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ABSTRACT 
Water is an indispensable resource for all forms of life, with a particularly critical role in 
supporting human health, agriculture, and industrial development. With the predicted water 
scarcity worldwide, it is critical to have a tool to analyse and predict water potability accurately 
and in real-time. This study used machine learning models to predict water potability based on 
quality features such as potential of Hydrogen (pH) value, hardness, solids content, chloramines, 
sulfate, and conductivity. Potability is determined based on the concentration of these features 
in the water. Four machine learning algorithms, namely, Random Forest, Logistic Regression, 
Extreme Gradient Boosting (XGBoost), and Deep Learning Neural Networks, are used to 
analyse water potability after training using a water quality dataset. Initial experiments showed 
moderate performance, with Random Forest (F1-score = 0.47 and area under the receiver 
operating characteristic curve of 0.68) and XGBoost (F1-score = 0.49 and area under the 
receiver operating characteristic curve of 0.66), outperforming the other two models. After 
addressing class imbalance and introducing more features using feature engineering, the 
performance of the four models was significantly improved, with Random Forest achieving an 
F1-score of 0.85 and an area under the curve of 0.90 and XGBoost achieving an F1-score of 
0.86 and an area under the curve of 0.91. The results clearly indicate that Random Forest and 
XGBoost consistently outperformed the Linear Regression model and the Deep Learning model 
in terms of predictive accuracy and robustness. These results demonstrate the critical importance 
of feature engineering and hyperparameter optimization in enhancing model effectiveness. A 
real-time water potability prediction application was developed to classify water as either “safe 
to drink” or “unsafe to drink”, and its functionality was successfully validated, and its output 
was displayed on a user-friendly graphical user interface (GUI). 

KEYWORDS 
Water, Potability, Machine Learning, Random Forest, XGBoost, Deep Learning, Feature 
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INTRODUCTION 
Water is one of the most critical natural resources, essential for life sustainability, supporting 

ecosystems, and enabling socio-economic development [1]. As population grows worldwide, 
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and urbanization and industrialization accelerate, the demand for clean and safe water has 
significantly increased [2]. However, the quality of water and its sources across the globe has 
been deteriorating due to pollution from domestic sewage, industrial discharge, agricultural 
activities and runoff, human-induced factors, and rapid urbanization [3]. As a result of water 
pollution, human beings have begun to suffer from a variety of health problems, including skin 
disease, diarrhea, dysentery, respiratory illnesses, anemia, complications in childbirth, and other 
health issues [4]. As water pollution increases, real-time monitoring and accurate prediction of 
water quality have become essential to ensure public health, environmental protection, and 
regulatory compliance [5]. Traditional water quality monitoring methods often rely on manual 
sampling and laboratory analyses, and are time-consuming, labor-intensive, and may not 
provide real-time results about water quality [6]. The traditional approaches involve laboratory 
testing using chemical or biological methods to measure parameters such as pH, hardness, 
sulfates, chloramines, solids turbidity, and others. Sensor technologies and the Internet of 
Things (IoT) have significantly improved data collection in water monitoring systems [7]. 
Nevertheless, as the need for precision and accuracy increases, most data generated from many 
sensors requires robust computational models for real-time interpretation and actionable 
decision-making [8], [9]. Moreover, the increased complexity and volume of water quality data 
often collected through real-time sensors may necessitate advanced data-driven approaches to 
ensure timely and accurate assessment. In response to these challenges, the integration of 
Machine Learning (ML) techniques into water quality analysis and prediction has gained 
significant attention, offering the potential for efficient, accurate, and real-time monitoring 
solutions [10], [11].  

This work employs a number of ML models to assess the quality of water and predict its 
potability. A dataset available online is used to train the developed models. Four ML algorithms, 
namely, Random Forest, XGBoost, Logistic Regression, and Deep Learning MLP, will be 
employed to assess and predict water potability for the given dataset. Performance was 
compared based on metrics such as precision, accuracy, recall, F1-score, and AUC (area under 
the receiver operating characteristic curve).  

 
The contributions of this study are: 

i) Feature selection via importance analysis: A feature importance analysis was used to 
select a smaller number of impactful features to build the ML models. This makes 
the models lightweight with reduced computational overhead, and hence, more 
suitable for real-time deployment.  

ii) Performance enhancement through preprocessing: The performance of the models 
was enhanced using class balancing, hyperparameter tuning, and feature engineering.  

iii) Real-Time application deployment and GUI integration for practical use: The best 
performing model was integrated into a user-friendly water potability prediction 
application to classify water as either “safe to drink” or “unsafe to drink” in real-time. 

 
The rest of this paper is structured as follows. Section II provides a literature review about 

the subject. The methods are discussed in section III. Section IV provides simulation results and 
discussion. Conclusions are highlighted in section V. 

LITERATURE REVIEW 
ML techniques are powerful tools for analysing complex, multivariate, multi-dimensional, and 

nonlinear datasets. ML algorithms, including supervised, unsupervised, and reinforcement 
learning paradigms, have proven to be powerful in modelling complex, nonlinear relationships, 
which is the case with environmental data [12], [13]. Supervised learning models such as Support 
Vector Machines (SVM), Random Forests (RF), and Artificial Neural Networks (ANN) have been 
employed to predict various water quality parameters, including pH, dissolved oxygen, turbidity, 
and biochemical oxygen demand [14], [15]. For instance, the work in [16] utilized supervised ML 
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techniques to predict water quality parameters to achieve high accuracy levels. The study applied 
these models, revealing their superiority over conventional techniques in capturing nonlinear 
relationships between water parameters. The paper in [17] demonstrated the application of 
unsupervised ML for anomaly detection in water treatment systems to ensure water safety.  

Many studies have also validated the capability of supervised learning algorithms such as 
ANNs and SVMs to predict water quality. The researcher in [18] performed a study to compare 
ML models and emphasized the role of big data in identifying water quality. 

