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ABSTRACT 
A decarbonized economy implies deep structural changes across industries, including the power 
system, whose operation needs to balance supply and demand instantaneously. The energy 
planning community usually work with hourly-resolution tools, while the integrated assessment 
community do so with the year as the time unit. This article describes a model that integrates 
both time frames to consider limitations and competition among suppliers of electricity in 
long-term scenarios, with Spain as the case of study. The calibration was carried out over four 
historical years (2017-2020, including the impact of Covid) to show both the sensitivity of 
different meteorological conditions and differences in the ranking of priorities to supply power. 
The results show values below Spain’s objective of 74% presence of renewables in the 
electricity mix in 2030; while this objective is reached by our own proposal. 

KEYWORDS 
Integrated assessment model (IAM), energy transition, energy policy, power system, system 
dynamics, Vensim, PNIEC, NECP. 

INTRODUCTION 
The Sustainable Development Agenda for 2030 was signed during the 70th session of the 

United Nations General Assembly (2015), in which goal number 7 aimed to “ensure access to 
affordable, reliable, sustainable and modern energy for all” [1]. Unfortunately, energy policy 

 
* Corresponding author 

mailto:gonzalo.parrado@uva.es
https://doi.org/10.13044/j.sdewes.d11.0481


Parrado-Hernando, G., Frechoso-Escudero, F., et al. 
Method to Model the Hourly Variability of Renewable…  

Year 2024 
  Volume 12, Issue 1, 1110481 

 

Journal of Sustainable Development of Energy, Water and Environment Systems 2 

has recently suffered a radical U-turn. In Europe, most energy plans have been adversely 
affected by the Covid-19 pandemic, gas market volatility (2021, [2]), and also by the current 
war between Ukraine and Russia; from geopolitics led by international oil and gas companies 
to a more fragmented effect led by renewable technology suppliers, all competing for the best 
positions in the ongoing energy transition [2]. The war is pressuring energy security to save the 
economy, which leads to implementing short-term measures to enhance fossil fuels and supply 
routes for critical materials. For example, the revival of coal and delays in nuclear phase-out 
are part of the negotiations on ways to overcome the dependence on natural gas [3]. What is 
more, the pandemic has highlighted the inequality of access to basic energy services and the 
need to rethink our consumption patterns [4]. 

The international context requires an in-depth analysis to properly assess policymakers, and 
the integrated assessment modeling community is today an essential source of knowledge at 
this level [5]. This community develops global models aimed at covering human-Earth 
metabolism in long term scenarios (decades and centuries). The outcomes are aimed at 
deducing the best policy, given specific global goals. The complexity goes from relatively 
simple models, such as versions of World-3 [6], to new projects that include the disaggregation 
of several industries, detailed representations of the energy sector (e.g., heating & cooling 
degree days) [7], availability of resources [8], and such complex indicators as the dynamic 
EROI [9]. Indeed, the IPCC and European energy and climate agencies use these tools to shape 
their official reports and communications ([10, 11]). 

Given the holistic insight and long-term context of IAMs, these models are used to 
concentrate efforts on major drivers rather than on short-term effects. This is the case of the 
power system, where fast variations in generation and demand deeply modified annual 
indicators. For example, seasonal average (SA) and LCOE (simple aggregation methods) 
overestimated the expansion of installed capacities and value of variable renewables, while 
underestimating the dispatchability feature of some units [12]. The proposed 100% CO2 cap 
scenario showed 24% of generation coming from electrolysis, battery storage and nuclear in 
the model with 8760 hours; while SA showed only 3% and LCOE did so close to 1%. 
Shirizadeh et al. [13] reported that an energy system optimization model configured a set of 
time steps (1 h, 2 h, 4 h, 8 h) to show discrepancies in the energy mix, system cost, and CO2 
emissions. Errors reached values above 2% in solar-PV, CCGT, nuclear production, and 
thermal and electric storage (2 h resolution, related to 1 h). Errors were exponentially increased 
with higher time aggregations. Finally, another study concluded the following points regarding 
temporal aggregations compared to the hourly resolution, especially under deep 
decarbonization pathways [14]: 

• Alter generation mixes, varying approach and policy stringency. 
• Overestimate the capacity contribution and the value of resources (especially VRES), 

therefore underestimating the services of dispatchable power plants. A high impact was found in 
the shares of nuclear, hydrogen, and battery storage in the generation, as well as in interregional 
transmission requirements. 

• Simple approaches save investment in firm capacity relative to hourly analysis. 
• Aggregation errors increase at higher decarbonization levels. 
Wide-ranging problems need ample perspectives. The concept of smart energy systems sets a 

“scientific basis for a paradigm shift away from single-sector thinking into a coherent and 
integrated understanding of how to design and identify the most achievable and affordable 
strategies to implement coherent future sustainable energy systems” [15]. This relatively novel 
concept in energy planning follows a similar system of thought to the IAM community, in that 
modelers focus attention on the relationships among agents and simulate the behavior of the 
whole system in order to learn about it and understand the main consequences of policies in their 
respective scientific questions. A hot topic in the field of smart energy systems is the integration 
of fluctuating renewable energy sources through energy converters to create a realm of 
flexibilities across productive sectors and end-use substitutions. 
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Given these differences, the community of energy modeling has criticized the lack of 
hourly/intra-hourly representation of the power and heat systems. This misleading description 
underestimates the flexibility requirements (storage, power-to-X, etc.) in both supply and 
demand sides [16]. 

Regarding carbon capture and storage (CCS) technologies, interest in them has grown 
sharply over the last few years, highlighting the relevance of CCS in fully decarbonized 
societies [17] and the lack of this option in the methods in the literature [18]. However, we 
have omitted them because CCS is far more expensive than renewables, has a poor economics, 
is not a mature technology, manages only one element (CO2) of the pollutants in power plants 
[19][20], and it has an extremely low or even negative net energy (EROI less than 1) ([21], and 
section 2.8.1. in [22]).  

In 2022, G. Parrado-Hernando et al. reviewed 8 IAMs according to how the power system is 
modeled (tables A.1 and  A.2 in [23]), reaching several conclusions. First, there is agreement on 
using the hourly resolution for IAMs, avoiding such aggregative methods as time slices. 
Second, there is no agreement on which the best method and tool would be to apply, allowing 
the modelers to make the selection according to multiple criteria (e.g., computational cost 
versus accuracy). Third, proposals currently seem to achieve further development in 
soft-/hard-linking of individual energy models to the IAM via an external code, instead of 
integrating the first code into the second. This may be due to the fact that two models usually 
run in two different computational frameworks; so IAMs would not be able to run the energy 
system on the hourly timeframe and the rest of the model on the yearly timeframe. 

