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ABSTRACT

Water is an indispensable resource for all forms of life articularly critical role in
supporting human health, agriculture, and industrig NWVith the predicted water
scarcity worldwide, it is critical to have a tool to : gdict water potability accurately
and in real-time. This study used machine lea; C

sulfate, and conductivity. Potability is d
in the water. F our machine learning

analyse water potability after traa ter quality dataset. Initial experiments showed

moderate performance, with 1-score = 0.47 and area under the receiver

operating characteristic Cugug GBoost (Fl-score = 0.49 and area under the

receiver operating char @ ; .66), outperforming the other two models. After

addressing class imbalan®g cing more features using feature engineering, the

performance of thg @ 0d8is gnificantly improved, with Random Forest achieving an
anWaARSaEea

Fl-score of 0.8 er the curve of 0.90 and XGBoost achieving an Fl-score of
we of 0.91. The results clearly indicate that Random Forest and
grformed the Linear Regression model and the Deep Learning model

fe to drink”, and its functionality was successfully validated, and its output
on a user-friendly graphical user interface (GUI).

er, Potability, Machine Learning, Random Forest, XGBoost, Deep Learning, Feature
Engineering, AUC.

INTRODUCTION

Water is one of the most critical natural resources, essential for life sustainability, supporting
ecosystems, and enabling socio-economic development [1]. As population grows worldwide,
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and urbanization and industrialization accelerate, the demand for clean and safe water has
significantly increased [2]. However, the quality of water and its sources across the globe has
been deteriorating due to pollution from domestic sewage, industrial discharge, agricultural
activities and runoff, human-induced factors, and rapid urbanization [3]. As a result of water
pollution, human beings have begun to suffer from a variety of health problems, including skin
disease, diarrhea, dysentery, respiratory illnesses, anemia, complications in childbirth, and other
health issues [4]. As water pollution increases, real-time monitoring and accurate prediction of
water quality have become essential to ensure public health, environmental protection, and
regulatory compliance [5]. Traditional water quality monitoring methods often rely on manual
sampling and laboratory analyses, and are time-consuming, labor-intensive, and may not
provide real-time results about water quality [6]. The traditional approaches involve 1
testing using chemical or biological methods to measure parameters such as p
sulfates, chloramines, solids turbidity, and others. Sensor technologies and

Things (IoT) have significantly improved data collection in water monitori
seperdted frol

Nevertheless, as the need for precision and accuracy increases, most data .
sensors requires robust computational models for real-time interpre Rk, acfbnable
decision-making [8], [9]. Moreover, the increased complexity and volume % quality data
data%f{gn aPproaches to
e integration of
ANgrediction has gained
significant attention, offering the potential for efficient, an
solutions [10], [11].

often collected through real-time sensors may necessitate advanced
This work employs a number of ML models tQ uality of water and predict its

ensure timely and accurate assessment. In response to these g
Machine Learning (ML) techniques into water quality anallf

namely, Random Forest, XGBoost, Logisti \ nd Deep Learning MLP, will be
employed to assess and predict water i @ civen dataset. Performance was
compared based on metrics such as prect

The contributions of this s
1) Feature selection
select a smalle

alysis: A feature importance analysis was used to
ctful features to build the ML models. This makes
reduced computational overhead, and hence, more
loyment.

ment through preprocessing: The performance of the models
o class balancing, hyperparameter tuning, and feature engineering.

0del was integrated into a user-friendly water potability prediction
to classify water as either “safe to drink” or “unsafe to drink” in real-time.

f this paper is structured as follows. Section II provides a literature review about
e methods are discussed in section III. Section IV provides simulation results and
¥ Conclusions are highlighted in section V.

LITERATURE REVIEW

ML techniques are powerful tools for analysing complex, multivariate, multi-dimensional, and
nonlinear datasets. ML algorithms, including supervised, unsupervised, and reinforcement
learning paradigms, have proven to be powerful in modelling complex, nonlinear relationships,
which is the case with environmental data [12], [13]. Supervised learning models such as Support
Vector Machines (SVM), Random Forests (RF), and Artificial Neural Networks (ANN) have been
employed to predict various water quality parameters, including pH, dissolved oxygen, turbidity,
and biochemical oxygen demand [14], [15]. For instance, the work in [16] utilized supervised ML



techniques to predict water quality parameters to achieve high accuracy levels. The study applied
these models, revealing their superiority over conventional techniques in capturing nonlinear
relationships between water parameters. The paper in [17] demonstrated the application of
unsupervised ML for anomaly detection in water treatment systems to ensure water safety.