The utilization of deep learning (DL) has further enhanced the capabilities of ML in water 
quality analysis. DL offers significant advantages in handling complex and high-dimensional 
water quality data. For example, Recurrent Neural Networks (RNNs), particularly Long Short-
Term Memory (LSTM) networks, have been effective in modelling temporal dependencies in 
water quality time series data and generating accurate water quality prediction results, as shown 
in [19] and [20]. The study in [21] employed CNN-LSTM to simulate parameters such as pH and 
dissolved oxygen, showing improved accuracy in predicting water quality dynamics. 

Hybrid approaches have gained attention for their enhanced predictive power. The researchers 
in [22] proposed a hybrid decision tree model that outperformed standalone algorithms in short-
term water quality forecasting. The study in [23] demonstrated the effectiveness of integrating 
Convolutional Neural Networks (CNN) with Long Short-Term Memory (LSTM) networks to 
predict short-term fluctuations in water quality. These models excel at modelling temporal and 
spatial dependencies in water quality datasets, especially under varying environmental conditions. 
These innovations support the development of real-time water quality monitoring systems. The 
study in [24] used novel hybrid algorithms to improve water quality indices, while the study in 
[25] demonstrated the feasibility of real-time classification of water quality classes using 
supervised ML. Such systems are capable of making real-time decisions and provide an early-
warning mechanism for water quality management. 

Moreover, the integration of Internet of Things (IoT) devices with ML models has enabled the 
development of intelligent water quality monitoring systems. IoT sensors facilitate real-time data 
collection, which, when analysed with ML algorithms, can provide timely insights into water 
quality. The work in [26] proposed a probabilistic ML model integrated with IoT sensors for water 
quality level estimation, demonstrating its effectiveness in real-world scenarios. ML remains a 
powerful tool for generating predictions and trends and providing a comprehensive understanding 
and solution to complex problems and systems.  

Identifying the most relevant features that are required by the ML models is essential for 
building efficient and interpretable models. The study in [18] and [27] emphasized the use of data-
driven techniques for selecting relevant features and pollution sources. Recent studies, e.g., [28], 
have explored interpretable ML models to quantify the effect of multiple pollutants on water 
quality prediction. 

Despite these advancements, challenges exist in the application of ML to water quality 
analysis. High-quality and comprehensive datasets remain a prerequisite for effective model 
training. Issues such as data scarcity, sensor reliability, and model interpretability need to be 
addressed to fully utilize the power of ML in this domain [29]. Ongoing research focuses on 
developing robust, scalable, and interpretable ML models that can operate effectively under 
varying environmental conditions. 

 
ML models have transformed the field of water quality analysis and prediction by offering 

scalable, fast, and adaptive solutions. From classical models such as SVMs to more advanced 
architectures such as CNN-LSTM hybrids, these methods have shown strong potential in 
prediction, classification, and real-time analysis. However, a number of challenges persist. 
First, data quality issues such as missing values and class imbalance are observed in 
environmental datasets. Although some studies acknowledge these problems, they are not 
usually treated systematically. Second, generalizability is limited in most of the studies that 
rely on a dataset from a single water source or region, and hence it is difficult to use developed 
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models with other sources or in other locations. Third, interpretability is important particularly 
in environmental applications, yet deep learning models in the literature may not necessarily 
be transparent, with only a few studies utilizing interpretable ML or feature importance analysis 
[28]. This study closes these gaps by handling missing values, applying class balancing, and 
using feature engineering and feature importance to improve performance and interpretability 
of the models. Furthermore, comparing different models provides an indication of the relative 
robustness of ensemble, linear, and neural network models [23], [24]. Incorporation of 
additional sources of information such as IoT sensors and climate models, and building hybrid 
models for varying environmental conditions are future prospects to increase the accuracy of 
predictions and real-time monitoring [26]. 

METHODS 
This section describes the experimental steps followed in this study, including dataset 

analysis and processing, performance metrics, model development, and deployment.  

Dataset Analysis and Preprocessing 
Water potability dataset was retrieved from an open-source repository [30]. It contains a 

total of 3,276 records, with 1,998 records labelled as non-potable or unsafe for drinking and 
1,278 records labelled as potable or safe for drinking. The dataset includes nine features, which 
are pH, hardness, solids, chloramines, sulfate, conductivity, organic_carbon, trihalomethanes 
and turbidity. Potability is represented by binary values, where 1 is for potable water and 0 is 
for non-potable water. These classifications are based on the concentration levels of the 
aforementioned substances and features.   

The dataset was studied and investigated thoroughly to check its quality. It was found that 
there are 491 missing pH values, 781 missing sulfate values, and 162 missing trihalomethane 
values. The missing parameter values were replaced with the mean values, which is a common 
method, especially when data is fairly symmetric.  

The next step was to carry out exploratory data analysis (EDA). This includes examining 
histogram distribution for each feature, handling missing values (either by filling or removing), 
generating correlation analysis (heatmap), checking class balance for potability, and generating 
statistical summaries by calculating the mean, median, standard deviation, and minimum and 
maximum values. The results of this analysis were then presented visually. Figure 1 to Figure 
4 show the distributions of pH, hardness, solids, and sulfate. From those figures, it can be seen 
that features are not perfectly normal, but many are skewed (e.g., solids, sulfate). 

 

 
Figure 1. Distribution of pH 
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Figure 2. Distribution of Hardness 

 

 
Figure 3. Distribution of Solids 

 

 
Figure 4. Distribution of Sulfate  

Figure 5 shows the correlation heatmap of the nine features besides the potability. It can be 
seen that there are some positive correlations observed (e.g., solids and conductivity). Most other 
features are weakly correlated with each other and with potability. In general, the weak correlation 
between features means the features are independent, and each feature has its influence on the 
result of potability. 
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Figure 5. Correlation Heat Map of the Features 

The dataset has class imbalance, with 1,998 records labelled as “Not Potable” and 1,278 
records labelled “Potable”. This imbalance is an important consideration for designing machine 
learning algorithms later as it may necessitate applying class balancing techniques. 

To get a better idea about the features and their effect on potability, boxplots were generated 
to detect outliers, and they are provided in Figure 6 to Figure 9.  