A qualitative comparison of the contribution presented in this work is summarized in 
Table 1. The model assumes endogenous feedback and power constraints that enhance the 
accuracy and reliability of the power system modeling in comparison to our previous work ([23] 
and [24]), with a small additional computational effort. 

 
Table 1. Qualitative analysis of the approach proposed in this article. Expansion of table 5 in [23] 

Criteria This work 

  
Potential feedback in the IAM Yes. The approach should be included between 

the final and primary energy in the transformation 
chain. 

Facility to include new technologies High. More technologies can be included. 
Accuracy High. More accurate than slide-based 

approaches, less than power flow models. 
Complexity Medium. Only algebraic equations are required. 

More dimensions can be introduced in the approach 
(e.g., water availability in dam hydropower plants). 

Reliability of the power system Medium. Power ramps are not constrained. The 
maximum hourly generation is constrained.  

Presence in IAMs Not yet tested. 
Computational cost in the IAM Relatively fast. The power system needs to be 

calculated once a year, but the rest of the IAM 
would rely on the integration time step; so, a TIME 
STEP of 0.25 requires the calculation of the same 
power system 4 times a year. 

Potential uncertainty analysis in the 
coefficients 

No. This is not implicit in the method, but 
exogenous methods can fulfill this analysis, e.g., 
the Montecarlo simulation. 
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Consequent to the research line, this article is focused on the following question: could 
IAMs work with two different time scales in the same simulation? To the extent of our 
knowledge, there is no IAM running as a unique code in both yearly and hourly time scales. So, 
the contribution of this work may be summarized as follows: 

• Develop a compatible computational framework of an hourly electricity system 
for yearly capacity expansions of integrated assessment models. 

• Develop a bottom-up power system model running at two different time scales, 
yearly and hourly, simultaneously. 

• Develop the technology mix in the current policy scenario of the Spanish energy 
transition as a case study, based on public, open-access data. 

• Assess the feasibility of the NECP goals, including relevant impacts in the 
power system. 

The article is structured as follows. The next section explains the novelties, logic, and scope 
of the developed model, as well as the necessary materials for running simulations. Then, the 
results and discussion are presented together according to the features of the model and 
simulations of the scenarios. The last section sets out the conclusions and further work in the 
research line. 

MATERIALS AND METHODS 
This section defines the equations and scope of the model HPSS, as well as the materials 

required to calibrate the model for the Spanish case. 

Principles of the hourly power system subscript model 
An overview of the whole approach is presented in Figure 1. The main novelty of HPSS is 

the use of the subscripting feature, i.e., an array structure of elements that can be repeated as 
many times as the modeler needs. Taking advantage of this feature, the dispatch of electricity is 
configured through variables containing subscripts of 8760 elements (the hours in a year). 
These are used to import the hourly profiles of demands and VRES, calculate the intermediary 
steps, and report hourly indicators of interest, such as curtailment †  or power ramps. 
Concurrently, the integration method solves the differential equations that represent the 
dynamics of the capacities of technologies, the evolution of efficiencies, and the aggregated 
indicators over time. Consequently, subscripts have generated the ability to represent two or 
more discrete temporal dimensions while the continuous integration process is ongoing. This 
idea is not new and has been employed in other dissimilar fields facing similar problems, e.g., 
irrigation [25] and migration [26].  

 
 

 
† This refers to active power curtailment in power plants when in the power system there is an excess of 

electricity production surplus the level of consumption. This definition of curtailment would provide us with the 
minimum value of curtailment in the power system as we would not be considering other common causes of 
curtailment such as local transmission network congestions, low system inertia, low short-circuit powers and 
overvoltage. 
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Figure 1. General overview of the HPSS model. Yellow variables are calibrated for the base years. Grey boxes are exogenous data; while blue boxes are 

exogenous data in this work, but endogenous in an IAM (to be endogenized in further work). The equations set out in this work are summarized as “Addition” or 
“Subtraction” in the gray color. The two intermittent boxes are variables repeated to clarify the diagram. It is well known that “the system must be able to meet the 

continually changing load demand” [28], verifying the first property of the allocation function. 
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Nevertheless, the question about the dispatch of electricity that needs to be answered is: 
How can the load demand be fulfilled from different suppliers? Here, the one-to-many 
allocation function takes place. It is a mathematical formulation that solves a single market, 
where several suppliers are trying to satisfy the demand. In this work, the functionality 
reproduces the operation of the power system every hour. The software used to develop the 
model is Vensim DSS, where the “ALLOCATE AVAILABLE” function is included in the 
software set [27]. In short, the allocation function has six properties implicitly assumed and 
specified for our problem: 

• Conservation of matter: the amount received by the demanders has to be equal 
to the amount managed by the suppliers. 

• Nonnegative values: all the quantities must be equal to or greater than zero. 
• Conservation of intent: no supplier shall provide more than the 

desired/possible amount of energy to supply. Similarly, no demander shall receive more 
than what has been chosen. 

• No loopholes: under adequate conditions, each agent should receive/supply its 
stated demand/offer. 

• Differentiation: in the case of energy shortage, extremely low priority agents 
should receive/supply little or nothing and extremely high priority agents should 
receive/supply a higher amount of energy or almost everything. 

• Continuity: with small changes in priorities, supply and demand should cause 
small and smooth changes in the resulting allocations. 

 
The non-dispatchable generation (VRES), nuclear (N), imports (I), and exports (E) load is 

subtracted from the load demand (D) in order to place the difference (residual load) in either a 
positive or negative distribution (RL). This concept of residual load (RL) [29] has been used to 
fulfill the second property throughout equation (1) (where h corresponds to each hour). 
Positive values (PRL) correspond to hours with a deficit of energy before management; while 
negative values mean over-productive hours (an excess of electricity). Both resulting positive 
and negative distributions are treated as separate markets to define which technologies can 
respond by covering the deficit (e.g., thermal power plants), increasing the load demand (e.g., 
heat pumps), reducing the generation (e.g., curtailment), or influencing both markets (e.g., 
storage). 

 

𝑅𝑅𝑅𝑅h = 𝐷𝐷h − 𝑉𝑉𝑅𝑅𝑉𝑉𝑉𝑉h − 𝑁𝑁h − 𝐼𝐼h + 𝑉𝑉h              1 ≤ ℎ ≤ 8760 
 
(1) 
 

 
The maximum load of the suppliers is limited by the installed capacity of the technology in 

the year (IC) and, in the case of hydropower units, the maximum hourly producible‡ profile. 
On the other hand, every dispatchable power plant has a range of technical flexibility to 

offer an hourly potential generation (Gh) due to the inertia of the heating system and the 
turbines, thermal stress and security risks, among others (section 2 in [30]). So the generation 
of electricity is partially restricted so as to reproduce the adaptability of the system following 
the demand, an effect also related to the schedule that suppliers create with the objective of 
maximizing profits. This effect is reproduced with equation (2) in the model, which divides the 
generation into a flexible load and an invariable load controlled by a flexibility parameter (fp). 
An exception has been introduced for the case of storage, which is explained later. This method 
respects the third and four properties of the allocate function that is applied later. 

