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ABSTRACT 
Clean water is a scarce resource, fundamental for human development and well-being. Remote 
sensing techniques are used to monitor and retrieve quality estimators from water bodies. In situ 
sampling is an essential and labour-intensive task with high costs. As an alternative, a large 
water quality dataset from a potabilisation plant can be beneficial to this step. Combining 
laboratory measurements from a water treatment plant in North-East Argentina and spectral data 
from the Sentinel-2 satellite platform, several regression algorithms were proposed, trained, and 
compared for turbidity estimation at the plant inlet water in a local river. The highest 
performance metrics were from a Random Forest model with a coefficient of determination 
close to 1 (0.913) and the lowest root-mean-squared error (143.9 nephelometric turbidity units). 
Global feature importance and partial dependencies profile techniques identified the most 
influential spectral bands. Maps and histograms were made to explore the spatial distribution of 
turbidity. 
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INTRODUCTION 
Ensuring water availability is one of the Objectives of the UN's 2030 Agenda for 

Sustainable Development [1]. Satellite remote sensing techniques can help achieve this by 
studying and monitoring water bodies since it is possible to retrieve spectral data from large 
regions of the Earth's surface. One can apply remote sensing to estimate biophysical water 
parameters, such as total suspended matter [2], chlorophyll-a [3], Secchi disc depth [4], and 
turbidity [5]. These regression models and algorithms can be relatively simple mathematical 
expressions [6] or more complex approaches, like machine learning methods [7], requiring 
tuning model-specific parameters. Remote sensing techniques are helpful for research on 
various environmental topics, such as land pollution [8] and glacier retreat [9], among others. 

Sentinel-2 (S2) is a spatial mission developed and operated by the European Space Agency 
(ESA), consisting of two platforms, S2A and S2B, launched in 2015 and 2017, respectively. 
The MultiSpectral Instrument (MSI) is the optical sensor mounted in S2, with 10 m of 
maximum spatial resolution, 440 nm to 2200 nm spectral range, and 5 days of revisit time for 
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the constellation. The S2 database, available from the Copernicus Open Access Hub, is free 
and open-access. S2-MSI has been used in water monitoring and parameter estimation of 
physicochemical properties such as the colour of water [10], chlorophyll-a concentration [11], 
coloured dissolved organic matter (CDOM) [12], turbidity by band ratios [13], and 
microplastic pollution [14]. The generated products from S2-MSI are reliable [15] due to a low 
radiometric uncertainty [16]. 

The region of interest is Chaco Province in North-East Argentina. This area presents several 
studies regarding fires [17], floods [18], vegetation cover [19] and biodiversity [20]. 
Nevertheless, water quality studies with a remote sensing approach are scarce. Paraná River is 
studied by satellite spectral data, but mainly in the basins of the north (inside Brazil's borders) 
and the south (Argentina's middle region). 

Machine learning techniques can find complex relationships between data [21]. Combining 
machine learning and remote data sensing is a valuable tool for retrieving water quality 
indicators and their spatiotemporal distribution [22]. Considering this approach, land use 
classification and its influence at the sub-watershed level was obtained by Sentinel-2 imagery 
and cellular automata Markov chains [23], and river water quality models were developed by 
MODIS (Moderate Resolution Imaging Spectroradiometer) and long-short term memory 
network [24]. The advancements in algorithm development, data availability and sensor 
systems have made machine learning popular in water quality estimation, outperforming many 
other methods [25]. 

Turbidity is a water property caused by suspended matter producing light scattering, 
affecting its clarity and colour [26]. Water treatment plants remove sediments from raw water 
by chemical addition, settling, and coagulation to obtain clean, potable water ready to be 
consumed by the regular population. Water turbidity is a sensitive parameter since reaching 
high values can stall the plant's operation. This scenario can put the clean water supply at 
risk [27]. The treatment plant contacted for the present study needs to adapt its potabilisation 
process to ensure the removal of large amounts of sediments present in the water. Monitoring 
and understanding the spatial distribution of water turbidity in the inlet river is a valuable input 
to the overall system since it can support managerial decision-making. 