 
 

Figure 6. Boxplot for pH by Potability 

 
Figure 7. Boxplot for Hardness by Potability 
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Figure 8. Boxplot for Chloramines by Potability 

 
Figure 9. Boxplot for Sulfate by Potability 

From the above figures, it can be seen that for several features, the medians and distributions 
differ between potable and non-potable water, but often with overlap. Features such as pH, 
chloramines, sulfate, and trihalomethanes show visible differences. 

Feature Importance Analysis and Dimensionality Reduction 
Feature importance analysis was carried out using the Random Forest Gini Importance (also 

known as Mean Decrease in Impurity), which measures how each feature decreases impurity in 
classification trees [31]. It is a default and most commonly used technique in scikit-learn library. 
The method calculates the total reduction in the impurity that each feature contributes across all 
decision trees in the Random Forest. The result of feature importance analysis is shown in Figure 
10.  
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Figure 10. Feature Importance Analysis Result 

The features above the importance median are pH, hardness, sulfate, chloramines, and solids. 
Accordingly, these five features are identified as the most relevant for predicting water potability.  
Accordingly, a refined version of the dataset was generated, which consists of the cleaned data 
(without any missing records) with the five features along with the potability label (0, 1). 

Performance Metrics  
One of the most commonly used metrics for classification algorithm performance assessment 

is accuracy, which, at the same time, is what is often seen reported [32]. However, it sometimes 
proves to be a deceptive and risky metric, especially with imbalanced datasets, where a class has 
more samples for one label than the other. In the dataset used in this work, there are 1,998 entries 
for the “Not Potable” class and 1,278 for the “Potable” class. The “Not Potable” class is therefore 
the majority class, whereas “Potable” is the minority class. If left unaddressed, machine learning 
algorithms tend to be biased towards predicting the majority class with deceptively high overall 
accuracy but poor performance when detecting the minority class [33]. Moreover, a model may 
have high accuracy because it is predicting the major class, however, this doesn’t necessarily 
indicate that the model has learned the true patterns within the dataset. Thus, it is important to use 
other metrics such as the F1-score and AUC. The F1-score is the harmonic mean of precision (the 
proportion of true positive results among the total positive results) and recall (the proportion of 
total positives that were identified), which in turn indicates that the model is performing well in 
avoiding false positives and false negatives [32]. For example, while the model can accurately 
classify 80 safe samples out of 100 but inaccurately labels 40 unsafe samples as safe, the precision 
and recall will differ, and the F1-score will provide a balanced combined measure. 

This is crucial when the cost of misclassification is high. The AUC evaluates the ability of the 
model to distinguish between classes for any given classification threshold. An AUC of 0.5 would 
indicate random guessing, while an AUC of 1.0 would indicate that the potable samples and non-
potable samples are completely distinguishable. For instance, if the Random Forest algorithm has 
an AUC of 0.90, that means it will be accurate in 90% of the instances in ranking a randomly 
chosen potable sample over a non-potable sample. Accordingly, F1-score and AUC will be 
considered (besides accuracy, precision, and recall) because they give a more in-depth and reliable 
picture of the algorithm’s real-world performance than does the accuracy alone.  

Model Selection and Justification  
In this study, four classification models were selected. These are Random Forest (RF), Logistic 

Regression (LR), XGBoost, and a Deep Learning model (MLP). The models provide a balance 
between traditional machine learning tools, advanced ensemble models, and neural network-based 
approaches. These models have been chosen for their unique features in binary classification 
problems with tabular real-world datasets such as the water potability dataset. The justification for 
choosing each model is as follows: 
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i) RF Classifier: Random Forest was chosen for its robustness, interpretability, and 
performance with structured data. As an ensemble of decision trees, it reduces 
overfitting by averaging out predictions from many trees, which makes it very useful 
for complex nonlinear interactions in data. Also, it includes in its structure a feature 
importance analysis, which is a valuable tool for identifying the main water quality 
parameters. 

ii) LR Classifier: Logistic Regression is a simple and interpretable baseline model. It is 
commonly used in the field of binary classification problems, and does very well when 
the relationship between input features and the target variable is almost linear. Also, it 
is used as a performance benchmark to which more complex models can be compared.  

iii) XGBoost Classifier: Extreme Gradient Boosting was selected due to its outstanding 
performance and speed when processing structured datasets. It also includes features 
such as regularization and parallel computation, which make it more advanced than 
typical boosting algorithms. Also, it is known for its ability to model nonlinearity and 
complex variable interactions, which makes it a top performing algorithm in real-
world applications, and hence, it is a key player in this study.  

iv) Deep Learning MLP (Multilayer Perceptron): A feedforward neural network is a 
large-scale learning model that can learn complex high-level abstractions from the data. 
Though it does not always perform best on small to medium size tabular datasets, deep 
learning can outperform other models when scaled up in terms of data input and tuning. 
It also serves as a tool to see how well a neural architecture generalizes, which is in 
contrast to tree-based models and linear classifiers. 

 
Table 1 provides model selection justification summary. 
 

Table 1. Justification of Model Selection  

Model Justification  

Random Forest  Handles nonlinear patterns, provides built-in feature 
importance 

Logistic 
Regression 

Serves as a baseline due to its simplicity and 
interpretability 

XGBoost High accuracy and scalability, robust to noise and 
imbalance 

Deep Learning 
(MLP) 

Tests how well a neural net generalizes in this 
domain 

 
The models were implemented using open-source Python libraries, which are scikit-learn, 

xgboost, and keras. Table 2 below provides the key parameters for each of the four models that 
were implemented using Python. 

Table 2. Parameters of Each Model on Python 

Model Library 
Used Key Parameters Role/Description 

Random 
Forest scikit-learn n_estimators = 200 Number of decision trees. More trees reduce 

variance and improve stability. 

  max_depth = 10 Maximum depth of each tree. Prevents 
overfitting by limiting complexity. 

  min_samples_split 
= 5 

Minimum samples required to split a node. 
Controls model generalization. 

  min_samples_leaf = 
2 

Minimum samples required at a leaf node. 
Reduces overfitting on noise. 
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Logistic 
Regression scikit-learn solver='liblinear' 

Optimization algorithm suitable for 
small/medium datasets and binary 

classification. 