 

 
‡ Producible refers to the estimation of the maximum energy the hydropower units can ideally generate at a 

certain time, given the available water resources.  
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𝐺𝐺h = 𝐼𝐼𝐼𝐼 × (1 − 𝑓𝑓𝑓𝑓) + 𝐼𝐼𝐼𝐼 × 𝑓𝑓𝑓𝑓 ×  
𝑃𝑃𝑅𝑅𝑅𝑅h

max
1≤ℎ≤8760

(𝑃𝑃𝑅𝑅𝑅𝑅h)
 

 
(2) 

 
Competition for the demand load is present in any liberalized electricity market. A priority 

according to the technology is assumed in order to manage the energy shortages in hours when 
the aggregated desired supply is higher than the load demand. This effect is property number 5 of 
the allocate function. In this work, the priority is an indicator of how good the position of a 
supply technology is in the electricity market. The higher the priority, the higher the energy 
delivered. Since the suppliers cannot deliver more energy than the demand, a smaller load 
implies more competition. Finally, the model assumes that small modifications in priorities 
deliver small changes in the resulting supply mix; given that the hour, as a time unit, is 
sufficiently short as to assume smoothness in the energy delivery. This continuity is achieved by 
applying an exponential function to the shape of the priority response for the supply curves 
(green line in the graph of Figure 1). 

Pumped hydropower energy storage (PHES) has been modeled in a singular way to avoid 
simultaneous equations in the code. From the literature, the knowledge states that: a) these 
units pump water during off-peak hours (low demand) and turbine water afterwards during 
peak-hours [31]; b) they cover from daily to seasonal cycles [31]; c) they can offer primary and 
secondary ancillary services to obtain profits, added to those obtained from the intraday and 
day-ahead markets (increasing profits compared to traditional bidding [32], even double [33]). 
The behavior of PHES becomes even harder in potential smart energy systems prepared for a 
high, or even 100%, renewable share in the energy system, where more technologies may offer 
similar services (vehicle-to-grid) and competition for the renewable overproduction [34]. 
Representing the totality of this complexity falls beyond the scope of this work; however, some 
operational details have already been integrated to show the potentialities and barriers in 
modeling. 

First, an estimation of the generation mix, which we called hourly pre-dispatch, is 
calculated by an allocation function to get the share of the positive residual load pumped to the 
storage from the market competition (PHES_pos_turb). As a consequence, the annual 
consumption of the pumping mode is calculated with the efficiency of this technology (eq. (3)). 
Then, this consumption is split into 8760 hourly loads based on its historical profile 
(PHES_pos_cons).  

 

𝑃𝑃𝑃𝑃𝑉𝑉𝑉𝑉_𝑓𝑓𝑝𝑝𝑝𝑝_𝑐𝑐𝑝𝑝𝑐𝑐𝑝𝑝h =
𝑃𝑃𝑃𝑃𝑉𝑉𝑉𝑉_𝑓𝑓𝑝𝑝𝑝𝑝_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡h
𝑃𝑃𝑃𝑃𝑉𝑉𝑉𝑉_𝑒𝑒𝑓𝑓𝑓𝑓𝑒𝑒𝑐𝑐𝑒𝑒𝑒𝑒𝑐𝑐𝑐𝑐𝑒𝑒

 

 
(3) 
 

 
The consumption of the pumping mode is added to the load demand for a second allocation 

(dispatch) where, since it has already been accounted for, the turbine mode of PHES is not 
involved (LD_2nd_al). In short, the pre-dispatch is used as a kind of forecast to depict the 
turbine and pumping patterns of PHES. This pre-calculation avoids simultaneous equations.  

As for the negative residuals (excess of electricity), storage is the only technology able to 
make a profit in this version of the model, a clear advantage in scenarios with high shares of 
non-dispatchable contribution. Thus, PHES acts as a monopolistic agent, pumping as much 
energy as possible (PHES_neg_turb). In this case, the consumption during the pumping mode 
does not increase the base load demand in hours with a deficit of energy, since the negative 
value is potentially curtailment. On the contrary, this storage technology transfers energy from 
the negative to the positive distribution, so the positive value of the load demand is reduced by 
a quantity equal to the overproduction gathered by storage (PRL2h in eq. (4)).  
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𝑃𝑃𝑅𝑅𝑅𝑅2h = 𝑃𝑃𝑅𝑅𝑅𝑅h + 𝑃𝑃𝑃𝑃𝑉𝑉𝑉𝑉_𝑓𝑓𝑝𝑝𝑝𝑝_𝑐𝑐𝑝𝑝𝑐𝑐𝑝𝑝h − 𝑃𝑃𝑃𝑃𝑉𝑉𝑉𝑉_𝑓𝑓𝑝𝑝𝑝𝑝_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡h −  𝑃𝑃𝑃𝑃𝑉𝑉𝑉𝑉_𝑐𝑐𝑒𝑒𝑛𝑛_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡h 
 
(4) 
 

 
Therefore, the remaining negative residual loads (after storage) are accounted for as 

curtailment. Although there are other options to flexibilize the supply and demand sides facing 
deeper decarbonization marks, only storage has been considered due to the lack of data. 
Examples of other flexibility options are power-to-heat, power-to-hydrogen, or smart electric 
vehicles (section IX-F and throughout the text, respectively, in [34]). However, these options 
are residual in the historical period and data are not fully available (e.g., hourly profiles for 
calibration). The inclusion of more technologies in the competition for the excess of electricity 
is further work for the approach. 

Once storage has been calculated, the second allocation re-calculates the electricity mix for 
the dispatchable technologies (LD_2nd_al). The priorities are the same for both allocate 
functions; they do not change from the pre-dispatch to the dispatch allocation or across hours.  

Once the properties have been contextualized for the problem, the following paragraphs set 
out the technological specifications for the modeling of the Spanish power system. The 
dispatchable power plants (combined heat and power, CHP, and thermal power plants, PP) are 
sorted, in turn, by fuel: gas, geothermal, liquid, and solid fuels; as well as two hydropower 
technologies: traditional hydropower plants (dammed and mixed) and pump hydroelectric 
energy storage. In total, there are 12 technologies operating when necessary to fulfill the positive 
residual loads (Table 2), with a degree of freedom in the allocation mechanism, i.e., the hours 
when non-dispatchable generation is not enough. Table 2 also shows the coherency between 
databases and the HPSS model. The priorities are restricted to between 0 and 10, that is, the 
annual competitiveness in accessing the electricity market. 

