battery analyser (Model 
BST8-MA, 10 mA precision, MTI Corporation, USA), powered at 110 VAC ±10% and rated 
for 30 W. This system allows for individual control and logging of each cell with high current 
resolution and stable voltage acquisition. The measurements were acquired at a 1 Hz sampling 
rate, ensuring adequate temporal resolution to capture dynamic behaviours across full cycling 
profiles. 

 
Table 1. Specifications of the evaluated lithium-ion cell (CC: Constant current, CV: constant 

voltage) 

 Charge Discharge   

Cell CC 
[mA/g] 

Cut off 
voltage [V] 

CC 
[mA/g] 

CV 
[V] Cycles T 

[°C] 
SXC-1 100 1.3 100 0.1 100 25 
SXC-2 100 1.3 100 0.1 74 25 
SXC-3 100 1.3 100 0.1 42 25 
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A corresponding discharge cycle was executed in an identical manner to complete the 
charge/discharge process. The cycle was systematically repeated multiple times to generate 
consistent and reliable experimental data. The SXC cells were designed for the experimental 
validation of silicon-carbon anode performance, offering high theoretical capacity and 
potential improvements in energy storage efficiency. The summarised findings from these tests 
are provided in Table 2. 
 

Table 2. Performance parameters of the evaluated lithium-ion cell 

Cell type Cathode Anode Capacity [mAh/g] 
Half-cell Si/C Li 300 

RESULTS AND DISCUSSION 
The spectral analysis of half-cell voltage cycling data reveals distinct frequency patterns 

preceding failure events. Fourier spectra demonstrate that, while the primary cycling frequency 
remains stable, additional harmonics emerge prior to critical degradation. Continuous wavelet 
transform (CWT) analysis further illustrates transient frequency shifts associated with capacity 
loss and abnormal electrochemical behaviour. 

A range of MATLAB-based resources, including the Wavelet Toolbox, signal processing 
libraries, and specialised FFT and WT functions, were employed for data transformation. In 
accordance with the Nyquist-Shannon sampling theorem [27], the sampling frequency (SF) for 
FFT calculations was set to at least twice the maximum frequency detected in the voltage cycle. 
This configuration was crucial in ensuring precise spectral representation, minimising aliasing, 
and preserving signal accuracy throughout the analysis. 

Cross-wavelet transform (XWT) analysis of voltage and current signals indicates phase 
synchronisation disruptions prior to failure. Coherence wavelet transform (WTC) results suggest 
that frequency bands associated with degradation exhibit decreasing coherence, highlighting the 
progressive loss of charge retention capability. 

Frequency spectrum of cycling voltage 
To highlight the primary frequency components and identify those associated with 

abnormalities or potential malfunctions in the batteries, the Fourier spectrum range was refined. 
Figure 2d illustrates the voltage signal spectrum of the SXC-1 battery, evaluated by IER-UNAM 
under controlled conditions at 25°C, while additional spectra for SXC-2 and SXC-3 are provided 
in Figure S1d and Figure S2d within the supplementary materials. 

Across the three cycling tests, the charge-discharge voltage cycle remained stable, with the 
dominant frequency measured at 0.509 Hz, corresponding to a 1.96-hour cycle. Minor frequency 
components, particularly those below 4.24×10-2 Hz, are difficult to distinguish in Figure 2d. An 
inconsistent spectral pattern is observed in the 0.58–1.56 Hz range; however, no direct correlation 
with battery degradation or failure has been established. 

Time – frequency analysis by the continuous wavelet transforms 
The evaluation of battery voltage signals over time, obtained from half-cell (SXC-1) cycling 

experiments, was transformed into the time-frequency domain using the continuous wavelet 
transform (CWT). This transformation was performed through a set of wavelets generated via 
dilation and shifting of the mother wavelet. 