  Penalty = 'l2' Regularization type. Prevents overfitting by 
penalizing large coefficients. 

  C = 1.0 Inverse of regularization strength. Balances 
bias and variance. 

XGBoost xgboost n_estimators = 300 
Number of boosting rounds. More rounds 
generally improve performance but risk 

overfitting. 

  learning_rate = 
0.05 

Step size shrinkage. Smaller values make 
learning more robust. 

  max_depth = 6 Depth of individual trees. Balances 
complexity and generalization. 

  Subsample = 0.8 Fraction of training samples used per tree. 
Introduces randomness for robustness. 

  colsample_bytree = 
0.8 

Fraction of features sampled per tree. Reduces 
correlation among trees. 

Deep 
Learning 

(MLP) 

TensorFlow/
Keras 

Dense (64, relu) → 
Dense (32, relu) → 
Dense (1, sigmoid) 

Neural network layers: hidden layers with 
ReLU activation capture nonlinearity. Final 

sigmoid outputs probability. 

  optimizer=Adam(lr=
0.001) 

Adaptive optimizer controlling weight 
updates. 

  loss=binary_crosse
ntropy Loss function for binary classification tasks. 

  epochs = 50, 
batch_size = 32 

Training settings. Define how long and with 
what batch size the model trains. 

 

Class Imbalance Handling 
As noted, the dataset has class imbalance, and this issue must be addressed. One of the 

commonly used methods in this regard is SMOTE (Synthetic Minority Over-sampling Technique) 
[34], [35]. It generates artificial samples of the minority class by interpolating existing samples in 
feature space to allow the classifier to learn the decision boundary in a better way. SMOTE was 
applied to the training set only to avoid data leakage problem. 

Hyperparameter Tuning 
The hyperparameter tuning method is used to find the best set of parameters for ML models 

without modifying the algorithm itself. It occurs before training. It optimizes model performance 
in such a way that it enhances accuracy and generalization (performance on new data), reduces 
overfitting or underfitting, and increases training efficiency (speed, memory usage). 

Hyperparameter tuning was also conducted for the four models using GridSearchCV and 5-
fold stratified cross-validation. The method tried various combinations of parameters to identify 
the optimal configuration according to the F1-score. This improves the generalization ability and 
precision of the used models. 

External Validation  
To assess the external validity of the proposed approach, the findings of this work will be 

compared with the results in existing literature. For example, the use of ensemble models (e.g., 
Random Forest and XGBoost) will be compared with the performance of these models shown 
in references such as [10], [18], and [24], while the performance of SMOTE in imbalanced data 
will be assessed by studies such as [34] and [35]. Although the dataset differs from other works 
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in geography or water source, performance trends can provide good understanding and 
validation for the methodological choices of this research. 

Deployment  
After assessing the performance of each model, the best model will be exported (using joblib) 

and integrated into a user-friendly graphical user interface (GUI) application to be built with 
Streamlit. The application allows users to enter water characteristics and receive real-time 
predictions on potability (i.e., safe or unsafe to drink). More details will be provided in the next 
section. 

SIMULATION RESULTS AND DISCUSSIONS  
This section provides the results of the four classification models that were used to predict 

water potability based on the five selected features. The performance of each of the four models 
was evaluated using a stratified train-test split (80/20) and five performance metrics. All 
simulations were performed using Python programming language.   

Initial Performance Results of the Models  
The first experiment conducted on the refined dataset after handling missing values and 

selecting only five top features is to generate performance comparison of the four models, namely, 
RF, LR, XGBoost, and DL MLP. It should be noted that the dataset used in this experiment still 
suffers from class imbalance. 

After running the four models, performance metrics were calculated based on the obtained 
results. Table 3 shows a summary of the metric values for the four models.  

 
Table 3. Initial Model Performance Comparison  

Model Accuracy  Precision  Recall F1-Score AUC 
Random Forest  0.6714 0.6339 0.3708 0.4679 0.6837 

Logistic Regression 0.6104 0 0 0 0.5234 
XGBoost 0.6673 0.6111 0.4021 0.485 0.6636 

Deep Learning (MLP) 0.6104 0 0 0 0.5 
 
Table 2 above highlights the superior performance of RF and XGBoost, where they both 

outperform LR and DL in terms of F1-score and AUC. The poor performance of LR and the DL 
neural network model is likely due to class imbalance and lack of model complexity or tuning. 

Figure 11 shows the F1-score results, while Figure 12 shows the AUC score results of the 
four models. 

 

Figure 11. F1-Score Results of the Four Models 
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Figure 12. AUC Score Results of the Four Models 

From Figure 11, XGBoost slightly outperformed RF model, while LR and DL have shown 
poor F1 scores due to class imbalance or underfitting problems. 

From Figure 12, it can be seen that RF model has shown the best AUC (which represents the 
discriminative power), followed closely by XGBoost. On the other hand, LR and DL performed 
almost randomly (since AUC ≈ 0.5). 

Figure 13 highlights the ROC curve comparison for the four tested models, which confirms 
the findings stated above about the four models.   

 
Figure 13. ROC curve comparison for the four models 

Based on the metrics and considering the importance of correctly classifying potable and non-
potable water, Random Forest can be considered the best-performing model for this task, closely 
followed by XGBoost. Random Forest has the highest AUC (0.684) and a decent F1-score (0.468), 
while XGBoost has a slightly lower AUC (0.664) but slightly better F1-score (0.485). Random 
Forest achieved the highest AUC score indicating better overall class discrimination ability, and 
XGBoost achieved the highest F1-score, reflecting a slightly better balance between precision and 
recall, especially when both classes are important. Logistic Regression and Deep Learning failed 
completely (precision, recall, and F1-score are all zeros). This likely means the models are 
predicting only one class (probably “non-potable”) and not learning properly. The models still 
have room for improvement because the best F1-scores are below 50%. This result suggests either 
features were not fully predictive or models need better tuning (hyperparameter optimization) or 
more complex features (e.g., interaction terms) are needed. 
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Performance Results of the Models After Class Balancing, Hyperparameter Tuning, and 
Feature Engineering 

Data imbalance is a known issue in classification applications that can lead to biased models 
favoring the majority class while hindering performance on the minority class. Among others, 
SMOTE is used to address this problem to increase the number of samples in the minority class. 
It is a popular technique for handling class imbalance by creating synthetic examples of the 
minority class (in this case, “potable” water) rather than simply duplicating them. 