 
Table 2. List of technologies in the HPSS model, including which are exogenous or endogenous, 

and the corresponding category in the data source. T&D: transmission and distribution; REE: Spanish 
power system operator; IDAE: Institute of Diversification and Energy Savings of Spain 

Technology HPSS model Data categories Source 

Load demand Exogenous Demand + T&D 
losses 

REE 

Onshore wind Exogenous Onshore wind REE 
Solar PV Exogenous Solar PV REE 
Solar CSP Exogenous Solar CSP REE 
Nuclear Exogenous Nuclear REE 

International Interconnections Exogenous Net trade REE 
CHP_gas_fuels Endogenous Natural gas + biogas IDAE 

CHP_geothermal Endogenous Geothermal IDAE 
CHP_liquid_fuels Endogenous Oil IDAE 
CHP_solid_fuels Endogenous Coal + biomass IDAE 

CHP_waste Endogenous Municipal waste IDAE 
PP_gas_fuels Endogenous CCGT + biogas REE 

PP_geothermal Endogenous Geothermal REE 
PP_hydropower_dammed Endogenous Dam and Mixed REE 

PP_liquid_fuels Endogenous Fuel/Gas engines REE 
PP_solid_fuels Endogenous Coal + Biomass REE 

PP_waste Endogenous Waste REE 
hydropower_pumped Endogenous Pump hydropower REE 
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Hourly generation profiles of VRES, nuclear and international transactions are exogenous 
inputs introduced due to the high uncertainty around them. Forecasting techniques have been 
developed for different time frames. However, the behavior of solar irradiation and wind speed 
predictors remains unclear beyond 2 days ahead [35], while climate change also impacts the 
availability of resources in the long term [36][37]. Finally, international power exchanges and 
nuclear power plants are running under strict bilateral agreements to exchange electricity 
between different markets, making their profiles harder and unclear. The dynamics of 
human-decision-based generation, as well as the dynamization of the VRES profiles, are 
beyond the scope of this work. As mentioned later, the exogenous profiles introduced to 
calibrate the historical period are also used as input to select the patterns for the future context 
in which energy policies are to be applied. 

A common way to estimate the generation is from the installed capacity. This is done via 
normalization. For the exogenous technologies, the hourly load is divided by the installed 
capacity. So, the capacity expansion proportionally determines the generation in the scenario. 
In equation (5), the correction parameters (CP) translate these installed capacities into hourly 
generations. When these values remain very close to one, it means that the databases are 
consistent with the hourly profiles introduced. CP values are estimated via calibration. 

 

𝐺𝐺year = � 𝐺𝐺h

8760

1

 × 𝐼𝐼𝑃𝑃 × 𝐼𝐼𝐼𝐼 
 
(5) 

 
The independence across elements of the subscript is a limitation of the approach, i.e., an 

element cannot be updated or calculated based on another element. Consequently, the energy 
mix of one hour cannot be used to calculate the following one. This implies that the 
turbine/pumping mode of hydroelectric plants, for instance, cannot be constrained by the level 
of water in the up and down reservoirs.  

However, this limitation is partially solved after the allocate functions. The maximum 
power ramps in the year are estimated from the hourly generations so as to deliver an indicator 
of the necessary technical requirements, which may validate the scenario or not. A similar 
reasoning may be followed for the hourly exchanges of water.  

The electricity demand follows the Eurostat’s convention on energy balances. The data are 
exogenously imported from 24 economic sectors, including the energy sector; which are then 
sorted into the extraction of fossil fuels (coal, natural gas, oil), consumption to produce coke 
oven coke for the steel and iron industry, and petroleum refineries. The transmission and 
distribution losses increase the electricity demand up to the demand at the busbars of the 
generators. A parameter multiplies this last demand to meet the demand from all databases 
(ParCalDatabase). As is shown in the next subsection, this multiplier matches the annual 
demand provided by the energy balances of Eurostat and the value reported by the power 
system operator, REE. 

Data collection 
This section sets out the data sources used to study the Spanish power system with HPSS.  
The annual consumption of electricity by the economic sectors and transmission losses 

have been gathered from Eurostat [38]. Moreover, the hourly profiles of the technologies have 
been collected from the power system operator’s database (ESIOS, [39]). Together, they make 
up the main data source. 

Water resources, evaluated as producible energy, are extracted from the AEMET reports on 
a daily basis [40]. The estimation of the hourly potential for dammed and mixed hydropower 
generation is homogenously distributed over the day, so the daily value is divided by 24 hours. 

Additionally, the data related to combined heat and power (CHP) generation has been 
found in a complete report written by the Institute for Energy Diversification and Saving 
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(IDAE, Spanish acronym) [41]. Facilities are categorized by technology, sector, and fuel, 
including the installed capacity, electricity production, fuel consumption, and net heat 
production. There is a lack of information about residual generation in Spain from marine, 
solid biofuel, renewable municipal waste, and liquid biofuel. 

Finally, the power system operator (REE) annually delivers reports [42] with Excel files 
that have been used for calibration purposes. For example, electricity generation by 
technology, including the net international balance and pumping hydropower consumption. 

RESULTS & DISCUSSION 
This section covers the calibration of the HPSS model in the historical period, providing 

information about the priorities of dispatchable power plants and the efficiency of pumped 
hydropower energy storage. Then, the NECP’s objective for the power system by 2030, i.e., the 
percentage of renewable energy in the electricity mix, is evaluated in a baseline scenario and 
achieved in an alternative scenario. 

Model validation 
The availability of data in Spain has allowed us to study the calibration of most of the 

parameters over four years, from 2017 to 2020. This period is characterized by dissimilar 
meteorological conditions, the deployment of solar and wind (38%), the decommissioning of 
coal power plants (40%), and the disruptive effect of the Covid-19 disease in 2020.  

Unfortunately, geothermal, run-of-river, oceanic, solar urban and offshore wind generation 
are negligible in Spain, there are no data about their hourly profiles. Consequently, they were 
not considered. 

Powell’s algorithm is a hill-climbing method (iterative) that finds a function’s minimum 
value by sequential one-dimensional searches using the concept of conjugate directions [43]; 
the lack of gradients in this method is useful for non-differentiable and differentiable functions 
[44]. The Powell method was selected to calibrate and manage the priorities of the power 
system. This method is a Vensim software tool, explained in the documentation [27] and in 
specific publications [45][46]. The optimal values of priorities that minimize the payoff 
function are specified in Table 3; while the results of the calibration are shown in Table A. 1. 
As mentioned above, the priorities are constrained between 0 and 10 for the calibration of the 
allocation functions. 
 

Table 3. Values for the Powell algorithm 

Parameter Value 

Weight 1 
Vector points 25 

Maximum iterations 1000 
Pass Limit 2 

Fraction tolerance 0.00003 
Absolute tolerance 1 

 
The parameter that evaluates the consistency between Eurostat and the power system 

operator database is very close to one in all the years (ParCalDatabase). So, there is perfect 
consistency between official agencies.  

The hypothesis of assuming equivalence between the hourly average power and hourly 
generation is also acceptable, given the closeness to one in the results of international trade, 
wind, solar, and nuclear generation. Therefore, the estimation of the yearly generation from the 
hourly power profile and the installed capacity of the technology is also accepted.  



Parrado-Hernando, G., Frechoso-Escudero, F., et al. 
Method to Model the Hourly Variability of Renewable…  

Year 2024 
  Volume 12, Issue 1, 1110481 

 

Journal of Sustainable Development of Energy, Water and Environment Systems 11 

However, the dimensionality of the problem has been simplified, i.e., the number of 
degrees of freedom in the calibration algorithm, in such a way that the maximum potential load 
generated by the dispatchable power plants corresponds to the installed capacity (fp = 0). 
Further analysis is required to explain the constraints in the generation of these technologies. 

Figure 2 illustrates the priorities of dispatchable power units. Dam hydropower and CHP 
fueled by gas units are at the top of the electricity market in Spain, while the pumping mode of 
hydropower and PP units (traditionally run by fossil fuels) are at the bottom. The range of dots 
is narrower over time, which indicates that the market evolved towards a more competitive 
scenario. In the ranking, there is a significant change between 2018 and 2019, when PP solids 
(mostly coal) experienced a depletion in the installed capacity, promoting the role of other 
technologies, such as PP gas, CHP liquid and PHES, to replace it. Finally, the disruption of the 
Covid-19 disease did not affect priorities, indicating that these are driven by technical reasons 
of the suppliers rather than the electricity demand pattern. 

 
Figure 2. Priorities of dispatchable power plants in the historical period 

The historical round-trip efficiency in PHES units was found to be between 54.3-61.2%, far 
below the common range of values in the literature (70-80%, [31]). As for the power network, 
the technical and non-technical transmission and distribution losses§ have increased over the 
historical period from 9.8% to 11.4% (Eurostat). The reasons behind this increasing 
inefficiency are beyond the scope of this article. 

Equation (6) accounts for the error in all the results of interest. Percentages between the 
actual and the calibrated annual generations are reported in Table A. 2, where all of them fell 
far below 5%. “CHP waste” delivered 4.04% more energy than expected in 2020; however, its 
generation is very low in relation to the total amount supplied (around 0.07%). The deviations 
in the share of renewables are +0.33% (2017), -0.09% (2018), -0.37% (2019), and -0.96% 
(2020). The highest error for PHES was only -1.21 MWh (2019). In agreement with the 
Spanish power system operator, PHES was considered a non-renewable energy source. 
Furthermore, when a set of technologies is mixed in the same category of the model, the 
installed capacity of each technology is used as a proxy to make the generation share, e.g., 

 
§ Technical losses refer to those derived from the Joule effect and hysteresis loops, among others. However, 

non-technical losses are human driven, such as falsification of meters, non-recorded connections or measuring 
errors, among others. 
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biomass represented 15.57% of the “PP solid fuels”, while biogas 1.01% of “PP gas fuels”, in 
2020. 

 

𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆 (%) =
𝒆𝒆𝒆𝒆𝑨𝑨𝑨𝑨 𝒑𝒑𝒆𝒆𝒆𝒆𝒑𝒑𝑨𝑨𝒑𝒑𝒑𝒑𝒑𝒑𝒆𝒆𝑨𝑨 − 𝒑𝒑𝑨𝑨𝑨𝑨𝒑𝒑𝒄𝒄𝒆𝒆𝑨𝑨𝒑𝒑𝒆𝒆𝒑𝒑 𝒑𝒑𝒆𝒆𝒆𝒆𝒑𝒑𝑨𝑨𝒑𝒑𝒑𝒑𝒑𝒑𝒆𝒆𝑨𝑨

𝒆𝒆𝒆𝒆𝑨𝑨𝑨𝑨 𝒑𝒑𝒆𝒆𝒆𝒆𝒑𝒑𝑨𝑨𝒑𝒑𝒑𝒑𝒑𝒑𝒆𝒆𝑨𝑨
× 𝟏𝟏𝟏𝟏𝟏𝟏 

 
(6) 

 
Table A. 3 shows acceptable errors for the purpose of the model. As can be seen, most of 

the means of the errors are very close to zero, apart from PP_solid & PP_waste, probably 
caused by the lack of disaggregation of these technologies in ESIOS. In short, the low errors in 
the model parameters validates the accuracy, given the available knowledge and data. 

The rest of this subsection tests the behavior of the model when facing changes in two 
sensitive variables: First, the installed capacities of nuclear power plants; and second, the 
priority of PHES. In order to better visualize non-linearities in the results, the expansion of 
installed capacities and priorities follows a future linear trend. For the same reason, the demand 
remains constant over time and equal to the corresponding value of the historical year (268 
TWh, 269 TWh, 265 TWh, 250 TWh, respectively). 

The first exercise phases out the nuclear power plants by 2030. Meanwhile, the priorities 
remain constant and equal to the corresponding historical year. Four future trends are obtained, 
shown in Figure 3. The brown vertical line separates the historical period from the future. 

 
Figure 3. Evolution of some suppliers for different historical conditions. One color by year and one 

type of line by technology. The brown vertical line separates the historical period (left, one known point 
per year) from the scenario (right, four possible points per year) 

The profile for nuclear power plants is exogenously assumed, and is therefore inflexible. 
This situation creates a reaction of dispatchable power plants, increasing their generation to 
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fulfill the gap. The year 2017 was a dry year; therefore, hydropower generation barely grew 
over time (dashed blue line), being substituted by fossil fuels in thermal power plants (blue 
dash-dot line).  

The political-medical decision for a lockdown due to the Covid-19 disease (2020) provoked 
a drastic reduction in the electricity demand, especially in households. It implied less energy 
consumption from fossil fuel power plants, but also higher hydropower generation, given the 
favorable hydrology of that year. 

The second exercise plays with two trends for the priority of pumped hydropower energy 
storage. The first linearly changes the priority from 2020 (4.71) up to the maximum (10) at the 
end of the simulation (2030). The second keeps the priority of 2017 constant. Additionally, the 
installed capacities of VRES are expanded 2.36 times in the same period to generate more 
over-productive hours in the year, stimulating PHES. For all the future years, the rest of the 
parameters remain constant with the calibrated values of 2017. 