Many studies have also validated the capability of supervised learning algorithms such as
ANNSs and SVMs to predict water quality. The researcher in [18] performed a study to compare
ML models and emphasized the role of big data in identifying water quality.

The utilization of deep learning (DL) has further enhanced the capabilities of ML in water
quality analysis. DL offers significant advantages in handling complex and high-dimensional
water quality data. For example Recurrent Neural Networks (RNNs) particularly Long Short—

in [19] and [20]. The study in [21] employed CNN-LSTM to simulate parameterg§
dissolved oxygen, showing improved accuracy in predicting water quality dyna

term water quality forecasting. The study in [23] demonstrated the
Convolutional Neural Networks (CNN) with Long Short-Term

integrating
networks to

predict short-term fluctuations in water quality. These models ngodelling temporal and
spatial dependencies in water quality datasets, especially un ironmental conditions
These innovations support the development of real-time W monitoring systems. The

study in [24] used novel hybrid algorithms to improye \grality 1hdices, while the study in
[25] demonstrated the feasibility of real-time ati i
supervised ML. Such systems are capable of
warning mechanism for water quality mana,

Moreover, the integration of Internet i ices with ML models has enabled the
development of intelligent water quali i ems. [oT sensors facilitate real-time data

quality. The work in [26] propos ilisfic ML model integrated with IoT sensors for water
quality level estimation, demonStgatua@® 1 tiveness in real-world scenarios. ML remains a

Identifying the pvang feaflires that are required by the ML models is essential for
building efficient gmehinteghree odels. The study in [18] and [27] emphasized the use of data-
driven techmque Agching relevant features and pollution sources. Recent studies, e.g., [28],
have explor; oy L models to quantify the effect of multiple pollutants on water

and comprehenswe datasets remain a prerequisite for effective model
ch as data scarcity, sensor reliability, and model interpretability need to be
lly utilize the power of ML in this domain [29]. Ongoing research focuses on
robust, scalable, and interpretable ML models that can operate effectively under
varying environmental conditions.

ML models have transformed the field of water quality analysis and prediction by offering
scalable, fast, and adaptive solutions. From classical models such as SVMs to more advanced
architectures such as CNN-LSTM hybrids, these methods have shown strong potential in
prediction, classification, and real-time analysis. However, a number of challenges persist.
First, data quality issues such as missing values and class imbalance are observed in
environmental datasets. Although some studies acknowledge these problems, they are not
usually treated systematically. Second, generalizability is limited in most of the studies that
rely on a dataset from a single water source or region, and hence it is difficult to use developed



models with other sources or in other locations. Third, interpretability is important particularly
in environmental applications, yet deep learning models in the literature may not necessarily
be transparent, with only a few studies utilizing interpretable ML or feature importance analysis
[28]. This study closes these gaps by handling missing values, applying class balancing, and
using feature engineering and feature importance to improve performance and interpretability
of the models. Furthermore, comparing different models provides an indication of the relative
robustness of ensemble, linear, and neural network models [23], [24]. Incorporation of
additional sources of information such as IoT sensors and climate models, and building hybrid
models for varying environmental conditions are future prospects to increase the accuracy of
predictions and real-time monitoring [26].

METHODS

This section describes the experimental steps followed in this study, i taset
analysis and processing, performance metrics, model development, and d
Dataset Analysis and Preprocessing

Water potability dataset was retrieved from an open-source ref contains a

for drinking and
e features, which
are pH, hardness, solids, chloramines, sulfate, conductiy awbon, trihalomethanes
and turbidity. Potability is represented by binary values, W
for non-potable water. These classifications are g he concentration levels of the
aforementioned substances and features.