In this work, hyperparameter tuning was implemented using GridSearchCV, which is part of 
the scikit-learn Python library. It is a brute-force search technique that evaluates all possible 
combinations of specified hyperparameters using cross-validation. 

Feature engineering is the process of transforming raw data into useful features for machine 
learning models. These engineered features capture complex interactions that may not be obvious 
in the default datasets. Some of the features can be selected, and new features can be created 
through transformation of features. Such a process can optimize the model’s performance and 
make it more efficient and accurate. Four new features using operations such as ratios, products, 
and differences were added, and the performances of the four models were analysed again by 
incorporating the new features in the dataset. The additional new features are provided in Table 4 
below: 

 
Table 4. The New Engineered Features 

New Features Formula  Description   
Hardness_Solids_Ratio Hardness ÷ Solids Relation between mineral 

content and solids 
Sulfate_Hardness_Ratio Sulfate ÷ Hardness Relative concentration of 

sulfate to hardness 
ph_Hardness_Product pH × Hardness Interaction term: acidity 

vs. minerals 
Solids_Sulfate_Diff Solids − Sulfate Mass difference between 

solids and sulfates 
 
After carrying out the above improvements, the models were trained and tested again. Table 

5 shows the performance metrics results for the four models. It can be seen from the table that 
there are noticeable improvements as a result of the SMOTE-based class balancing, 
hyperparameter tuning, and feature engineering (e.g., hardness/solids ratio, sulfate 
interactions). The F1-score and AUC for all the models have improved a lot. 

 
Table 5. Model Performance Comparison after Class Balancing, Hyperparameter Tuning, and 

Feature Engineering 

Model Accuracy  Precision  Recall F1-Score AUC 
Random Forest  0.8634 0.8744 0.8442 0.8533 0.9022 

Logistic Regression 0.8333 0.8536 0.8131 0.8342 0.8832 
XGBoost 0.8721 0.8923 0.8435 0.8623 0.9124 

Deep Learning (MLP) 0.8132 0.8211 0.7913 0.8012 0.8541 
 
From the above table, it can be seen that XGBoost and Random Forest models have achieved 

a more balanced classification between the “safe” and “unsafe” water classes, with much 
improved F1-score and AUC. Logistic Regression and Deep Learning models have also 
improved significantly after balancing the dataset and feature engineering, but showed slightly 
lower recall and F1-score. 
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Figure 14 shows the F1-score results of the four models after the above adjustments and 
improvements, while Figure 15 shows the AUC score results of the four models after the same 
adjustments and improvements.  

 

Figure 14. F1-Score Results of the Four Models after Improvements 

 

Figure 15. AUC Score Results of the Four Models after Improvements 

XGBoost has shown the highest F1-score (0.86), followed by Random Forest (0.85). 
Logistic Regression and Deep Learning performed slightly lower. 

XGBoost has the highest AUC (0.91), which confirms its superior ability to distinguish 
between safe and unsafe water, and Random Forest follows closely with 0.90. Logistic 
Regression and Deep Learning are slightly behind. Accordingly, XGBoost model offers the 
best overall balance between precision and recall. Deep Learning achieved decent performance 
but did not outperform ensemble methods on this tabular dataset. 

In summary, XGBoost is the top-performing model with the highest AUC (0.91) and an 
excellent F1-score (0.86). Random Forest closely follows with an AUC of 0.90 and strong 
classification metrics. Logistic Regression provided a strong baseline with good performance 
after balancing and tuning. Deep Learning (the MLP) was effective but less optimal than 
ensemble models in this context. As a result, the XGBoost model was selected for deployment 
due to its strong performance, interpretability, balance of accuracy, and robustness.  

Lastly, an application was created using Python joblib and Streamlit. The application 
provides the user with a prediction of whether the water is drinking “SAFE” or “UNSAFE” 
after entering the values of the required chemical properties or the feature values on the 
graphical user interface (GUI). XGBoost model was saved (exported) using joblib library. 
Then, using Streamlit, which is a Python-based framework for rapid app deployment, the 
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application was built. Figure 16 shows two examples of executing the application. The app can 
be implemented on mobile devices, PCs, or other platforms, allowing easy visual interaction 
with users interested in predicting water potability. 

 

  
Figure 16. Water Potability Prediction App – Safe/Unsafe Water Prediction Outputs 

Validation with Existing Literature  
To ensure the external validity of this work's findings, the performances of the used models 

are compared to results in existing water quality prediction research. Previous relevant studies 
have shown that more advanced ensemble methods, such as Random Forest and gradient 
boosting algorithms such as XGBoost, outperform baseline linear models or logistic regression. 
Apart from this, class balancing methods such as SMOTE have been widely verified in 
environmental as well as general machine learning applications to be efficient tools against 
imbalanced datasets. Table 6 summarizes this work's findings versus those available in recent 
literature. 