Figure 4 reveals the impact of the growth of the variable renewables introduced in the 
scenario. The expansion leads to a high amount of curtailed energy, reaching around 8% of the 
electricity demand by 2030. The PHES-priority trend with increasing values (“increasing” 
label in the figure) covers higher market shares in the electricity mix. However, the 
consumption related to the pumping mode increases, which leads to higher generations of other 
dispatchable plants at certain hours to cover the increments in the load demands (CHP, dam 
hydropower, and fossil fuels). 

 
Figure 4. Evolution of some suppliers and curtailment facing a renewable growth. The brown 

vertical line separates the historical period (left, one known point per year) from the scenario (right, two 
possible points per year). “_increasing” points out variables of the scenario with increasing PHES 

priority (up to 10 by 2030) 
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The positive residual load value (PRL) in over-productive hours is zero, so the potential 
generation of PHES is entirely available for the negative RLD market. This is why PHES has a 
privileged role in the system. Consequently, the priority of the pumping mode power does not 
affect curtailment. The effect on curtailment comes from the installed capacity of this option. 

The priorities of installed capacities are used as previously to reproduce different historical 
conditions (2017-2020). These conditions are assumed to justify legislative and technical 
dynamic processes, allowing us to estimate a range of potential benefits when promoting one or 
other technology over the energy transition. 

Spanish National Energy and Climate Pathway 
This subsection analyzes the objective scenario of the Spanish NECP [47], an integrated 

report to meet the EU’s climate and energy targets for the period from 2021 to 2030 
(EU/2018/1999). The values and correspondence across categories to adapt the HPSS model to 
the NECP are shown in Table 4. Priorities are not moved after 2020, running four simulations 
according to the historical years previously calibrated. 

 
Table 4. Installed capacities in the power system for the objective scenario of the NECP (2030) 

[47]. Translation to HPSS categories between brackets. Units of installed capacities in megawatts 
(MW). Electricity demand in terawatt-hour (TWh) 

Electricity demand  
(in central bars) 

346.29 TWh 

Technology Capacity [MW] 

Wind (PP_wind_onshore) 50333 
Solar-PV (PP_solar_PV) 39181 

Solar CSP (PP_solar_CSP) 7303 
Dam+Mixed hydropower 

(PP_hydropower_dammed) 
17296 

Storage (hydropower_pumped) 6837 
Biogas (PP_gas_fuels) 241 

Biomass (PP_solid_fuels) 1408 
Coal (PP_solid_fuels) 0 
CCGT (PP_gas_fuels) 26612 

Fuel/Gas (PP_liquid_fuels) 1854 
Waste & others (CHP_waste) 341 

Nuclear (PP_nuclear) 3181 
Cogeneration (CHP_solid_fuels) 3670 

Other renewables (CHP_geothermal) 80 
International Interconnection 11800 (8000 with France, 3000 with Portugal, 

800 with Morocco) 
 
As can be seen in Figure 5, renewables do not go further than 61% in the share of any of 

the four simulations. This finding relies on the specific context, i.e., the NECP Spanish report, 
and it may be different from one region to another. For example, a recent study achieves a 
renewable penetration of 80% in the electricity mix when simulating the official Danish 
pathway to 2030 (objective of 70% reduction in the greenhouse gas emissions) [48]. On the 
2030 Australian power system represented by De Rosa et al. [49], the indicator was estimated 
in the range of 21.4-36.3%.  

Curtailment increases with the higher penetration of variable renewables. This is caused by 
the lack of sufficient flexibility in the system to integrate the excess of non-dispatchable 
electricity production into new demands in other energy sectors, such as heating and transport. 
In addition, the whole 2017 was very dry, so very productive for solar and unproductive for 
hydropower plants. This combination generates a less flexible hourly profile in the supply side 
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of the power system. Most of the overproduction is therefore used by storage. The profiles of 
nuclear and international interconnections are exogenous, a fact that further contributes to 
increasing the likelihood of over-productive hours. Fortunately, although the conditions of 
2017 seem to be harder than other historical years, curtailment does not so increase very much, 
wasting energy in 519 of the hours in 2030 (1.4 % of the VRES generation) in the worst case.  

The progression of renewables in the mix reaches an upper limit. This suggests additional 
installations of flexibility options to further integrate the excess of electricity production and 
avoid carbon emissions.  

 
Figure 5. Percentages of renewable share in the mix and curtailment (related to VRES generation) 

for the NECP scenario, based on the 4 historical years 

 

Own proposal 
The last simulation evaluates a way to achieve the objective of a 74% renewable share in 

the Spanish power system. This plan assumes the following measures: 
• Constant electricity demand over time. 
• Reduction of the international interconnection capacity to test the Iberian case, given 

“the lack of a coordinated common energy policy with its neighboring systems” [50].  
• Decommissioning of nuclear power plants, since they introduce inflexible generation 

into the model. 
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Finally, the optimal ratio wind/solar-PV of 1.86 is applied from the literature [51]. This 
ratio reduces the statistical renewable variability burden by installing infrastructure according 
to the regional conditions of Spain (59520 MW and 32000 MW, respectively, by 2030). 

The resulting share of renewable electricity in the mix is shown in Figure 6, where 1.7 % 
of its generation would be curtailed in the worst conditions (2017), and which is far below 5%, 
a standard limit in the literature of energy planning [52],[53]. Statistically, the conditions for 
2017 and 2020 would help more than those of 2018 and 2019, to reach the objective. 

 

 
Figure 6. Proposal of scenario for Spain between 2020-2030. Percentages of renewable share, 

percentage of curtailment (related to VRES generation), based on the assumption of 4 different 
historical conditions 

 
As shown before, the generation of PHES is sensitive to changes in its priority. One way to 

address the uncertainty of this model parameter is through sensitivity simulation [54].  
Uniform distribution from 1 to 10 is applied to the PHES priority to generate 2000 simulations. 
Figure 7 shows a likelihood range between 63-78% in the share of renewables in the mix, 
highlighting a significant influence of this technology when its priority is widely modified. 

 



Parrado-Hernando, G., Frechoso-Escudero, F., et al. 
Method to Model the Hourly Variability of Renewable…  

Year 2024 
  Volume 12, Issue 1, 1110481 

 

Journal of Sustainable Development of Energy, Water and Environment Systems 17 

 
Figure 7. Sensitivity analysis to the PHES priority from 1 to 10, with a total of 2000 simulations 

performed by a random uniform distribution 

Hourly results reflect additional information. For instance, Figure 8 depicts the simulation 
with the historical conditions of 2020 at day 69 in 2030. Wind and solar contribute every hour, 
increasing during the daytime. In hours with low levels of renewables, thermal power plants 
increased the generation, whose hourly-average maximum ramp-up would increase by 1699 
MW, while the ramp-down would decrease by -1319 MW. 

As mentioned in the methods section, PHES runs in over-productive and deficit hours, as 
h1639. This situation of witnessing pumping and turbine modes of the PHES units at the same 
time can be found in the real operation of the power system, given the large geographical area 
analyzed. However, it is important to note that this result is not derived from findings with a 
geographical tool, but from the statistical method applied to distribute the consumption of the 
pumping mode (PHES_pos_cons). 

 

 
Figure 8. Hourly results from the dispatch allocation in hours 1633 to 1656 (day 69) of 2030 

(proposal scenario). PHES in pumping mode is depicted in the negative axis, while PHES in turbine 
mode is in the positive axis 
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CONCLUSIONS 
Climate change and energy security rely greatly on a deep decarbonization of the economy, 

supported by a transition in which the power system must strengthen the competition between 
the supply and demand sides of the energy system. This work contributes to this field, 
describing a method to overcome the gap between hourly and yearly dynamics in the same 
model framework. The HPSS model reproduces the expected problem of renewable variability 
in terms of curtailment and allows a wide range of technical modifications in both the demand 
and supply sides.  

The initial conditions provided to a model are crucial, since the results of the outputs may 
radically change in long-term scenarios. In order to evaluate how the initial conditions 
influence the HPSS model, four sets have been implemented based on the historical data 
(2017-2020). These years have shown a great variability between them, such as dry seasons 
(2017) or social isolations (2020). 

As a case study, Spain has verified the approach with real data, providing insights into such 
calibration parameters as the low PHES and grid efficiencies, or the competition between 
traditional hydropower and gas turbines for the first position generating electricity, a system 
which has become more and more competitive since 2017. Specifically, the technical 
flexibility and maturity of PHES in deregulated and centralized markets makes this technology 
prominent in decarbonization pathways, which means we need to focus on new efforts for a 
complete regulation framework of the increasing “negative residual load demand” market.  

The simulation of the NECP’s objective scenario in this work finds a renewable penetration 
far from the goal of 74%. However, some measures are proposed as alternatives to the official 
report in order to reach the goal. Among others, a stationary electricity demand, the 
decommissioning of non-dispatchable nuclear power plants, and the expansion of VRES 
capacities according to an optimal wind-solar ratio, as well as making the mix more adequate 
for the regional climate conditions. 

In comparison to other methods, the proposal effectively integrates hourly constraints into 
the annual generation, without linking to external software, which makes them relatively fast 
for calculations, while also providing reasonable accuracy in the results. By introducing the 
approach between the final and primary energy in the transformation chain of an IAM, the 
users could analyze the effects of alternatives related to capacity expansion, different 
prioritizations, as well as constraints from other areas such as land and water uses, or dynamic 
economic developments. 

Finally, there is a potential to overcome the limitations in the model that constitutes further 
work. First, to improve the accuracy of the historical period at the hourly level; with special 
attention being paid to the PHES and the application of the flexibility parameter (fp) for 
dispatchable power plants, including international interconnections and nuclear power plants. 
Second, more technologies could be included to compete in over-productive hours. Third, a 
bottom-up approach can be studied for the hourly profile of electricity demand from different 
economic agents (industries, services, the energy sector). Finally, to expand the flexibilities 
and agents available for an assessment with a holistic approach based on the concept of smart 
energy systems. 
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NOMENCLATURE 

Abbreviations 

AEM Agencia Estatal de Meteorología  
(National  Agency of Meteorology) 

 

CCGT Combined cycle gas turbine   
CHP Combined heat and power  
D Demand  
E Export  
ESIO REE data platform  
fp Flexibility parameter  
G generation  
HPSS Hourly power system subscript mode  
I Import  
IAM Integrated assessment model  
IC Installed capacity  
IPCC Intergovernmental Panel on Climate Change  
LCOE Levelized cost of electricity  
NECP National integrated energy and climate plan  
N Nuclear  
PHES Pump hydropower energy storage  
PP Thermal power plant  
PHES_pos_turb Electricity delivery from PHES storage to the grid  
PHES_pos_cons Electricity used to save energy in PHES storage  
PHES_neg_turb Electricity pumped from negative residual loads  
LD_2nd_al Load demand after PHES management  
PRL2h PRL after PHES management  
ParCalDatabase Parameter to calibrate historical final energy 

demands 
 

PRL Positive residual load  

REE Red Eléctrica de España  
(Spanish power system operator) 

 

RL Residual load  
T&D Transmission and distribution (power grid)  
VRES Variable renewable energy source  
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APPENDIX 
 

Table A. 1. Parameters and priorities from the calibration process. 

 2017 2018 2019 2020 

Calibrated parameters and efficiencies 
onshore wind 1.0159 1.0132 1.0354 1.0375 

solar CSP 1.0126 0.9963 0.9936 0.9969 
solar-PV 1.0732 1.0238 1.0028 0.98958 

international interconnections 1.0197 1.0124 1.02506 1.03988 
nuclear 1.0001 0.9985 0.9975 1.0021 

ParCalDatabase 1.0023 1.0013 1.0023 1.0008 

Share T&D losses 0.0978 0.1054 0.10362 0.1144 

PHES round-trip efficiency 0.6120 0.6282 0.5428 0.5947 

Calibrated Priorities  

CHP gas fuels 7.7477 8.8712 9.9973 9.8130 
CHP geothermal 5.9987 6.8539 7.6780 8.2252 
CHP liquid fuels 2.8702 3.6608 4.4756 5.2009 
CHP solid fuels 5.1493 5.9673 6.7822 7.4125 

CHP waste 6.0522 6.9084 7.7156 8.2798 
PP gas fuels 3.0250 3.4810 5.1221 5.6600 

PP hydropower dammed 10.0000 8.0085 8.8589 9.9997 
PP liquid fuels 4.1735 4.7898 5.2852 5.6815 
PP solid fuels 5.2785 5.4904 4.5549 5.1291 

PP waste 5.7964 6.3389 6.8856 7.7202 
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PHES 2.0812 2.6854 3.2565 4.7126 

 
Table A. 2. Differences between the actual and the calibrated value of the electricity market. 

Technology 2017 2018 2019 2020 

CHP gas fuels -0.03% -0.03% -0.02% -0.03% 

CHP geothermal -1.87% -1.82% -1.38% -1.99% 
CHP liquid fuels -0.21% -0.21% -0.16% -0.22% 
CHP solid fuels -0.65% -0.63% -0.48% -0.69% 

CHP waste -3.82% -3.71% -2.81% -4.05% 
PP gas fuels -0.02% -0.02% -0.01% -0.01% 

PP hydropower dammed -0.04% -0.02% -0.02% -0.02% 
PP liquid fuels -0.09% -0.10% -0.09% -0.16% 

PP nuclear 0.00% 0.00% 0.00% 0.00% 

PP solar CSP 0.00% 0.00% 0.00% 0.00% 

PP solar PV 0.00% 0.00% 0.00% 0.00% 

PP solid fuels -0.01% -0.02% -0.03% -0.09% 
PP waste -0.19% -0.20% -0.16% -0.24% 

PP wind onshore 0.00% 0.00% 0.00% 0.00% 

hydropower pumped 0.18% 0.19% 0.26% 0.16% 

 

Table A. 3. Statistics of hourly results between the model (HPSS), the real data (ESIOS), and raw 
residuals (distribution difference between ESIOS and HPSS). 

Pump Hydroelectric Energy Storage 

 Model ESIOS Raw residuals 

mean 2017 (MWh) 256.26399 256.87331 0.60931221 

std.dev. 2017 (MWh) 217.27288 347.68683 361.259506 
kurtosis 2017 2.1139441 6.1266504 3.43782228 

mean 2018 (MWh) 228.89641 228.00000 -1.0953807 

std.dev. 2018 (MWh) 173.18484 341.40574 375.543115 

kurtosis 2018 -0.128871 6.5671519 4.70366128 

mean 2019 (MWh) 186.95965 188.00000 1.20934802 

std.dev. 2019 (MWh) 132.74045 286.50026 311.403811 

kurtosis 2019 0.4811096 8.9578532 7.04684777 

mean 2020 (MWh) 313.18363 314.00000 0.32609567 

std.dev. 2020 (MWh) 229.14994 397.14759 412.318760 

kurtosis 2020 -0.116192 3.6568586 2.64056448 

Combined Heat and Power 

 Model ESIOS Raw residuals 

mean 2017 (MWh) 3219.4697 3216.3884 -3.0813173 

std.dev. 2017 (MWh) 615.33573 200.36047 538.703604 

kurtosis 2017 1.9967018 1.5439928 1.76752272 

mean 2018 (MWh) 3316.0380 3307.2811 -8.7568911 

std.dev. 2018 (MWh) 494.54882 201.64915 419.517308 

kurtosis 2018 0.4204001 5.5669013 -0.1899525 

mean 2019 (MWh) 3383.4671 3376.7936 -6.6735823 

std.dev. 2019 (MWh) 396.27302 246.15984 388.827962 

kurtosis 2019 0.8190965 4.7026186 -0.4586391 

mean 2020 (MWh) 3086.8827 3074.5783 -12.304385 
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std.dev. 2020 (MWh) 554.62030 279.12240 471.878320 

kurtosis 2020 -0.031743 0.9229159 0.17064444 

Dam Hydropower generation 

 Model ESIOS Raw residuals 

mean 2017 (MWh) 2097.0927 2105.8615 8.76882646 

std.dev. 2017 (MWh) 1911.4531 1220.4278 1757.84911 

kurtosis 2017 3.8784412 0.8661058 3.15823986 

mean 2018 (MWh) 3894.1207 3894.2882 0.16748675 

std.dev. 2018 (MWh) 2506.5586 1853.7037 1656.54652 

kurtosis 2018 0.8423109 -0.360039 0.26782862 

mean 2019 (MWh) 2821.5789 2821.4047 -0.1741140 

std.dev. 2019 (MWh) 2338.2472 1620.6828 1426.09404 

kurtosis 2019 (dmnl) 0.7138798 0.7873781 0.46014895 

mean 2020 (MWh) 3495.5044 3481.7952 -13.709242 

std.dev. 2020 (MWh) 2302.4731 1596.3311 1601.36249 

kurtosis 2020 (dmnl) -0.788725 -0.299161 -0.4923699 

Power Plants fuelled by solids 

 Model ESIOS Raw residuals 

mean 2017 (MWh) 5438.5065 5161.8472 -276.65930 

std.dev. 2017 (MWh) 1870.7957 1968.9582 1292.73248 

kurtosis 2017 (dmnl) -0.294177 -1.082571 0.12304177 

mean 2018 (MWh) 4527.2952 4296.958 -230.33714 

std.dev. 2018 (MWh) 1702.6735 1850.9836 972.252267 

kurtosis 2018 (dmnl) -0.734793 -1.193747 -0.1891294 

mean 2019 (MWh) 1744.6072 1538.0463 -206.56091 

std.dev. 2019 (MWh) 904.85316 1313.7818 1367.56982 

kurtosis 2019 (dmnl) -0.392949 3.9038725 0.5681178 

mean 2020 (MWh) 861.13938 960.47537 99.3359899 

std.dev. 2020 (MWh) 532.13706 337.80604 583.140645 

kurtosis 2020 (dmnl) -0.293689 3.1211566 -0.1532142 

Power Plants fuelled by solids 

 Model ESIOS Raw residuals 

mean 2017 (MWh) 418.76112 363.84467 -54.916453 

std.dev. 2017 (MWh) 120.63643 44.297969 117.519643 

kurtosis 2017 (dmnl) 0.2598117 0.7553582 0.30443973 

mean 2018 (MWh) 399.25095 345.52841 -53.722539 

std.dev. 2018 (MWh) 113.28882 54.721340 121.316056 

kurtosis 2018 (dmnl) -0.282284 3.0946043 -0.2674033 

mean 2019 (MWh) 376.83972 320.83979 -55.999928 

std.dev. 2019 (MWh) 101.54230 39.418418 106.174671 

kurtosis 2019 (dmnl) -0.079310 -0.364726 -0.1939842 

mean 2020 (MWh) 333.05127 285.13801 -47.913265 

std.dev. 2020 (MWh) 99.814789 53.417472 107.764336 

kurtosis 2020 (dmnl) -0.547585 -1.143802 -0.2551055 

 
 

 
Paper submitted: 20.09.2023  

Paper revised: 28.11.2023 
Paper accepted: 09.12.2023   


	Method to Model the Hourly Variability of Renewable Energy Sources in Integrated Assessment Models
	ABSTRACT
	KEYWORDS
	INTRODUCTION
	MATERIALS AND METHODS
	Principles of the hourly power system subscript model
	Data collection

	RESULTS & DISCUSSION
	Model validation
	Spanish National Energy and Climate Pathway
	Own proposal

	CONCLUSIONS
	ACKNOWLEDGMENTS
	AUTHOR CONTRIBUTIONS
	NOMENCLATURE
	REFERENCES
	APPENDIX