For this study, the Morlet wavelet was selected as the mother wavelet due to its effectiveness 
in capturing localized spectral power variations across different periodic scales. This choice 
enabled an in-depth examination of power fluctuations within the non-stationary time series of 
battery voltage, which contains multiple cyclic patterns [28]. The Morlet wavelet provides high 
resolution across frequency scales and being a complex wavelet, facilitates signal filtering into 
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specific bandwidths [29]. The colour scale on the right side of Figure 2b, Figure 3b and Figure 
4b represents spectral power distribution, where deep red indicates the highest power intensity 
and blue the lowest. 

In Figure 2c, the time-frequency representation of the SXC-1 battery voltage, obtained from 
IER-UNAM tests, is illustrated using CWT. A distinct deep red section in the mid-region of the 
wavelet spectrum highlights a principal periodicity of approximately 2 hours, aligning with the 
global wavelet results (Figure 2b). Disturbances in the cycling pattern distort this spectral region, 
altering its shape. Around the 30-hour mark, a shift in the charge rate (C-rate) of the voltage signal 
becomes evident, introducing frequency variations that contribute to spectral anomalies. 
Additionally, a horizontally extended area of lower spectral intensity, characterized by light green 
shades, emerges beneath the primary waveform and expands as the voltage cycle is modified. 

An analysis of the dataset reveals that, at this specific moment, the battery's capacity exhibited 
a noticeable decline, suggesting that these periodic variations may be associated with a brief 
internal fault affecting performance. Comparable anomalies appear in the wavelet spectral power 
at the 47-hour mark, coinciding with an additional capacity reduction, although such 
inconsistencies are barely discernible in the voltage time series. Beyond 50 hours, the wavelet 
spectrum shows a gradual decline in primary periodicity relative to the time scale, indicating an 
increase in the C-rate of voltage cycling, as depicted in Figure 2a. This trend suggests a 
progressive degradation in the battery's ability to store energy efficiently. 

 

 
Figure 2. Time-frequency analysis of the SXC-1 battery voltage using CWT and Fourier 

Transform: (a) Battery voltage time series; (b) Global wavelet spectrum (black curve) with the 95% 
red-noise confidence threshold (red dashed line); (c) Time-frequency representation obtained via 

CWT, where the black curve marks the COI; and (d) Fourier spectrum analysis of the cycling 
experiment 

As observed in the global wavelet representation, shortly before reaching 100 hours, a set of 
higher-frequency components emerges above the primary periodicity, centred at approximately 1 
hour. These high-energy spectral intervals coincide with the second most prominent amplitude 
peak identified in the non-uniform spectrum shown in Figure 2d. Database records indicate that 
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before these frequency variations appeared, the battery had already experienced a capacity loss 
exceeding 55%. Figure S1c and Figure S2c in the supplementary materials illustrate the wavelet 
spectral power for SXC-2 and SXC-3 cells, neither of which exhibited signs of critical failure 
during testing. 

Time frequency analysis using the cross wavelet transform 
Hudgins et al. [30] developed the cross-wavelet spectrum as a technique to analyse the 

interdependent behaviour of two variables, 𝑋𝑋 and 𝑌𝑌. This method assesses their phase and 
frequency synchronisation, providing insight into their dynamic correlation [31]. The cross-
wavelet function (𝑊𝑊𝑊𝑊𝑊𝑊) is defined by Eq. 1, as follows: 

 
𝑊𝑊𝑥𝑥𝑥𝑥 = 𝑊𝑊𝑥𝑥 ⊛𝑊𝑊𝑦𝑦

∗ (1) 

 
In this context, ⊛ represents the Hadamard product, while (*) denotes the complex 

conjugation operation. The symbols 𝑊𝑊𝑊𝑊 and 𝑊𝑊𝑊𝑊 correspond to the wavelet transforms of two 
time series, X and Y, which represent the normalised voltage and current intensity measurements 
obtained from the SXC-1 battery cycling test, as illustrated in Figure 3a. Additionally, Figure 3c 
presents the cross-wavelet transform (XWT) results, depicting the interrelation between both time 
series through the wavelet power spectrum. The directional arrows in this figure indicate the phase 
relationship between voltage and current across the time–frequency domain. Specifically, arrows 
pointing directly to the right (→0°) or left (←180°) indicate linear synchronisation, implying 
an in-phase or anti-phase association between the two variables at a given frequency. Deviations 
from these alignments suggest a more complex, nonlinear synchronisation pattern [32].  