Table 6. Comparison of the Proposed Work Findings with Existing Literature 

Reference Task  Models 
Compared Findings Comparison with the 

Proposed Work 

Ahmed et al. 
[16] 

Prediction using 
supervised ML RF, SVM, ANN 

RF outperformed 
linear models; 

ensembles captured 
nonlinear relations 

Confirms RF 
superiority 

Chen et al. 
[18] 

Comparative 
analysis on surface 

water prediction 

Multiple ML 
models 

Tree models (RF, 
boosting) had higher 
predictive accuracy 

Supports RF/XGB 
results 

Lu & Ma 
[22] 

Short-term water 
quality forecasting 

Hybrid decision-
tree ensembles 

Ensemble models 
outperformed single 

models 

Supports RF/XGB 
results 

Bui et al. 
[24] 

Water quality index 
prediction 

Hybrid ML vs. 
standalone 

Hybrid/ensemble 
ML improved 

Emphasizes 
Ensemble Advantage 

Shams et al.  
[10] 

Prediction with grid 
search tuning RF, XGB, others 

Boosting with 
tuning achieved best 

performance 

Aligns with 
GridSearchCV 
improvements 

Fernandez et 
al. [34] Review of SMOTE 

ML models with 
imbalanced 

datasets  

SMOTE improves 
classifier 

performance 

Validates the use of 
SMOTE 
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Pradipta et 
al. [35] 

Review of SMOTE 
in practice 

Multiple ML 
models 

SMOTE widely 
used for class 

imbalance 

Confirms robustness 
of the used balancing 

approach 
 

Evidence presented in Table 6 verifies that the obtained results are aligned with previous 
studies. Specifically, ensemble models always perform well on different datasets and geographic 
locations, which indicates robustness and generalizability of the used models. Also, the use of 
SMOTE and hyperparameter tuning conforms to the state-of-the-art practice in the literature and 
further justifies their necessity in improving model fairness and prediction performance in 
imbalanced datasets. While the dataset used in this work differs in size and origin from the ones 
described in the literature, the uniform patterns of performance across studies confirm the 
accuracy and stability of the proposed approach. 

 

Limitations of the Work 
While this study demonstrates the applicability of ensemble and boosting techniques, class 

balancing, and feature engineering in water potability prediction, a few limitations exist. First, the 
study is limited to one publicly available dataset, which constrains the geographic and temporal 
range of water quality parameters under consideration. Therefore, the findings may not necessarily 
apply fully to water sources with other characteristics. Second, the validation method is limited to 
held-out test data from the same dataset. Although stratified train–test splits and cross-validation 
minimize overfitting, more comprehensive blind testing across external datasets from other 
sources or under different environmental conditions is necessary for external validation. Third, 
interpretability is addressed through feature importance analysis on ensemble models, but 
advanced interpretability tools (e.g., SHAP) were not implemented in this work. These may 
provide greater model decision-making insight, especially in neural networks. Finally, real-world 
deployment concerns such as sensor fusion, data streaming, and hardware efficiency are beyond 
the scope of this work, although the prototype Streamlit application demonstrates practical 
feasibility. These limitations are areas for future investigations. Generalization to multiple datasets, 
using advanced explainability techniques, and testing in realistic operating environments would 
enhance the validity and generalizability of the proposed models. 

Discussion  
To show the impact of the improvement after class balancing, hyperparameter tuning, and 

feature engineering, the results shown in Table 3 and Table 5 can be compared. As can be seen 
from this comparison, all four models improved their performance significantly, with Random 
Forest and XGBoost improving the most. For example, Random Forest F1-score improved from 
0.47 to 0.85, and XGBoost from 0.49 to 0.86, while Logistic Regression and Deep Learning also 
saw a big improvement from near-random performance to competitive performance. 

 
It should be noted, though, that after feature engineering the differences between the two top 

models (Random Forest and XGBoost) are very small, with XGBoost being only ~1% superior in 
F1-score and AUC. This means in practice that feature engineering is the process that gets all 
models to strong and comparable performance. The marginal gain of XGBoost may justify its 
selection as the deployment model, but Random Forest is a close second and may be preferred in 
circumstances where simpler interpretability or reduced computational cost is desirable. 

CONCLUSIONS  
This study presented a comparative analysis of four prominent machine learning models: 

Random Forest, XGBoost, Linear Regression and Deep Learning (MLP) on a certain water 
potability dataset based on key water quality features. Linear Regression was chosen for its 
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simplicity and interpretability, Random Forest was chosen for its robustness and generalization, 
XGBoost was chosen for its high-performance gradient boosting, and Deep Neural Networks 
model was chosen for its generalization ability. This diverse selection offers meaningful insights 
into which algorithm is most suitable for water potability classification based on both performance 
metrics and practical deployment considerations. 

Initial experiments showed moderate performance, with Random Forest and XGBoost 
outperforming the two other models. The results clearly indicate Random Forest and XGBoost 
consistently outperformed the traditional Linear Regression model in terms of predictive accuracy 
and robustness. While Linear Regression remains valuable for its simplicity and interpretability, 
it proved less effective in handling data with several features, imbalanced or nonlinear data. To 
further enhance performance, class balancing, hyperparameter tuning, and feature engineering 
techniques were applied. New features capturing the relationships between water properties were 
created. After these improvements, it was found that Random Forest and XGBoost both achieved 
significantly better F1-scores and maintained competitive AUC scores. The deep learning MPL 
model has shown to be less efficient, which could probably indicate that it requires further tuning 
and potentially more data to generalize well. Random Forest and XGBoost models, after tuning 
and feature engineering, offer strong and balanced performance for water potability prediction. A 
user-friendly application with a simple GUI was developed to provide real-time prediction of 
water potability.   

This research shows that model selection should be guided by the specific characteristics of 
the dataset, performance requirements, and available computational resources. Future work could 
explore even more advanced features, ensemble methods, hybrid models, or collecting additional 
datasets to further optimize the performance of the models and attain enhanced predictions. 

ACKNOWLEDGMENTS 
The authors appreciate the support provided by the School of Engineering and Computing, 

American University of Ras Al Khaimah. 

REFERENCES 
[1] D. Sharma and A. Kansal, “Water quality analysis of River Yamuna using water quality 

index in the national capital territory, India (2000–2009),” Appl Water Sci, vol. 1, no. 
3–4, pp. 147–157, Dec. 2011, https://doi.org/10.1007/s13201-011-0011-4. 