Remote sensing procedures require regular in situ water sampling to correlate spectral and 
physicochemical data. To collect said samples is labour-intensive, costly and time-
consuming [28]. Field sampling errors can alter the accuracy and precision of data [29]. An 
alternative is buoy installation, usually located in a single site in a water body, with the 
corresponding maintenance. The internal sensors in buoys require frequent calibration due to 
accuracy loss and regular cleaning [30]. Anti-vandalism measures are desired to prevent 
equipment damage. Efforts have been made to develop and deploy low-cost buoys in marine 
environments [31, 32]. An optimised system design is fundamental to decreasing production, 
operation and maintenance costs [33]. 

Treatment plants laboratories regularly measure water properties as part of the usual 
operation process. These datasets are a valuable tool to complement remote sensing techniques, 
replacing in situ sampling as a water parameter source for algorithm development. 
Potabilisation plant databases collect historical measurements, often several times a day, which 
are suitable for spectral imagery collections to elaborate regression models for water quality 
estimations. Remote sensing has been incorporated into water monitoring in a treatment 
plant [34], calibrating traditional bands ratio regression models to estimate chlorophyll-a and 
turbidity using laboratory sampling data from the plant operation. An equivalent traditional 
water sampling program for large-scale monitoring would represent monetary, time and 
logistic challenges [35]. 

This study obtained daily water turbidity values from the MAGR water plant in the Chaco 
Province of Argentina, replacing conventional in situ water sampling. Using S2-MSI images, 
processing level L2A, surface reflectance (𝑅𝑅S) was determined for the water inlet location at 
the surface level. A database of spectral values and turbidity measurements was built to train 
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several regression models, including traditional single-band models, and a sophisticated and 
advanced machine learning approach by a random forest (RF) algorithm. After selecting the 
model with the best performance metrics, turbidity maps and histograms were made to study 
its spatial distribution further. 

Two techniques, global feature importance and partial dependencies profiles, were applied 
to understand the spectral bands' effect in the whole model. A comparison between the most 
influential spectral bands and the results from different authors supported the developed model. 
After performing water characterisation, several factors were discussed to incorporate context 
into the results. 

MATERIALS AND METHODS 
The area of study is described, mentioning the main rivers in the region. Remote sensing 

and laboratory data, their characteristics, and the mathematical model methodology are 
included in this section. 

Area of study 
The Paraná River is the second longest river in South America, running through around 

4000 km [36]. It is the natural boundary of multiple provinces in Argentina, reaching the Río 
de la Plata into its exit in the Atlantic Ocean. Paraguay River, with 2550 km [36], is a tributary 
of Paraná River in its middle basin. The Bermejo River, an Andean tributary [37], is the 
primary sediment source in the Paraná-Paraguay confluence. Due to the high solids presence 
in the Paraguay River, its discharge into the Paraná River alters the characteristics of its 
composition, creating two distinct regions of high (West) and low (East) sediment 
concentration [38]. 

The Metropolitan Area of Gran Resistencia (MAGR) is an urban region in Chaco Province, 
North-East Argentina. It comprises four cities, including Resistencia, the capital city of Chaco. 
According to the last census, MAGR has a population of 423,000 inhabitants [39]. Paraná 
River significantly impacts the region's fishing industry, tourism, recreational activities of the 
local communities, and transportation routes [40]. The water source for the MAGR 
potabilisation plant is located in the Barranqueras River (an arm of the Paraná River), which is 
connected to two main rivers in the metropolitan area, the Black and Tragadero Rivers. 

Figure 1 shows a map of the region of interest. The inset image corresponds to Argentina 
with Chaco province (pink), MAGR location (white dot) and Paraná River extension (blue 
line). The main image is a real-colour satellite view of the study area, with the potabilisation 
treatment plant (yellow triangle) in Barranqueras city and the main rivers. 

The sample point (red star), located at 58°54'23''W 27°28'20''S, was selected over the 
Barranqueras River at the plant's inlet position. The water from the inlet point is pumped into 
a chamber and distributed to the different plant sections. Samples collected from the chamber 
are delivered to the in-site laboratory to measure a series of parameters, mainly turbidity, pH, 
electrical conductivity, and alkalinity. 