 

 
Figure 3. Time-frequency analysis of the cycling test for the SXC-1 cell using XWT: (a) Time 

series of current and battery voltage; (b) Global wavelet spectrum (black curve) with the 95% red-
noise confidence threshold (red dashed line); and (c) XWT spectral power, where the curved black 

line marks the COI 
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This analysis demonstrates that the two signals exhibit phase coherence over the studied time 
and frequency ranges. Furthermore, Figure 3b of the global wavelet spectrum reveals additional 
periodicities at frequencies lower than the primary one. Complementary findings are available in 
the supplementary material, where Figure S3c and Figure S4c illustrate the XWT spectral power 
for the SXC-2 and SXC-3 cells, both of which remained free from critical failure throughout the 
evaluation. 

Time – frequency analysis using wavelet transforms coherence 
Wavelet transform coherence (WTC) was obtained by applying a smoothing process to both 

the temporal and frequency scales of the cross-wavelet spectrum. Its purpose is to identify specific 
frequency ranges and time segments where the analysed time series exhibit a relationship [33]. 
This approach enables the evaluation of localised correlation coefficients and phase interactions 
between two time series that display non-stationary power fluctuations across multiple frequencies 
[34]. The WTC in [35] is defined as: 

 

𝑅𝑅𝑥𝑥𝑥𝑥(𝜏𝜏, 𝑠𝑠) =
�𝑆𝑆 �𝑊𝑊𝑥𝑥𝑥𝑥(𝜏𝜏, 𝑠𝑠)��

𝑆𝑆(|𝑊𝑊𝑥𝑥(𝜏𝜏, 𝑠𝑠)|2)𝑆𝑆 ��𝑊𝑊𝑦𝑦(𝜏𝜏, 𝑠𝑠)�2�
 (2) 

 
Rxy takes values between 0 and 1, while S is a smoothing operator applied to both time and 

frequency (without S, the wavelet coherence would always be equal to 1 at all scales). Values 
closer to one indicate a stronger correlation, whereas values approaching 0 suggest a weaker 
relationship [36]. Figure 4a shows the two-time series in normalised units that were analysed with 
the WTC: the first corresponds to the voltage signal (magenta solid line), while the second 
represents the battery charge/discharge current (blue dashed line). 

Figure 4c presents the coherence analysis results, illustrating the correlation between battery 
voltage and current by assessing the local covariance of these two-time series across different time 
and frequency scales. The global wavelet spectrum highlights a region of maximum spectral 
power density occurring between 4 and 0.05 hours, depicted in dark red. Within this zone, a 
frequency range spanning 3.5 to 1.5 hours is associated with the primary cycling periodicities 
(refer to Figure 4b and Figure 4c). Similar to the observations in Figure 3c and Figure 2c, the 
main periodicity exhibits interruptions and a declining trend due to progressive capacity loss. 
Additionally, periodic components near 1 hour emerge sporadically between 0–46 hours and 56–
87 hours, displaying irregular spectral power at moderate-to-low intensity. 

Within the XWT analysis, the direction of the arrows and their corresponding phase angles 
illustrate the degree of correlation between two time series at varying scales. Arrows oriented 
vertically—either upward or downward—correspond to phase shifts of π/2 and -π/2, respectively, 
indicating that one variable precedes or lags the other. Alternatively, when an arrow points to the 
right with a phase angle ϕxy in the range (0, π/2) or (-π, -π/2), it suggests that the second variable 
leads the first. Conversely, if ϕxy falls between (-π/2, 0) or (π/2, π), the first variable leads the 
second [37]. 

Figure 4c shows the wavelet transform coherence (WTC) map, quantifying the localized 
correlation between voltage and current signals across time and frequency scales. The high-power 
regions in dark red (4 to 0.05 hours) indicate strong phase coupling during regular cycling activity. 
Within this zone, dominant periodicities between 3.5 and 1.5 hours align with the core cycling 
frequencies identified in Figure 4b. Early in the test (0–100 hours), most phase arrows point to 
the right at angles near π/4, implying that current variations precede voltage responses—a 
behaviour consistent with expected electrochemical dynamics. After 100 hours, the phase angle 
progressively approaches zero, denoting increasing synchrony between the two signals. This 
transition may be linked to capacity fading or aging-induced impedance shifts.  
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Figure 4. Time-frequency analysis of the cycling test for the SXC-1 cell using WTC: (a) Time 

series of current and battery voltage; (b) Global wavelet spectrum (black curve) with the 95% red-
noise confidence threshold (red dashed line); and (c) WTC spectral power, where the curved black 

line marks the COI 

Supplementary Figure S5c and Figure S6c, corresponding to SXC-2 and SXC-3, reveal 
similar spectral coherence structures, with no indication of abrupt failures. However, a steady 
phase offset near π/2 remains visible in the dominant frequency band, further confirming that 
current leads voltage even in non-failing cells. The evolution of phase synchronization and 
coherence loss supports the use of WTC as a diagnostic indicator of electrochemical degradation. 

A comparative analysis was performed across the three half-cells (SXC-1, SXC-2, and 
SXC-3) to evaluate the repeatability of the spectral patterns identified. The supplementary 
figures corresponding to each transform (Figure S1–S6) demonstrate that SXC-2 and SXC-3 
reproduce the key spectral signatures observed in SXC-1. In the FFT domain (Figure 2), all 
three cells exhibit a progressive energy concentration in the low-frequency range as cycling 
advances, indicating consistent degradation behaviour. The CWT analysis (Figure S1 and 
Figure S2) revealed time-localized anomalies near the end of life for each cell, with the Morlet-
based transform capturing envelope fluctuations and transient events at comparable scales. 
XWT plots (Figure S3 and Figure S4) confirm the presence of phase-locked frequency 
components during late-stage cycles, consistent with the degradation-induced coupling 
observed in SXC-1. Moreover, the WTC maps (Figure S5 and Figure S6) show coherence 
decay and shifts in phase alignment in the 0.002–0.008 Hz range, particularly during cycles 
beyond 200, reinforcing the interpretation of fault progression. These consistencies validate the 
robustness of the proposed hybrid spectral approach for early fault detection in Si–C half-cells 
under dynamic load conditions. 

CONCLUSIONS 
A spectral analysis was performed on the charge/discharge test cycle voltage of lithium-ion 

batteries with a silicon-carbon anode. The Fourier transform was employed to identify the primary 
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frequencies of the cycles and the harmonic components present in the voltage signal. A 
complementary analysis using continuous, cross, and coherence wavelet transforms revealed 
significant patterns in the battery cycling tests. 

Firstly, prior to an irregular event, critical failure, or battery degradation, the continuous and 
cross wavelet transform figures exhibit the emergence of new frequency components following a 
change in the main periodicity of the voltage signal. Secondly, the coherence wavelet transform 
reveals discontinuous periodicity intervals with medium-to-low spectral power, a time lag 
between the time series where the current precedes the voltage, and a declining trend in the main 
periodicity associated with a loss of battery capacity. 

This study reinforces the potential of spectral analysis for early fault detection in lithium-ion 
batteries. The findings demonstrate that frequency-domain features extracted via Fourier and 
wavelet transformations provide valuable insights into battery health. The emergence of new 
frequency components serves as an early warning indicator of impending failures, offering a 
predictive framework for battery management systems (BMS) to detect early signs of degradation, 
capacity loss, and failure. This approach can significantly reduce the risk of critical failures in 
electric vehicle battery systems. Beyond applications in electric vehicle batteries, the proposed 
spectral analysis methodology could be extended to other energy storage technologies where early 
fault detection is crucial. By enhancing the safety and reliability of these systems, this method 
supports the broader adoption of energy storage in renewable energy grids, where the stability and 
longevity of storage solutions are paramount. 

Future research should explore the scalability of this methodology across different battery 
chemistries, including solid-state and sodium-ion technologies.  Finally, the proposed framework 
could be adapted to other lithium-based chemistries, provided that their spectral response 
characteristics are well characterized. Furthermore, the method shows potential for integration 
into real-time battery management systems (BMS), particularly in scenarios where signal 
distortions serve as early indicators of degradation. While the approach is computationally 
efficient, practical deployment would require addressing several key challenges, including 
ensuring an adequate data acquisition rate (typically >1 Hz) to resolve transient features, 
optimizing processing resources for real-time execution, and ensuring sensor accuracy to 
minimize signal noise. These considerations will guide future work focused on embedded 
implementation and testing under dynamic load conditions. 
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NOMENCLATURE 
CC Constant Current 

(charge/discharge current) 
[mA/g] 

CV Constant Voltage [V] 
T Temperature [°C] 
Wx Wavelet transform of time 

series X (e.g. voltage signal) 
– 

Wy Wavelet transform of time 
series Y (e.g. current signal) 

– 

⊛ Hadamard product operator – 
* Complex conjugation 

operator 
– 

Rxy Wavelet coherence coefficient 
between time series X and Y 

– 
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S Smoothing operator (applied 
to time and frequency scales 
in WTC) 

– 

Abbreviations 
EVs Electric Vehicles 
HEVs Hybrid Electric Vehicles 
CWT Continuous Wavelet Transform 
SF Sampling Frequency 

COI Cone of Influence (limit for reliable period 
detection in the time–frequency domain) 

C-rate Charge rate (indicator of battery 
charging/discharging intensity) 

XWT Cross-Wavelet Transform 
WTC Wavelet Transform Coherence 
FFT Fast Fourier Transform 
BMS Battery Management System 
LIBs Lithium-Ion Batteries 
SXC Silicon Experimental Cell 
DC Direct Current 
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Figure S1. Spectral analysis of battery voltage variations during the cycling test of the SXC-2 cell: 

(a) Time series of battery voltage; (b) Global wavelet spectrum; (c) CWT power spectrum; and (d) 
Fourier spectrum analysis. The test was conducted by IER-UNAM 

 

 
Figure S2. Spectral analysis of battery voltage variations during the cycling test of the SXC-3 cell: 

(a) Time series of battery voltage; (b) Global wavelet spectrum; (c) CWT power spectrum; and (d) 
Fourier spectrum analysis. The test was conducted by IER-UNAM 

 



Carbono dela Rosa, M. E., Gómez, J., et al. 

Enhanced Spectral Analysis Approaches for Predicting…  
Year 2025 

Volume 13, Issue 4, 1130613 
 
 

Journal of Sustainable Development of Energy, Water and Environment Systems 15 

 

 
Figure S3. Cross-wavelet analysis of battery voltage and current variations during the cycling test 

of the SXC-2 cell: (a) Time series of normalized battery voltage (magenta) and normalized current 
(blue); (b) Global wavelet spectrum; and (c) XWT power spectrum. The test was conducted by IER-

UNAM 

 
Figure S4. Cross-wavelet analysis of battery voltage and current variations during the cycling test 

of the SXC-3 cell: (a) Time series of normalized battery voltage (magenta) and normalized current 
(blue); (b) Global wavelet spectrum; and (c) XWT power spectrum. The test was conducted by IER-

UNAM 
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Figure S5. Wavelet coherence analysis of battery voltage and current variations during the cycling 
test of the SXC-2 cell: (a) Time series of normalized battery voltage (magenta) and normalized 

current (blue); (b) Global wavelet spectrum; and (c) WTC power spectrum. The test was conducted by 
IER-UNAM 

 

 
Figure S6. Wavelet coherence analysis of battery voltage and current variations during the cycling 
test of the SXC-3 cell: (a) Time series of normalized battery voltage (magenta) and normalized 

current (blue); (b) Global wavelet spectrum; and (c) WTC power spectrum. The test was conducted by 
IER-UNAM 
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