[2] H. Faraji and A. Shahryari, “Assessment of groundwater quality for drinking, irrigation, 
and industrial purposes using water quality indices and GIS technique in Gorgan 
aquifer,” Desalination Water Treat, vol. 320, p. 100821, Oct. 2024, 
https://doi.org/10.1016/j.dwt.2024.100821. 

[3] J. Halder and N. Islam, “Water Pollution and its Impact on the Human Health,” Journal 
of Environment and Human, vol. 2, no. 1, pp. 36–46, Jan. 2015, 
https://doi.org/10.15764/EH.2015.01005. 

[4] U. Ahmed, R. Mumtaz, H. Anwar, S. Mumtaz, and A. M. Qamar, “Water quality 
monitoring: from conventional to emerging technologies,” Water Supply, vol. 20, no. 1, 
pp. 28–45, Feb. 2020, https://doi.org/10.2166/ws.2019.144. 

[5] A. Babatunde, “Study on traditional water quality assessment methods,” Assessment and 
Management Decisions, vol. 1, no. 1, pp. 41–52, Jul. 2024. 

[6] P. Khatri, K. K. Gupta, and R. K. Gupta, “Assessment of Water Quality Parameters in 
Real-Time Environment,” SN Comput Sci, vol. 1, no. 6, p. 340, Nov. 2020, 
https://doi.org/10.1007/s42979-020-00368-9. 

[7] V. Madhavireddy and B. Koteswarrao, “Smart Water Quality Monitoring System Using 
Iot Technology,” International Journal of Engineering & Technology, vol. 7, no. 4.36, 
pp. 636–639, Dec. 2018, https://doi.org/10.14419/ijet.v7i4.36.24214. 

[8] V. Lakshmikantha, A. Hiriyannagowda, A. Manjunath, A. Patted, J. Basavaiah, and A. 
A. Anthony, “IoT based smart water quality monitoring system,” Global Transitions 



Al-Ataby, A., Getu, B., et al. 

Machine Learning-Based Water Quality Prediction 
Year 2026 

Volume 14, Issue 1, 1130634 
 
 

Journal of Sustainable Development of Energy, Water and Environment Systems 18 

 

Proceedings, vol. 2, no. 2, pp. 181–186, Nov. 2021, 
https://doi.org/10.1016/j.gltp.2021.08.062. 

[9] B. Das and P. C. Jain, “Real-time water quality monitoring system using Internet of 
Things,” in 2017 International Conference on Computer, Communications and 
Electronics (Comptelix), IEEE, Jul. 2017, pp. 78–82, 
https://doi.org/10.1109/COMPTELIX.2017.8003942. 

[10] M. Y. Shams, A. M. Elshewey, E.-S. M. El-kenawy, A. Ibrahim, F. M. Talaat, and Z. 
Tarek, “Water quality prediction using machine learning models based on grid search 
method,” Multimed Tools Appl, vol. 83, no. 12, pp. 35307–35334, Sep. 2023, 
https://doi.org/10.1007/s11042-023-16737-4. 

[11] S. Peerzade and P. Kamat, “Enhancing water quality prediction: a machine learning 
approach across diverse water environments,” Water Quality Research Journal, vol. 60, 
no. 1, pp. 298–317, Feb. 2025, https://doi.org/10.2166/wqrj.2025.083. 

[12] S. Chatterjee, S. Sarkar, N. Dey, S. Sen, T. Goto, and N. C. Debnath, “Water quality 
prediction: Multi objective genetic algorithm coupled artificial neural network based 
approach,” in 2017 IEEE 15th International Conference on Industrial Informatics 
(INDIN), IEEE, Jul. 2017, pp. 963–968. https://doi.org/10.1109/INDIN.2017.8104902. 

[13] F. Abbas et al., “Machine Learning Models for Water Quality Prediction: A 
Comprehensive Analysis and Uncertainty Assessment in Mirpurkhas, Sindh, Pakistan,” 
Water (Basel), vol. 16, no. 7, p. 941, Mar. 2024, https://doi.org/10.3390/w16070941. 

[14] K. K, S. Krishnan, and R. Manikandan, “Water quality prediction: a data-driven 
approach exploiting advanced machine learning algorithms with data augmentation,” 
Journal of Water and Climate Change, vol. 15, no. 2, pp. 431–452, Feb. 2024, 
https://doi.org/10.2166/wcc.2023.403. 

[15] Y. Liu, Y. Liang, K. Ouyang, S. Liu, D. Rosenblum, and Y. Zheng, “Predicting Urban 
Water Quality with Ubiquitous Data - A Data-driven Approach,” IEEE Trans Big Data, 
pp. 1–1, 2020, https://doi.org/10.1109/TBDATA.2020.2972564. 

[16] U. Ahmed, R. Mumtaz, H. Anwar, A. A. Shah, R. Irfan, and J. García-Nieto, “Efficient 
Water Quality Prediction Using Supervised Machine Learning,” Water (Basel), vol. 11, 
no. 11, p. 2210, Oct. 2019, https://doi.org/10.3390/w11112210. 

[17] J. Inoue, Y. Yamagata, Y. Chen, C. M. Poskitt, and J. Sun, “Anomaly Detection for a 
Water Treatment System Using Unsupervised Machine Learning,” in 2017 IEEE 
International Conference on Data Mining Workshops (ICDMW), IEEE, Nov. 2017, pp. 
1058–1065, https://doi.org/10.1109/ICDMW.2017.149. 

[18] K. Chen et al., “Comparative analysis of surface water quality prediction performance 
and identification of key water parameters using different machine learning models 
based on big data,” Water Res, vol. 171, p. 115454, Mar. 2020, 
https://doi.org/10.1016/j.watres.2019.115454. 

[19] N. Mahesh, J. J. Babu, K. Nithya, and S. A. Arunmozhi, “Water quality prediction using 
LSTM with combined normalizer for efficient water management,” Desalination Water 
Treat, vol. 317, p. 100183, Jan. 2024, https://doi.org/10.1016/j.dwt.2024.100183. 