Laboratory data 
Daily measurements were performed by the in-site laboratory at the water treatment 

plant [41] in Barranqueras City from 2017-01-01 to 2021-09-03. In this period, 1732 
observations were recorded. The parameters and their units were: pH; electrical conductivity 
in micro siemens per centimetre [µS/cm], alkalinity in parts per million of calcium carbonate 
[ppm CaCO3], and turbidity in nephelometric turbidity units [NTU]. Alongside these data, 
supplementary water samples were taken to assess more sediments-related parameters, such as 
total suspended matter (TSM), total dissolved matter (TDM), and total matter (TM). These 
parameters, measured in parts per million [ppm], are related since TM is the sum of TSM and 
TDM. One-litre water samples from the distribution chamber were stored in dark glass bottles. 
In total, 28 complementary samples were collected from 2021-08-24 to 2022-12-07. 
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Figure 1. Region of study, indicating main rivers, water plant location and sample site; in the inset, 

Chaco Province in Argentina, MAGR location and Paraná River extension 

The physicochemical methods applied to measure pH, conductivity, alkalinity, turbidity, 
TSM and TM were 4500 H+, 2510-B, 2320-B, 2130 B, 2540 D and 2540 B, respectively, 
according to Standard Methods techniques [42]. TDM was calculated as the difference between 
TM and TSM. 

Remote sensing data 
Satellite spectral RS data were obtained from S2-MSI. Table 1 resumes the characteristics 

of two sensors since platforms' S2A and S2B products were used, featuring a maximum spatial 
resolution of 10 m (when available), 5 days revisit time, and 11 spectral bands. Bands B09 and 
B10, at 945 nm and 1373 nm, respectively, were discarded since no surface measurement was 
done at those wavelengths. 

Table 1. Sentinel-2 spatial and spectral resolutions of platforms S2A and S2B 

  S2A S2B 
Band Spatial 

resolution [m] 
Central 

wavelength [nm] 
Bandwidth 

[nm] 
Central 

wavelength [nm] 
Bandwidth 

[nm] 
1 60 442.7 21 442.3 21 
2 10 492.4 66 492.1 66 
3 10 559.8 36 559.0 36 
4 10 664.6 31 665.0 31 
5 20 704.1 15 703.8 16 
6 20 740.5 15 739.1 15 
7 20 782.8 20 779.7 20 
8 10 832.8 106 833.0 106 

8A 20 864.7 21 864.0 22 
11 20 1613.7 91 1610.4 94 
12 20 2202.4 175 2185.7 185 
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Copernicus Data Space Ecosystem provides complete, open, and free access to S2 products. 
A set of 382 images was acquired for the sample collection period. S2-MSI data at the 
processing level L2A are atmospherically corrected by the Sen2Cor processor [43]. The images 
disturbed by clouds were discarded using the quality assessment band QA60, acquired from 
the Sentinel-2 dataset in the Google Earth Engine platform [44]. This simple method was 
preferred over more complex approaches [45] since the QA60 band is a coded bit mask 
detecting clear skies, dark clouds, and cirrus clouds.  

After removing the data from the days with clouds over the study area, 181 satellite products 
remained to continue the analysis. The products were cropped around the area of interest and 
then resampled to the uniform spatial resolution of 10 m. The RS values were extracted using 
a 3×3 pixel window around the point near the plant water entrance on Barranqueras River 
(Figure 1). The final pixel value was the mean of the individual values in the grid. 
Modelling  

As a preliminary step, the relationship between turbidity and RS per band was studied by 
evaluating the potential impact of individual bands on the turbidity value. The target parameter 
in the modelling process was turbidity as a mathematical regression problem, with the spectral 
bands as predictors. Two main modelling methods were used: linear, with algebraic 
relationships between the predictors, and a tree-based machine learning RF approach. The 
linear modelling utilised several spectral bands and the normalised difference turbidity index 
NDTI, obtained by the red and green bands, B04 and B03 [46]. This index was used for water 
quality assessment because it is proportional to turbidity [47], according to eq. (1). 

 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =
𝐵𝐵04 − 𝐵𝐵03
𝐵𝐵04 + 𝐵𝐵03

 (1) 
 

Machine learning techniques were applied to improve traditional methods for parameter 
retrieval [48]. RF operates by an ensemble of decision trees [49], each trained by a subset of 
the whole data. RF can manage many predictor variables and maintain low levels of over-
fitting [50], which is a negative aspect of modelling. 

RF modelling used all spectral bands available (Table 1) since this method is suitable for 
finding non-linear relationships between multiple predictors. A tuning step improving the 
performance of RF was applied to obtain the best arguments, the hyperparameters, required in 
this model. The tuned hyperparameters were the minimum number of samples taken from the 
dataset to form a node in a decision tree (minn) and the number of predictors that will be 
sampled (mtry). The 'trees' hyperparameter was fixed at 1000 units. Both steps of sample 
observations and predictor selection are random across all trees. The final turbidity estimation 
was an average value of all tree's estimations. 

The tuning process used the racing technique [51]. It evaluated the model in a subset of 
resamples, obtaining the performance metrics and continuing only with the hyperparameters 
that showed promising results. Usually, racing techniques are faster to compute than traditional 
methods, such as grid search [52]. 

Pearson's coefficient of determination (R2) and root mean squared error (RMSE) were 
calculated to measure the model's performance. Equations (2) and (3) show the mathematical 
expressions for these metrics. 

𝑅𝑅2 = 1 −
∑ (𝑦𝑦𝑖𝑖 − 𝑥𝑥𝑖𝑖)2𝑛𝑛
𝑖𝑖=1
∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�)2𝑛𝑛
𝑖𝑖=1

 (2) 
  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �∑ (𝑦𝑦𝑖𝑖 − 𝑥𝑥𝑖𝑖)2𝑛𝑛
𝑖𝑖=1

𝑛𝑛
 (3) 

Where 𝑖𝑖 represents each measurement from a total of 𝑛𝑛 samples; 𝑦𝑦𝑖𝑖 denotes the real turbidity 
value, 𝑥𝑥𝑖𝑖 − the estimated value from the correspondent model, and 𝑦𝑦�  − the mean value of all 𝑦𝑦𝑖𝑖. 
A preferred model consists of a high value of R2, closer to 1, and a low RSME. 
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Developing a linear or RF model included splitting the dataset into two parts: 75% of the 
samples for training and tuning the corresponding model, and the remaining 25% only for 
testing and finalising the model, that is, getting the last version of the model specification. This 
methodology followed the best practices for data modelling [53]. Since the original dataset 
corresponded to a time series of turbidity values, the testing split corresponded to the most 
recent dates. The training dataset was resampled using a 10-fold cross-validation. 

The aim of performance metrics calculation in the training step was to select the best model. 
Following the selection, the model was evaluated using the testing dataset, with new and later 
observations, to calculate the final performance metrics. The estimated turbidity values were 
compared with the validation values in a time series plot. 

Applying the selected model to S2-MSI products in the Barranqueras River for four dates 
enabled several maps showcasing the spatial distribution of turbidity. The spectral index 
MNDWI (Modified Normalised Difference Water Index) was used to mask the water from the 
scene [54]. An automatic method allowed the identification of the MNDWI 
threshold value [55]. 
RESULTS AND DISCUSSION 

Water characterisation results are summarised in this section and discussed as a parameter 
time series with anthropogenic and environmental factors mentioned to explain water quality. 
Model selection and hyperparameter tuning are described. Two techniques were applied to the 
best model for evaluating the spectral bands' effect. Maps and histograms assessed the spatial 
distribution of water turbidity. 
Water characterisation 

Figure 2 shows the parameters measured in the water treatment plant as a time series plot. 
The number of samples (n) is shown in the top right corner of each panel. Scarce rains and 
drought in 2019 caused a historic low level of water in the Paraná River [56]. It can be seen in 
the steady increase in turbidity (Figure 2a) and conductivity (Figure 2d). Conductivity from 
2019 and forward started to be more dispersed than in previous years. Turbidity presented 
yearly cycles, with high values at the beginning of each year, between January and April-May, 
then followed by a low-turbidity period. The main statistical values per parameter are 
summarised in Table 2, which shows the mean, median, standard deviation (SD), initial and 
final sampling date, and number of samples (n). 

Water properties are heavily influenced by dams' operations [57] in the North basin (south 
Brazil) being Itaipú dam (Paraguay-Brazil) and Yaciretá reservoir (Paraguay-Argentina), the 
closest to the study area. The primary source of sediments in the Paraná River is the Bermejo 
River, a Paraguay River tributary, creating a high turbidity imbalance [58]. Due to heavy rains 
in Bermejo River headwaters between October and April, a high sediment concentration 
occurred in the Paraná River between December and May [57]. Said period corresponded with 
the turbidity cycles observed in Figure 2a. 

 
Table 2. Statistical summary of measured water properties 

Parameter Mean Median SD Initial date Last date n 
Turbidity [NTU] 280.7 89.8 328.2 2017-01-01 2021-09-30 1732 
Alkalinity [ppm CaCO3] 40.0 40.0 7.9 2017-01-01 2021-09-30 1732 
pH 7.3 7.3 0.2 2017-01-01 2021-09-30 1732 
Conductivity [µS/cm] 293.6 220.2 205.6 2017-02-10 2021-09-30 1690 
TSM [ppm] 84.2 30.0 171.6 2021-08-24 2022-12-07 25 
TDM [ppm] 195.9 166.8 100.8 2021-08-24 2022-12-07 26 
TM [ppm] 281.9 209.5 212.1 2021-08-24 2022-12-07 25 
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Figure 2. Time series of measured water parameters: turbidity, alkalinity, pH, and conductivity 

In a regional scope, the Black River is in a meandering area with a low surface slope, 
causing low soil erosion that carries sediments to the Tragadero River (Figure 1). MAGR has 
flood risk, and heavy rains (1500 mm a year [59]) can cause hydric emergency [60], altering 
the water properties in the treatment plant inlet and increasing the Paraná River flow rate. 

The highest water flow in Paraná River occurs between February and March, with values 
over 30,000 m3/s, with a mean of 17,000 m3/s [61]. The change in water flow, land use and 
hydroelectric development (by dam constructions) alters the hydrologic characteristics of 
Paraná waters, thus affecting water treatment operations in the last decades [61]. 

To estimate turbidity from RS it was necessary to inspect the relationship between these 
quantities. Figure 3 illustrates the spectral signatures of all the observations in light grey lines. 
Grouping the data observations by turbidity ranges, the obtained mean spectral signatures are 
shown in black lines. Lower turbidity (<150 NTU) presented the lowest RS. As the turbidity 
range increased, the spectral signature response rose until values higher than 1050 NTU. 

 
Figure 3. Mean spectral signatures per turbidity range for S2-MSI bands 
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Bands B01, B11 and B12 (Figure 3) are not sensitive to turbidity change since the points 
for different turbidity ranges remained in the same position. Bands B05, B06 and B07 presented 
the highest changes. These bands were related to algorithms for turbidity estimation [5]. 

Model selection 
Several models were tested to estimate the inlet water turbidity for the treatment plant, with 

predictor variables selected according to the model. For RF, S2-MSI bands shown in Table 1 
were used as predictors. Traditional linear models took account of the following variables: an 
interaction between B06 and B07; individual bands B05, B06 and B08; and the spectral index 
NDTI. The aforementioned spectral bands were selected according to the results 
from Figure 3. 

The characteristics and performance metrics for all proposed models are resumed in 
Table 3. Following model selection based on these metrics, the model is finalised using the 
preserved testing dataset, with observations not used in the training. The best results were 
achieved by the RF model. R2 values for individual bands B05, B06, and B08 were 0.693, 0.732 
and 0.736, respectively. In a similar work [5], also in turbid lakes, R2 values for the same bands 
were 0.83, 0.66 and 0.63, respectively. 

 
Table 3. Regression model candidates and training performance metrics 

Model characteristics Performance metrics 
Specification Expression RMSE [NTU] R2 

RF Turbidity ~ all bands 111.5 0.841 
Linear model Turbidity ~ B06 + B07 + B06×B07 121.9 0.802 
Linear model Turbidity ~ B08 142.9 0.736 
Linear model Turbidity ~ B06 145.7 0.732 
Linear model Turbidity ~ B05 155.8 0.693 
Linear model Turbidity ~ NDTI 218.7 0.296 

 
RF model was selected in the following analyses since it presented the best performance 

metrics, with the lowest deviations (RMSE) and highest correlation (R2). This machine learning 
algorithm is superior to the proposed usual regression models in capturing the complex 
relationships between satellite spectral data and turbidity values. An RF model with proper 
modifications performed better than other machine-learning options for turbidity 
estimation [62]. The interaction model between B06 and B07 was the second-best model 
combining bands in the red edge related to sediments in water [63]. In comparison, the linear 
model using a single band performed poorly. Unlike other studies, the NDTI index presented 
the lowest R2 and the highest RMSE [64]. 

Table 4 shows the tuned hyperparameter values and the main characteristics of the 
final RF model. 

 
Table 4. RF model main characteristics and hyperparameters 

RF type Regression 
Training observations 116 

Variables 11 
Trees 1000 
minn 14 
mtry 2 

 
After the model selection, the last fitting was performed. For the RF model, the final 

performance metrics were obtained by the testing dataset. These observations were kept apart, 
so they have no influence on the modelling. The metrics obtained with 39 data points were 
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RMSE = 143.9 NTU and R2 = 0.913. These values are different from Table 3 data derived 
from the training data set and used only for model selection. 

The comparison between measured and estimated observations in the testing split is shown 
in Figure 4. The solid line represents the linear relationship between estimated and measured 
turbidity, with a dashed line at 45°. Lower estimated turbidity values are closer to the real 
values. The deviations increase for higher turbidity, with estimates being lower than measured 
values, as indicated by the solid line below the dashed line. The outcome variable presented a 
wide range, with many observations under 100 NTU and some measurements as high 
as 1100 NTU. 

 
Figure 4. Estimated and measured turbidity using the validation dataset 

The measured and estimated turbidity values for the validation dataset (Figure 4) are 
shown as a time series plot in Figure 5. The crosses represent the estimations made by the RF 
model, while the turbidity measurements are plotted as a solid line. The number of samples in 
the testing dataset is shown in the top right corner. 

 

 
Figure 5. Time series of estimated and measured turbidity in the validation dataset 

The most significant differences between estimated and measured turbidity in Figure 5 are 
within the larger values, equivalent to Figure 4. The estimations followed the same trend seen 
in the time series in Figure 2, with high turbidity at the beginning of the year and lower later. 
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Understanding the Random Forest model 
The complexity of the RF model is difficult to explain since the explicit form is not as clean 

as a more straightforward linear model. The explanatory technique of global feature importance 
can assist in understanding the driving predictors of RF aggregated in all training observations. 

The results of the global feature importance technique for the obtained RF model, analysing 
each spectral band, are shown in Figure 6. The technique employs the notion of the overall 
change in the model due to the perturbation of a specific variable [65]. A permutation-based 
approach is a valuable tool for model explanation since after the permutation of said variable, 
the model performance is expected to decrease [49].  

 

 
Figure 6. Global feature importance of S2-MSI spectral bands in RF model 

Spectral band B07 presents the most effect in the model, according to Figure 6, since the 
boxplot had the highest RMSE (104.9 NTU). Close to B07 were B06, B08, and B05. Spectral 
bands B05 [66] and B08 [13] have been reported to be related to turbidity. The lowest effects 
were given by B01, B02, and B03 since the perturbation of these bands had a much lesser 
impact on the overall model. The vertical dashed line represents the base RMSE. 

The most influential bands ranged from 704 nm to 830 nm, with the least influential 
between 440 nm and 500 nm. For comparison, the same method in the research on the North 
Tyrrhenian Sea [67] gave a similar result, but the band importance order was B05 (the highest), 
followed by B07 and B06. Turbidity estimations were most successful at the wavelength 
between 700 nm and 800 nm for surface water [68]; this range includes B05, B06 and B07. 

Partial dependencies profiles allowed to show the change in the expected value of a model 
estimate alongside a single explanatory variable [65]. According to the global feature 
importance technique, B07 was the spectral band with the highest effect on the RF model. 
Figure 7a shows the partial dependencies profile obtained for this band. The thin grey lines in 
Figure 7 correspond to 100 randomly selected observations from the training dataset. The 
black line indicates the mean. The effect of B07 (Figure 7a) on turbidity estimates was 
constant until 𝑅𝑅S = 0.12, then started to increase until its highest effect at 𝑅𝑅S = 0.2. In this range 
of surface reflectance, the turbidity changed from 218.7 NTU to 353.8 NTU. For comparison, 
Figure 7b corresponds to an identical analysis for B01, the band with the lowest feature 
importance (see Figure 6). The partial dependency profile of this band was constant, meaning 
that the turbidity presented no change in the entire range of RS from B01 values. This result 
was consistent with Figure 3 and Figure 6. 
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Figure 7. Partial dependencies profiles for spectral bands B07 and B01 

Turbidity spatial distribution 
The obtained RF model was applied to the spectral values from the Barranqueras River to 

evaluate the spatial turbidity distribution. Figure 8 shows the maps for four different dates 
from 2020. The yellow triangle on the top centre of each panel represents the water plant 
location. A water mask was applied to the region of interest to extract only pixel values from 
the Barranqueras River. Figure 8a (2020-01-07) and Figure 8b (2020-12-22) indicate 
relatively low turbidity with a wide dispersion of values. Figure 8b (2020-04-11) and 
Figure 8c (2020-08-24) present a narrower turbidity dispersion, thus the colour homogeneity. 
For the former date, the estimated turbidity values were high; for the latter, turbidity values 
were lower. 

 

Figure 8. Barranqueras River turbidity maps for four different dates 
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To better understand the turbidity spatial distribution, histograms were plotted to showcase 
the estimations of dispersion alongside the Barranqueras River, Figure 9. The bin width was 
set to 10 units. Figure 9a (2020-01-07) presented relatively low values with a wide dispersion; 
the median turbidity was 117 NTU. High values and a narrow dispersion, with an 889 NTU 
median, were observed in Figure 9b (2020-04-11). The lowest turbidity distribution was 
obtained in Figure 9c (2020-08-24), presenting a single peak at 69 NTU. Finally, the values 
increased in Figure 9d (2020-12-22) until a 128 NTU median and a wider dispersion. 

At extreme values, the turbidity dispersion was low, as seen in Figure 9b and Figure 9c. 
The estimations observed in Figure 8 maps and Figure 9 histograms followed the same 
measured turbidity trends as Figure 2a for 2020. 

Figure 9. Turbidity histograms per the exact dates as seen in Figure 8 

CONCLUSIONS 
Inlet water properties are an essential input in a water treatment plant to set the filtration 

operation and the reagents needed for the flocculation step. Water turbidity is a valuable 
parameter in the decision-making process. In Resistencia, Chaco province in Argentina, the 
inlet water turbidity of the local water treatment plant was studied as a time series. Annual 
turbidity cycles were observed, with high values between January and April-May and lower 
values for the rest of the year.  

Anthropogenic and environmental factors are discussed as reasons for water quality, mainly 
dam operation, floods, rain and tributaries in the Paraná River. This complex hydrological 
system modifies water parameters, affecting treatment plant management. Several linear and 
machine learning models were tested for turbidity estimation, with the spectral response at 
different bands as predictors. A tuned RF model outperformed the proposed traditional linear 
models, presenting the highest performance metrics, with R2 = 0.913 and RMSE = 143.9 NTU. 
The machine learning method allowed the creation of a sophisticated model to obtain an 
accurate turbidity estimation from S2-MSI spectral data. The highest turbidity values presented 
the most significant differences between measured and estimated turbidity. Applying the global 
feature importance technique to the RF model, band B07 (780 nm) was established as the most 
crucial variable, followed by B06 (740 nm). The partial dependence profile for B07 indicated 
the highest change in the outcome variable. The maps generated from the RF applied to S2-
MSI products follow the same trend as the observed turbidity for the same period. Extreme 
turbidity values presented low dispersion, according to the histograms. 

Using the laboratory data from the water treatment plant, replacing traditional in situ water 
sampling with remote sensing techniques combined with machine learning modelling allowed 
the development of a validated Random Forest model with high-performance metrics. 
Turbidity estimation by this study was a relevant contribution to the vital process of water 
potabilisation in a region with scarce studies regarding satellite data and water quality. 
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NOMENCLATURE  

minn minimum number of samples  
mtry number of predictors  
n number of samples  
R2 Pearson's coefficient of determination  

TDM Total Dissolved Matter [ppm] 
TM Total Matter [ppm] 
TSM Total Suspended Matter [ppm] 
𝑅𝑅S reflectance in remote sensing  
x turbidity estimated value [NTU] 
y real turbidity value [NTU] 
𝑦𝑦� mean turbidity value [NTU] 

Subscripts  
 

i serial number of measurement  

   

Abbreviations   
B1 to B12 Bands 1 to 12  
CDOM Coloured Dissolved Organic Matter  
ESA European Space Agency  
MAGR Metropolitan Area of Gran Resistencia  
MNDWI  Modified Normalised Difference Water Index  
MODIS Moderate Resolution Imaging Spectroradiometer  
MSI MultiSpectral Instrument  
NDTI Normalised Difference Turbidity Index  
NTU Nephelometric Turbidity Unit  
QA60 Quality Assurance 60  
RF Random Forest  
RMSE Root Mean Squared Error  
S2 Sentinel-2  
S2A Sentinel-2 platform A  
S2B Sentinel-2 platform B  
UN United Nations  
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