The dataset was studied and investigated

method, especially when data is fairl
The next step was to carry o
histogram distribution for each

generating correlation analyggs(h8g#fflap),
statistical summaries by @ o\

4 show the distributioRg
that features are

dness, solids, and sulfate. From those figures, it can be seen
al, but many are skewed (e.g., solids, sulfate).
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Figure 1. Distribution of pH
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Figure 4. Distribution of Sulfate

Figure 5 shows the correlation heatmap of the nine features besides the potability. It can be
seen that there are some positive correlations observed (e.g., solids and conductivity). Most other
features are weakly correlated with each other and with potability. In general, the weak correlation
between features means the features are independent, and each feature has its influence on the
result of potability.

Journal of Sustainable Development of Energy, Water and Environment Systems 5
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The dataset has class imbalance, with 1,998 records label Wtable” and 1,278
records labelled “Potable”. This imbalance is an important co i esigning machine
learning algorithms later as it may necessitate applying cl iques.

To get a better idea about the features and their effect boxplots were generated
to detect outliers, and they are provided in Figure 6 {gghiigure
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en that for several features, the medians and distributions
ater, but often with overlap. Features such as pH,

chloramines, sulfate, a 1 ncthgycs show visible differences.

Feature Importq Dimensionality Reduction
Feature | psis was carried out using the Random Forest Gini Importance (also
known as n Impurity), which measures how each feature decreases impurity in

classificaly . It is a default and most commonly used technique in scikit-learn library.
The the total reduction in the impurity that each feature contributes across all
dect ¢ e Random Forest. The result of feature importance analysis is shown in Figure

Journal of Sustainable Development of Energy, Water and Environment Systems 7
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Figure 10. Feature Importance Analysis Result

performance assessment

is accuracy, which, at the same time, is what is often gen rep . However, it sometimes
proves to be a deceptive and risky metric, especial aced datasets, where a class has
more samples for one label than the other. In th in this work, there are 1,998 entries
for the “Not Potable” class and 1,278 for the I'he “Not Potable” class is therefore
the majority class, whereas “Potable” is t i VIf left unaddressed, machine learning
algorithms tend to be biased towards ictl rity class with deceptively high overall

major class, however, this doesn’t necessarily
rns within the dataset. Thus, it is important to use
AUf. The F1-score is the harmonic mean of precision (the

total positives that ofC idomtilg ich in turn indicates that the model is performing well in
egatives [32]. For example, while the model can accurately

BESsing, while an AUC of 1.0 would indicate that the potable samples and non-
e completely distinguishable. For instance, if the Random Forest algorithm has
90, that means it will be accurate in 90% of the instances in ranking a randomly
ble sample over a non-potable sample. Accordingly, F1-score and AUC will be
considered (besides accuracy, precision, and recall) because they give a more in-depth and reliable
picture of the algorithm’s real-world performance than does the accuracy alone.

Model Selection and Justification

In this study, four classification models were selected. These are Random Forest (RF), Logistic
Regression (LR), XGBoost, and a Deep Learning model (MLP). The models provide a balance
between traditional machine learning tools, advanced ensemble models, and neural network-based
approaches. These models have been chosen for their unique features in binary classification
problems with tabular real-world datasets such as the water potability dataset. The justification for
choosing each model is as follows:

Journal of Sustainable Development of Energy, Water and Environment Systems 8



1) RF Classifier: Random Forest was chosen for its robustness, interpretability, and
performance with structured data. As an ensemble of decision trees, it reduces
overfitting by averaging out predictions from many trees, which makes it very useful
for complex nonlinear interactions in data. Also, it includes in its structure a feature
importance analysis, which is a valuable tool for identifying the main water quality
parameters.

1) LR Classifier: Logistic Regression is a simple and interpretable baseline model. It is
commonly used in the field of binary classification problems, and does very well when
the relationship between input features and the target variable is almost linear. Also, it
is used as a performance benchmark to which more complex models can be compared.

1i1) XGBoost Classifier: Extreme Gradient Boosting was selected due to its

1v) Deep Learning MLP (Multilayer Perceptron): A feedfoffvard i
large-scale learning model that can learn complex hig & ions from the data.
Though it does not always perform best on small to ) Sheg talihlar datasets, deep
learning can outperform other models when sca S
It also serves as a tool to see how well a neur e generalizes, which is in
contrast to tree-based models and linear cl3

1 Selection

Model Justification

Random Forest Hagf@leSgonliffgar pgtterns, provides built-in feature
importance
Logistic es as a baseline due to its simplicity and
Regressi interpretability

XG

igh®ccuracy and scalability, robust to noise and
imbalance
Tests how well a neural net generalizes in this
domain

able 2 below provides the key parameters for each of the four models that
using Python.
Table 2. Parameters of Each Model on Python

Librar o e
Model ;})s ed y Key Parameters Role/Description
Random o . B Number of decision trees. More trees reduce
scikit-learn n estimators = 200 . . -t
Forest - variance and improve stability.

Maximum depth of each tree. Prevents
overfitting by limiting complexity.
min_samples_split  Minimum samples required to split a node.
=9 Controls model generalization.
min_samples_leaf = Minimum samples required at a leaf node.
2 Reduces overfitting on noise.

max depth = 10



Logistic Optimization algorithm suitable for

. scikit-learn solver='liblinear' small/medium datasets and binary
Regression . .
classification.
Penalty — '12° Regularlzatlgg type. Prevents Qverﬁttlng by
penalizing large coefficients.
cC= 1.0 Inverse of regularization strength. Balances
bias and variance.
Number of boosting rounds. More rounds
XGBoost xgboost n_estimators = 300  generally improve performance but risk
overfitting.
learning rate = Step size shrinkage. Smaller val@es make
0.05 learning more robusft
max depth — 6 Depth of 11}d1V1dua1 trg
- complexity and
Subsample — 0.8 Fraction of training sffmpig ger tree.
Introduces randomiig pUstness
colsample bytree = Fraction of featu d peltree. Reduces
0.8
Deep TensorFlow/ Pehse (64, relu) — Neural ne > idden layers with
Learning Keras Dense (32, relu) — ReLU apn C gture nonlinearity. Final
(MLP) Dense (1, sigmoid)
optimizer=Adam(lr= izer controlling weight
0.001) updates.
loss=binary cros . . . .
ntropy L tion for binary classification tasks.

rain¥g settings. Define how long and with
what batch size the model trains.

As noted, the dataset B Q nce, and this issue must be addressed. One of the

commonly used method, OTE (Synthetic Minority Over-sampling Technique)
[34], [35]. It generatey@ of the minority class by interpolating existing samples in
feature space to allggy { msgif1 to learn the decision boundary in a better way. SMOTE was
applied to the traif to avoid data leakage problem.

Hyperparamgeter

The h ramdter tuning method is used to find the best set of parameters for ML models
¢ algorithm itself. It occurs before training. It optimizes model performance
y tht it enhances accuracy and generalization (performance on new data), reduces
oMunderfitting, and increases training efficiency (speed, memory usage).
rameter tuning was also conducted for the four models using GridSearchCV and 5-
fold stratified cross-validation. The method tried various combinations of parameters to identify
the optimal configuration according to the F1-score. This improves the generalization ability and
precision of the used models.

External Validation

To assess the external validity of the proposed approach, the findings of this work will be
compared with the results in existing literature. For example, the use of ensemble models (e.g.,
Random Forest and XGBoost) will be compared with the performance of these models shown
in references such as [10], [18], and [24], while the performance of SMOTE in imbalanced data
will be assessed by studies such as [34] and [35]. Although the dataset differs from other works



in geography or water source, performance trends can provide good understanding and
validation for the methodological choices of this research.

Deployment

After assessing the performance of each model, the best model will be exported (using joblib)
and integrated into a user-friendly graphical user interface (GUI) application to be built with
Streamlit. The application allows users to enter water characteristics and receive real-time
predictions on potability (i.e., safe or unsafe to drink). More details will be provided in the next
section.

SIMULATION RESULTS AND DISCUSSIONS

This section provides the results of the four classification models that were

was evaluated using a stratified train-test split (80/20) and five perfo %
simulations were performed using Python programming language. Q

Initial Performance Results of the Models

The first experiment conducted on the refined dataset a
selecting only five top features is to generate performance co
RF, LR, XGBoost, and DL MLP. It should be noted that 8 in this experiment still
suffers from class imbalance.

After running the four models, performance Iculated based on the obtained
results. Table 3 shows a summary of the metric va[tg zc fouPmodels.

Model
Random Forest

Recall F1-Score AUC
0.3708 0.4679  0.6837

Logistic Regression 0 0 0 0.5234
XGBoost 0.6111 0.4021  0.485  0.6636
Deep Learning (MLP 0 0 0 0.5
Table 2 above h superior performance of RF and XGBoost, where they both
outperform LR a F1-score and AUC. The poor performance of LR and the DL
neural networ due to class imbalance and lack of model complexity or tuning.
Figure {1 s 1-score results, while Figure 12 shows the AUC score results of the

four modR]s.
1o F1 Score Comparison of Models

0.6

F1 Score

0.4

0.2

0.0

Random Forest  Logistic Regression XGBoost Deep Learning

Figure 11. F1-Score Results of the Four Models



1o AUC Score Comparison of Models
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Figure 12. AUC Score Results of the Four Models

From Figure 11, XGBoost slightly outperformed RF model, while LR
poor F1 scores due to class imbalance or underfitting problems.

From Figure 12, it can be seen that RF model has shown the best ; @presents the
discriminative power), followed closely by XGBoost. On the ot and DL performed
almost randomly (since AUC = 0.5).

Figure 13 highlights the ROC curve comparison for th
the findings stated above about the four models. a

odels, which confirms

ROC Curve Comparison »

—— Random Forest (AUC=0.68)
Logistic Regression (AUC=0.52)

—— XGB0ost (AUC=0.66)

—— Deep Learning (AUC=0.50)

0.0 0.2 0.4 0.6 0.8 L0
False Positive Rate

Mure 13. ROC curve comparison for the four models

Based ofifthe mi d considering the importance of correctly classifying potable and non-
potable an orest can be considered the best-performing model for this task, closely
foll . Random Forest has the highest AUC (0.684) and a decent F1-score (0.468),
whi as a slightly lower AUC (0.664) but slightly better F1-score (0.485). Random

d the highest AUC score indicating better overall class discrimination ability, and
hieved the highest F1-score, reflecting a slightly better balance between precision and
cially when both classes are important. Logistic Regression and Deep Learning failed
completely (precision, recall, and Fl-score are all zeros). This likely means the models are
predicting only one class (probably “non-potable”) and not learning properly. The models still
have room for improvement because the best F1-scores are below 50%. This result suggests either
features were not fully predictive or models need better tuning (hyperparameter optimization) or
more complex features (e.g., interaction terms) are needed.



Performance Results of the Models After Class Balancing, Hyperparameter Tuning, and
Feature Engineering

Data imbalance is a known issue in classification applications that can lead to biased models
favoring the majority class while hindering performance on the minority class. Among others,
SMOTE is used to address this problem to increase the number of samples in the minority class.
It is a popular technique for handling class imbalance by creating synthetic examples of the
minority class (in this case, “potable” water) rather than simply duplicating them.

In this work, hyperparameter tuning was implemented using GridSearchCV, which is part of
the scikit-learn Python library. It is a brute-force search technique that evaluates all possible
combinations of specified hyperparameters using cross-validation.

Feature engineering is the process of transforming raw data into useful features

make it more efficient and accurate. Four new features using operations s
and differences were added, and the performances of the four mode
incorporating the new features in the dataset. The additional new feat
below:

Table 4. The New Engineerg,

New Features Formula
Hardness Solids Ratio  Hardness + Re

DeScription
lon between mineral
content and solids

Sulfate Hardness Ratio  Sulfatg Hardne elative concentration of
sulfate to hardness
ph_Hardness Product x Ngrdn Interaction term: acidity
vs. minerals

lids& Sulfate Mass difference between
solids and sulfates

Solids Sulfate Dif]

After carrying out the ents, the models were trained and tested again. Table
5 shows the perform4§ p results for the four models. It can be seen from the table that
there are notice i1
hyperparameter
interactions

ablNg. Wlodel Berformance Comparison after Class Balancing, Hyperparameter Tuning, and
Feature Engineering

odel Accuracy Precision Recall FI-Score AUC

dom Forest 0.8634 0.8744 0.8442  0.8533  0.9022
Logistic Regression 0.8333 0.8536 0.8131 0.8342 0.8832
XGBoost 0.8721 0.8923 0.8435 0.8623 0.9124

Deep Learning (MLP) 0.8132 0.8211 0.7913  0.8012  0.8541

From the above table, it can be seen that XGBoost and Random Forest models have achieved
a more balanced classification between the “safe” and “unsafe” water classes, with much
improved Fl-score and AUC. Logistic Regression and Deep Learning models have also
improved significantly after balancing the dataset and feature engineering, but showed slightly
lower recall and F1-score.



Figure 14 shows the Fl-score results of the four models after the above adjustments and
improvements, while Figure 15 shows the AUC score results of the four models after the same
adjustments and improvements.

Lot F1 Score Comparison of Models

0.8f

0.6

F1 Score

0.4}

0.2

i Random Forest  Logistic Regression XGBoost Deep Learning

Figure 14. F1-Score Results of the Four Modelsaﬁ

1o AUC Score Comparison of Models

0.8

AUC Score
o
o

I
IS

0.2

0.0

Random Forest  Logistic Regression XGBoost Deep Learning

esults of the Four Models after Improvements

est Fl-score (0.86), followed by Random Forest (0.85).
Logistic Regressi@ DR Learning performed slightly lower.

XGBoosfhas tI
atc water, and Random Forest follows closely with 0.90. Logistic
egp Learning are slightly behind. Accordingly, XGBoost model offers the
ce between precision and recall. Deep Learning achieved decent performance

, XGBoost is the top-performing model with the highest AUC (0.91) and an
I-score (0.86). Random Forest closely follows with an AUC of 0.90 and strong
classification metrics. Logistic Regression provided a strong baseline with good performance
after balancing and tuning. Deep Learning (the MLP) was effective but less optimal than
ensemble models in this context. As a result, the XGBoost model was selected for deployment
due to its strong performance, interpretability, balance of accuracy, and robustness.

Lastly, an application was created using Python joblib and Streamlit. The application
provides the user with a prediction of whether the water is drinking “SAFE” or “UNSAFE”
after entering the values of the required chemical properties or the feature values on the
graphical user interface (GUI). XGBoost model was saved (exported) using joblib library.
Then, using Streamlit, which is a Python-based framework for rapid app deployment, the
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application was built. Figure 16 shows two examples of executing the application. The app can
be implemented on mobile devices, PCs, or other platforms, allowing easy visual interaction
with users interested in predicting water potability.

Water Potability Prediction App Water Potability Prediction App

This app predicts whether the water is SAFE or UNSAFE for drinking, based on its chemical properties. This app predicts whether the water is SAFE or UNSAFE for drinking, based on its chemical properties.
pH Value pH Value

4.80 S 7.00

Hardness

269.00 A 150.00

Solids (ppm) Solids (ppm)
17863.00 =R 10000.00

Chloramines (ppm) Chloramines (ppm)
4.60 = 7.00

Sulfate (ppm) Sulfate (ppm)

377.00 L 333.00

Predict Water Potability Predict Water Potability

The water is SAFE to drink! b The water is UNSAFE to drink!

Figure 16. Water Potability Prediction App — Safe/Unsafe

Validation with Existing Literature

To ensure the external validity of this work's findings, ances of the used models
are compared to results in existing water quality predi revious relevant studies
have shown that more advanced ensemble metl@d andom Forest and gradient
boosting algorithms such as XGBoost, outperf inear models or logistic regression.
Apart from this, class balancing method IQI'E have been widely verified in
environmental as well as general machi cations to be efficient tools against
imbalanced datasets. Table 6 summag ndings versus those available in recent
literature.

roposgd Work Findings with Existing Literature
o Comparison with the
Reference Findings Proposed Work
RF outperformed
Ahmed et al. RF, SVM, ANN linear models; Conﬁrmg RF
[16] ensembles captured superiority
nonlinear relations
o Multiple ML, Lreemodels (RE, o o RE/XGB
on surface boosting) had higher
. models S results
prediction predictive accuracy

. . Ensemble models
ort-term water Hybrid decision- outperformed single Supports RF/XGB

quality forecasting tree ensembles models results
Buietal. Water quality index Hybrid ML vs.  Hybrid/ensemble Emphasizes
[24] prediction standalone ML improved  Ensemble Advantage
-y . . Boosting with Aligns with
Shams et al. Prediction Wl.th grid RF, XGB, others tuning achieved best ~ GridSearchCV
[10] search tuning .
performance improvements
Fernandez et . ML models with - SMOTE IMPTOVES  yralidates the use of
Review of SMOTE  imbalanced classifier
al. [34] SMOTE
datasets performance
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SMOTE widely  Confirms robustness
used for class  of the used balancing
imbalance approach

Pradiptaet Review of SMOTE  Multiple ML
al. [35] in practice models

Evidence presented in Table 6 verifies that the obtained results are aligned with previous
studies. Specifically, ensemble models always perform well on different datasets and geographic
locations, which indicates robustness and generalizability of the used models. Also, the use of
SMOTE and hyperparameter tuning conforms to the state-of-the-art practice in the literature and
further justifies their necessity in improving model fairness and prediction performance in
imbalanced datasets. While the dataset used in this work differs in size and origin from the ones
described in the literature, the uniform patterns of performance across studies irm the
accuracy and stability of the proposed approach.

Limitations of the Work
While this study demonstrates the applicability of ensemble and bgos @ piques, class

balancing, and feature engineering in water potability prediction, a feWf limitate st. First, the
gzeogradphic and temporal
ndMgsditay not necessarily

study is limited to one publicly available dataset, which constraj
range of water quality parameters under consideration. Therefor€

provide greater model decision-making i
deployment concerns such as sensor ing, and hardware efficiency are beyond
the scope of this work, although,t treamlit application demonstrates practical
feasibility. These limitations are turd@investigations. Generalization to multiple datasets,
using advanced explainabilit j esting in realistic operating environments would
he proposed models.

Discussion

To show the g provement after class balancing, hyperparameter tuning, and
i s shown in Table 3 and Table 5 can be compared. As can be seen
from this cqfparise
Forest a Boo proving the most. For example, Random Forest F1-score improved from
0.47 t@0.8 oost from 0.49 to 0.86, while Logistic Regression and Deep Learning also

saw ement from near-random performance to competitive performance.

sho e noted, though, that after feature engineering the differences between the two top
mode ndom Forest and XGBoost) are very small, with XGBoost being only ~1% superior in
F1-score and AUC. This means in practice that feature engineering is the process that gets all
models to strong and comparable performance. The marginal gain of XGBoost may justify its
selection as the deployment model, but Random Forest is a close second and may be preferred in
circumstances where simpler interpretability or reduced computational cost is desirable.

CONCLUSIONS

This study presented a comparative analysis of four prominent machine learning models:
Random Forest, XGBoost, Linear Regression and Deep Learning (MLP) on a certain water
potability dataset based on key water quality features. Linear Regression was chosen for its



simplicity and interpretability, Random Forest was chosen for its robustness and generalization,
XGBoost was chosen for its high-performance gradient boosting, and Deep Neural Networks
model was chosen for its generalization ability. This diverse selection offers meaningful insights
into which algorithm is most suitable for water potability classification based on both performance
metrics and practical deployment considerations.

Initial experiments showed moderate performance, with Random Forest and XGBoost
outperforming the two other models. The results clearly indicate Random Forest and XGBoost
consistently outperformed the traditional Linear Regression model in terms of predictive accuracy
and robustness. While Linear Regression remains valuable for its simplicity and interpretability,
it proved less effective in handling data with several features, imbalanced or nonlinear data To
further enhance performance, class balancing, hyperparameter tuning, and feature
techniques were applied. New features capturing the relationships between water pro

water potability.
This research shows that model selection should be guj
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