[20] Y. Wang, J. Zhou, K. Chen, Y. Wang, and L. Liu, “Water quality prediction method 
based on LSTM neural network,” in 2017 12th International Conference on Intelligent 
Systems and Knowledge Engineering (ISKE), IEEE, Nov. 2017, pp. 1–5, 
https://doi.org/10.1109/ISKE.2017.8258814. 

[21] S.-S. Baek, J. Pyo, and J. A. Chun, “Prediction of Water Level and Water Quality Using 
a CNN-LSTM Combined Deep Learning Approach,” Water (Basel), vol. 12, no. 12, p. 
3399, Dec. 2020, https://doi.org/10.3390/w12123399. 

[22] H. Lu and X. Ma, “Hybrid decision tree-based machine learning models for short-term 
water quality prediction,” Chemosphere, vol. 249, p. 126169, Jun. 2020, 
https://doi.org/10.1016/j.chemosphere.2020.126169. 

[23] R. Barzegar, M. T. Aalami, and J. Adamowski, “Short-term water quality variable 
prediction using a hybrid CNN–LSTM deep learning model,” Stochastic Environmental 



Al-Ataby, A., Getu, B., et al. 

Machine Learning-Based Water Quality Prediction 
Year 2026 

Volume 14, Issue 1, 1130634 
 
 

Journal of Sustainable Development of Energy, Water and Environment Systems 19 

 

Research and Risk Assessment, vol. 34, no. 2, pp. 415–433, Feb. 2020, 
https://doi.org/10.1007/s00477-020-01776-2. 

[24] D. T. Bui, K. Khosravi, J. Tiefenbacher, H. Nguyen, and N. Kazakis, “Improving 
prediction of water quality indices using novel hybrid machine-learning algorithms,” 
Science of The Total Environment, vol. 721, p. 137612, Jun. 2020, 
https://doi.org/10.1016/j.scitotenv.2020.137612. 

[25] M. Zhu et al., “A review of the application of machine learning in water quality 
evaluation,” Eco-Environment & Health, vol. 1, no. 2, pp. 107–116, Jun. 2022, 
https://doi.org/10.1016/j.eehl.2022.06.001. 

[26] M. T.R. et al., “Water quality level estimation using IoT sensors and probabilistic 
machine learning model,” Hydrology Research, vol. 55, no. 7, pp. 775–789, Jul. 2024, 
https://doi.org/10.2166/nh.2024.048. 

[27] H. Juahir et al., “Spatial water quality assessment of Langat River Basin (Malaysia) 
using environmetric techniques,” Environ Monit Assess, vol. 173, no. 1–4, pp. 625–641, 
Feb. 2011, https://doi.org/10.1007/s10661-010-1411-x. 

[28] T. Zhang, J. Wu, H. Chu, J. Liu, and G. Wang, “Interpretable Machine Learning Based 
Quantification of the Impact of Water Quality Indicators on Groundwater Under 
Multiple Pollution Sources,” Water (Basel), vol. 17, no. 6, p. 905, Mar. 2025, 
https://doi.org/10.3390/w17060905. 

[29] Tahsin Fuad Hasan, N. A. Kabashi, T. Saleh, M. Z. Alam, M. F. Wahab, and A. Hamid 
Nour, “WATER QUALITY MONITORING USING MACHINE LEARNING AND 
IOT: A REVIEW,” Chemical and Natural Resources Engineering 
Journal                                                                                            (Formally known as 
Biological and Natural Resources Engineering Journal), vol. 8, no. 2, pp. 32–54, Dec. 
2024, https://doi.org/10.31436/cnrej.v8i2.100. 

[30] Aditya Kadiwal, “Water Potability Dataset,” 
https://www.kaggle.com/datasets/adityakadiwal/water-potability, [Accessed: 10-April-
2025]. 

[31] R. Dunne et al., “Thresholding Gini variable importance with a single-trained random 
forest: An empirical Bayes approach,” Comput Struct Biotechnol J, vol. 21, pp. 4354–
4360, 2023, https://doi.org/10.1016/j.csbj.2023.08.033. 

[32] O. Rainio, J. Teuho, and R. Klén, “Evaluation metrics and statistical tests for machine 
learning,” Sci Rep, vol. 14, no. 1, p. 6086, Mar. 2024, https://doi.org/10.1038/s41598-
024-56706-x. 

[33] N. V. Chawla, “Data Mining for Imbalanced Datasets: An Overview,” in Data Mining 
and Knowledge Discovery Handbook, New York: Springer-Verlag, pp. 853–867, 
https://doi.org/10.1007/0-387-25465-X_40. 

[34] A. Fernandez, S. Garcia, F. Herrera, and N. V. Chawla, “SMOTE for Learning from 
Imbalanced Data: Progress and Challenges, Marking the 15-year Anniversary,” Journal 
of Artificial Intelligence Research, vol. 61, pp. 863–905, Apr. 2018, 
https://doi.org/10.1613/jair.1.11192. 

[35] G. A. Pradipta, R. Wardoyo, A. Musdholifah, I. N. H. Sanjaya, and M. Ismail, “SMOTE 
for Handling Imbalanced Data Problem : A Review,” in 2021 Sixth International 
Conference on Informatics and Computing (ICIC), IEEE, Nov. 2021, pp. 1–8, 
https://doi.org/10.1109/ICIC54025.2021.9632912. 

  

https://www.kaggle.com/datasets/adityakadiwal/water-potability

	Machine Learning-Based Water Quality Prediction
	ABSTRACT
	KEYWORDS
	INTRODUCTION
	LITERATURE REVIEW
	METHODS
	Dataset Analysis and Preprocessing
	Feature Importance Analysis and Dimensionality Reduction
	Performance Metrics
	Model Selection and Justification
	Class Imbalance Handling
	Hyperparameter Tuning
	External Validation
	Deployment

	SIMULATION RESULTS AND DISCUSSIONS
	Initial Performance Results of the Models
	Performance Results of the Models After Class Balancing, Hyperparameter Tuning, and Feature Engineering
	Validation with Existing Literature
	Limitations of the Work
	Discussion

	CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES


