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ABSTRACT 
Pressure-driven membrane processes, such as reverse osmosis and nanofiltration, represent 
credible processes for salinity reduction in groundwater, surface water, and seawater, as well as 
in mining and urban wastewater. The separation characteristics and productivity of these 
processes depend on several factors, including molecular weight cut-off and operating 
conditions (applied pressure, recovery rate). This study aims to model the salt rejection 
performance of water treatment in Tan-Tan City (Morocco) using nanofiltration membranes 
(NF90, NF200, NE90) and reverse osmosis membranes (BW30LE) under various operational 
conditions using the Spiegler-Kedem model. The Particle Swarm Optimisation and Grey Wolf 
Optimisation algorithms were applied to optimise the model parameters to fit experimental data. 
The results showed excellent agreement between experimental rejection rates and 
model-predicted rejection rates for both algorithms. Additionally, the Grey Wolf Optimisation 
model gave slightly better results compared to Particle Swarm Optimisation. The combined use 
of a well-established theoretical framework and efficient optimisation algorithms provides a 
significant step forward in the quest for reliable and sustainable water resources. 

KEYWORDS 
Desalination and water treatment, NF and RO membranes, Spiegler-Kedem model, Particle Swarm 
Optimisation, Grey Wolf Optimisation. 

INTRODUCTION 
The increasing demand for freshwater resources, coupled with the decline of natural water 

resources, has led to the rapid development of desalination technologies [1] [2]. 
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Pressure-driven membrane processes, such as nanofiltration (NF) and reverse osmosis (RO), 
belong to the most advanced and effective techniques for separating salts and other compounds 
from water sources [3]. Membrane usage is expanding rapidly across various fields, with 
desalination of brackish and saline water being a prominent application [4] [5]. Classical 
reverse osmosis is widely recognised as a standard method for desalination [2]. Membrane 
technology can be a competitive separation technique due to its superior performance and cost 
efficiency compared to traditional filtration processes [6] [7]. 

Many software packages, such as ROSA, Winflow, and IMS, have been developed and 
implemented in designing RO systems [8]. These software packages calculate and give 
warnings about design errors, such as feed pressure or recovery ratio exceeding membrane 
limits. The ROSA software, in particular, was validated through an extensive case study [8], 
filling a gap in the literature by simplifying the parameter classification and offering a 
straightforward, verified approach to system design. 

Most modelling works in membrane studies have utilised models based on the extended 
Nernst-Planck equation [9]. These models are developed based on a comprehensive 
understanding of the physical mechanisms underlying membrane processes [10]. They exhibit 
mathematical complexity and entail considerable computational resources, demanding a 
thorough comprehension of the filtration process and membrane characteristics [9]. 
Consequently, it appears necessary to explore alternative methods for predicting process 
performance, leveraging existing process data and extrapolating these to inaccessible data. 

The Spiegler-Kedem model emerges as a viable option for modelling intricate and 
nonlinear membrane systems [11]. It has been used in many previous studies on modelling salt 
rejection in membranes to understand transport phenomena in these membranes [12] [13]. For 
instance, Pontié et al., 2008 [11] combined mass transfer modelling and physicochemical 
characterisation of NF and RO membranes with the aim of highlighting the relevance of that 
model. Spiegler and Kedem, 1966 [14] established the model's thermodynamic foundations, 
while Bowen and Mukhtar, 1996 [15] validated its effectiveness in characterising membrane 
selectivity. These studies showed that the Spiegler-Kedem model views membranes as a black 
box and characterises them using two parameters: salt permeability 𝑃𝑃𝑆𝑆  and reflection 
coefficient 𝜎𝜎 [11]. This model can provide reasonable predictions of salt rejection for a variety 
of membrane processes [13]; however, it often requires extensive experimental data and is 
limited by its complexity and computational demands [10]. 

Recent studies addressed these limitations and enhanced the precision of model fitting by 
exploring the use of bio-inspired metaheuristic algorithms as practical tools for solving 
complex optimisation problems in membrane modelling processes more efficiently [16] [17] 
[18]. Many experts have studied salt rejection using these algorithms [19] [20] [21], 
particularly those based on swarm intelligence, such as Particle Swarm Optimisation (PSO) 
and Grey Wolf Optimisation (GWO). For instance, Mahadeva et al., 2021 [17] used PSO and 
neural networks for reverse osmosis simulation, improving prediction accuracy, while Maftouh 
et al., 2023 [20] and Rabah et al., 2024 [21] explored solar desalination and sustainability 
frameworks. Rinawati et al., 2024 [22] focused on contaminant removal optimisation. PSO is 
inspired by the social behaviour of birds flocking or fish schooling [23], while GWO mimics 
the leadership hierarchy and hunting mechanism of grey wolves [23]. 

Early studies on water treatment using desalination technologies in Tan-Tan City 
(Morocco) have been carried out since 2001 [24]. Tan-Tan was selected as a case study due to 
its increasing reliance on desalination to meet freshwater demands in an arid environment. All 
these studies were based on field measurements and did not examine the evolution of salt 
rejection under various operational conditions. Tahri, 2001 [24] investigated freshwater supply 
prospects from non-conventional water sources for the region, including desalination, while 
Pontié et al., 2006 [25] focused on the application of nanofiltration for large-scale pilot plants, 
highlighting its potential for improving water quality. These studies did not explore the 
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optimisation of membrane processes under varying conditions; however, they recommended 
the application of the theoretical model for optimising parameters in the membrane process 
[26] [27]. 

In a management context, decision-makers search for rapid estimation of salt rejection 
percentage as a function of permeate flux in given membranes [28]. The Spiegler-Kedem 
model, coupled with bio-inspired metaheuristic algorithms for optimisation, can constitute the 
appropriate tools to use because they are easy to apply and more adapted to management 
contexts. Also, it is methodologically correct to start with the most straightforward description 
of the phenomena under study and to evaluate the limits of this approximation before 
investigating more complex models [29] [30]. 

This study aims to model salt rejection in NF and RO membranes using an approach that 
integrates the Spiegler-Kedem model with the GWO and PSO algorithms (referred to as the 
SKM-PSO and SKM-GWO approaches). The study examines three different nanofiltration 
membranes (NF200, NE90, NF90) and one reverse osmosis membrane (BW30LE) under 
varying operational conditions, including applied pressure and recovery rate. The experimental 
tests were conducted using feed water from Tan-Tan City, Morocco, with the aim of evaluating 
membrane performance under actual conditions. The GWO and PSO algorithms were used to 
optimise model parameters, specifically reflection coefficient 𝜎𝜎 and salt permeability 𝑃𝑃𝑆𝑆, to fit 
experimental data. 

The utilisation of the Spiegler-Kedem model provides a robust theoretical framework for 
simulating salt rejection performance. This model allows delving into the complex interplay of 
membrane characteristics and operational parameters, offering valuable insights into the 
intricacies of salt rejection processes [5]. The optimisation process of the PSO and GWO 
algorithms was exploited to improve the accuracy and reliability of the modelling. These 
algorithms efficiently tune the model parameters to match the experimental data, thus bridging 
the gap between theoretical predictions and real-world observations [18]. 

The integration of the PSO and GWO algorithms with a well-established thermodynamic 
model represents a novel and powerful approach (SKM-PSO and SKM-GWO) to improving 
the precision of salt rejection model predictions for NF and RO membranes. This integration 
reduces the need for extensive experimental data, thus making the modelling process more 
practical and manageable. Furthermore, it provides valuable information for the design and 
operational stages of desalination plants. The model has been used to explain real-world 
scenarios, underpinning practical applications in regions susceptible to salinity and water 
treatment processes. Consequently, this approach offers valuable insights that could contribute 
significantly to the sustainable management of water resources. 

The current study validates the recommendations from previous research regarding the 
application of theoretical models for optimising parameters in membrane processes. Both 
SKM-PSO and SKM-GWO models have demonstrated high effectiveness in optimising 
parameters for membrane modelling. Additionally, a comparative analysis of these algorithms 
was performed to determine the most efficient optimisation technique. The results indicated 
that the SKM-GWO model produced slightly better outcomes compared to the SKM-PSO 
model. 

METHODS 
In the study of membrane processes, accurate modelling is essential for predicting 

performance and optimising operational parameters. This section presents a comprehensive 
approach to modelling membrane behaviour using the Spiegler-Kedem model. Advanced 
bio-inspired metaheuristic algorithms, specifically PSO and GWO, were employed to enhance 
the model's accuracy and efficiency. These methods effectively optimise complex, nonlinear 
problems, providing robust solutions for improving membrane performance. 
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Spiegler Kedem model 
Membrane performance is evaluated based on membrane rejection, R [%], and permeate 

flux, 𝐽𝐽𝑃𝑃 [m·s-1]. When dealing with dilute aqueous mixtures containing water and a solute, the 
membrane's selectivity towards the mixture is commonly expressed using the observed solute 
rejection coefficient [31] [32]. This coefficient quantifies the membrane's effectiveness in 
separating the solute from the feed solution and is defined as follows: 

 
 

 R = 100× �1 −  
Cp

Cf
 � (1) 

 
Where Cf [mg·L-1] is the solute concentration at the feed membrane interface, Cp [mg·L-1] is 
the permeate solute concentration [33]. 

The permeate flux is determined using the following equation [34]: 
 

 𝐽𝐽𝑃𝑃 =
𝑄𝑄𝑃𝑃
𝑆𝑆

  (2) 

 
Where 𝑄𝑄𝑃𝑃  [m3·s-1] is the volumetric permeate flux, and 𝑆𝑆  [m2] represents the membrane's 
active surface area. 

The Spiegler-Kedem model, based on irreversible thermodynamics models, provides a 
straightforward framework for describing solute transport in both RO and NF processes [35]. 
In this model, the membrane is considered as a black box, where interactions between solute 
and solvent species are taken into account. The starting point is the assumption that water flux 
𝐽𝐽𝑣𝑣 and solute flux 𝐽𝐽𝑠𝑠 are propelled by forces 𝐹𝐹𝑣𝑣 and 𝐹𝐹𝑠𝑠, respectively, stemming from chemical 
potential gradients across the membrane [14]: 
 

 𝐽𝐽𝑣𝑣 = 𝐿𝐿𝑖𝑖𝑖𝑖 × 𝐹𝐹𝑣𝑣 + 𝐿𝐿𝑖𝑖𝑖𝑖 × 𝐹𝐹𝑠𝑠   (3) 
 

 𝐽𝐽𝑠𝑠 = 𝐿𝐿𝑖𝑖𝑖𝑖 × 𝐹𝐹𝑣𝑣 + 𝐿𝐿𝑖𝑖𝑖𝑖 × 𝐹𝐹𝑠𝑠  (4) 
 
Where 𝐿𝐿𝑖𝑖𝑖𝑖, 𝐿𝐿𝑖𝑖𝑖𝑖 , 𝐿𝐿𝑖𝑖𝑖𝑖, and 𝐿𝐿𝑖𝑖𝑖𝑖 are phenomenological coefficients. 

By integrating the thermodynamic principles, the equations provided by Kedem and 
Katchalsky make it possible to establish a relationship between water and solute fluxes as well 
as membrane coefficients [34]. These coefficients include hydraulic permeability 𝐿𝐿𝑃𝑃, solute 
permeability 𝑃𝑃𝑆𝑆, and reflection coefficient σ [36]. The chemical potential gradient arises from 
either a concentration or pressure gradient. Consequently, the ultimate operational equations of 
the nonlinear Spiegler-Kedem model are [37]: 
 

 𝐽𝐽𝑣𝑣  =  𝐿𝐿𝑃𝑃  × (∆𝑃𝑃 −  σ × ∆Π)  (5) 
 

 𝐽𝐽𝑆𝑆  =  𝑃𝑃𝑆𝑆  × (𝐶𝐶𝑚𝑚  −  𝐶𝐶𝑃𝑃) + (1 − σ)  × 𝐽𝐽𝑣𝑣 × 𝐶𝐶𝑚𝑚  (6) 
 

Where ∆𝑃𝑃  [bar] represents the transmembrane pressure, while ∆Π  [bar] indicates the 
difference in osmotic pressure across the membrane. 𝐶𝐶𝑚𝑚 [mg·L-1] is the solute concentration at 
the membrane surface, 𝐿𝐿𝑃𝑃 [L·h-1·bar-1] stands for the hydraulic permeability of the membrane, 
σ represents the dimensionless reflection coefficient, and 𝑃𝑃𝑆𝑆 [m·s-1] is the solute permeability 

The quantity 𝑃𝑃𝑐𝑐  = σ ×  ∆Π is the initial pressure, also referred to as the critical pressure. 
The reflection coefficient σ serves as an indicator of the membrane's relative permeability to a 
specific solute: σ = 1 signifies complete exclusion of the solute, whereas σ = 0 implies the 
membrane lacks selectivity [38]. Integrating equations (5) and (6) with eq. (1) and considering 
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the limit conditions of the problem (𝐶𝐶𝑚𝑚 = 𝐶𝐶𝑓𝑓 for 𝑥𝑥 = 0, and 𝐶𝐶𝑚𝑚 = 𝐶𝐶𝑝𝑝 for 𝑥𝑥 = ∆𝑥𝑥, where ∆𝑥𝑥 
[m] is the membrane thickness) results in equations (7) and (8) [39]: 
 

 
𝑅𝑅 = 1 −

𝐶𝐶𝑝𝑝
𝐶𝐶𝑓𝑓

=
σ × (1 − 𝐹𝐹)
1 − σ × 𝐹𝐹

  (7) 

 
 

𝐹𝐹 = 𝑒𝑒𝑥𝑥𝑒𝑒 �−
(1 − σ) × 𝐽𝐽𝑣𝑣

𝑃𝑃𝑠𝑠
�  (8) 

 
Where 𝐹𝐹 is a dimensionless flow parameter [40] [41]. 

Measurement and calculation of key parameters 
Throughout the experiments, three key parameters were systematically monitored and 

recorded. The first parameter is the permeate flux. This crucial parameter, indicative of 
membrane performance, was calculated using eq. (2) [34]. 

The second parameter of interest is the recovery rate 𝑌𝑌 [%]. This metric serves as a vital 
indicator of process efficiency and was calculated as the ratio of permeate flow 𝑄𝑄𝑃𝑃 [L·h-1] to 
feed flow 𝑄𝑄0 [L·h-1], expressed as a percentage: 
 

 𝑌𝑌 =
𝑄𝑄𝑃𝑃
𝑄𝑄0

× 100 (9) 

 
The third parameter of interest is the salt rejection 𝑅𝑅 [%]. This metric is crucial for 

evaluating the effectiveness of the membranes in removing salt from the feed water. Salt 
rejection was quantified using eq. (7) as mentioned above. 

Particle swarm optimisation method 
The PSO algorithm, inspired by the behaviour of bird flocks [42], has widespread 

applications in various domains, such as nonlinear function optimisation [43] and neural 
network training [44]. The PSO algorithm's idea came from simulating the social behaviour of 
flocks of birds looking for food [45] [46]. 

In the implementation of the PSO algorithm, each bird is considered a starting particle, 
representing a potential solution in the search space. These particles move across the search 
space at the same time [47]. A position vector and a velocity vector are required to represent a 
particular particle. The former vector depicts the problem's solution, while the latter vector 
establishes the location updated in the subsequent iteration [47]. According to the value of the 
fitness function, each particle continuously tracks the optimal position of both the individual 
and the entire swarm in order to determine the best solution in the PSO algorithm (Figure 1a). 
The i-th particle's updated position and velocity in the (t + 1)-th iteration are determined 
according to the following two formulas [46]: 
 

 �⃗�𝑋𝑖𝑖(𝑡𝑡 + 1) = �⃗�𝑋𝑖𝑖(𝑡𝑡) + 𝑉𝑉�⃗ 𝑖𝑖(𝑡𝑡 + 1)  (10) 
 

 𝑉𝑉�⃗ (𝑖𝑖)(𝑡𝑡 + 1) = 𝑤𝑤 × 𝑉𝑉�⃗ 𝑖𝑖(𝑡𝑡) + 𝐶𝐶1 × 𝑟𝑟1 × �𝑃𝑃𝑃𝑃𝑒𝑒𝑃𝑃𝑡𝑡�����������⃗ 𝑖𝑖(𝑡𝑡) − �⃗�𝑋𝑖𝑖(𝑡𝑡)�

+ 𝐶𝐶2 × 𝑟𝑟2 × �𝐺𝐺𝑃𝑃𝑒𝑒𝑃𝑃𝑡𝑡�����������⃗ 𝑖𝑖(𝑡𝑡) − �⃗�𝑋𝑖𝑖(𝑡𝑡)� 
(11) 

 
Where �⃗�𝑋𝑖𝑖(𝑡𝑡)  and 𝑉𝑉�⃗ 𝑖𝑖(𝑡𝑡)  represent the position and velocity of the i-th particle in the t-th 
iteration. 𝑃𝑃𝑃𝑃𝑒𝑒𝑃𝑃𝑡𝑡�����������⃗ 𝑖𝑖(𝑡𝑡) and 𝐺𝐺𝑃𝑃𝑒𝑒𝑃𝑃𝑡𝑡�����������⃗ 𝑖𝑖(𝑡𝑡) denote the best position of the i-th particle and that of the 
entire swarm, respectively; t and t + 1 are the t-th and the (t + 1)-th iteration, respectively; 𝑟𝑟1 
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and 𝑟𝑟2 signify the uniformly distributed random numbers in [0,1] at each iteration; 𝑤𝑤 is the 
inertia weight controlling the search space scope, while 𝐶𝐶1 and 𝐶𝐶2 denote the individual and 
social factors influencing particle velocity [42]. Figure 1b depicts the flowchart for the basic 
PSO algorithm.  

 

 
 

Figure 1. The motion of particles (a), and flowchart of the standard PSO algorithm (b) 

The PSO algorithm was utilised to optimise the parameters 𝜎𝜎 and 𝑃𝑃𝑠𝑠, crucial in membrane 
modelling. These parameters characterise membrane imperfections and significantly impact 
its performance. Leveraging PSO allows for accurate estimation of these parameters, 
considering concentration-dependent behaviour and enhancing the precision of membrane 
transport phenomena modelling. This methodological approach not only improves model 
accuracy but also contributes to advancements in membrane technology and process 
optimisation. 

Grey wolf optimisation method 
The GWO, introduced by Mirjalili in 2014 [48], is a swarm-based algorithm inspired by the 

hierarchical hunting behaviour of grey wolves [18]. Unlike PSO, GWO is more 
memory-efficient, utilising a single vector of position and retaining only the three best 
solutions [49]. This algorithm organises the population of potential solutions into four 
hierarchical layers, as shown in Figure 2 [50]. 

 

 
 

Figure 2. The social hierarchy of grey wolves, where dominance progressively  
decreases from the highest rank downwards 
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The Alpha (𝛼𝛼) wolf symbolizes the best solution found, leading and coordinating the 
search. The Beta (𝛽𝛽 ) and Delta (𝛿𝛿 ) wolves represent the second-best and intermediate 
solutions, respectively, contributing to the balance between exploration and exploitation [51]. 
All other possible solutions are considered as Omega (𝜔𝜔) wolves, which are the least dominant 
and explored extensively to ensure diversity and prevent premature convergence. Through 
iterative position updates, GWO mimics wolf pack dynamics to efficiently converge toward 
the optimal solution, thereby advancing the search process comprising three key steps: 
encircling, hunting, and attacking prey [52]. During the encirclement phase, wolves gradually 
close in on their target, a strategy mirrored in GWO where search agents progressively 
converge towards the optimal solution, Figure 3. 

 

 
 

Figure 3. Illustrative representation of wolves encircling their prey 

Mathematically, GWO simulates this encirclement by considering two points within an 
n-dimensional search space and updating the position of one point relative to the other. The 
mathematical model for encircling prey is given by [18]: 
 

 𝐷𝐷��⃗ = �𝐶𝐶 ���⃗ × 𝑋𝑋�������⃗ 𝑝𝑝(𝑡𝑡) − �⃗�𝑋𝑤𝑤(𝑡𝑡)�  (12) 
 

 �⃗�𝑋𝑤𝑤(𝑡𝑡 + 1) = �⃗�𝑋𝑝𝑝(𝑡𝑡) − 𝐴𝐴  × 𝐷𝐷��⃗   (13) 
 
Where �⃗�𝑋𝑤𝑤(𝑡𝑡 + 1) represents the subsequent position vector of the wolf at iteration t+1, while 
�⃗�𝑋𝑤𝑤(𝑡𝑡) signifies its current position vector at iteration t and �⃗�𝑋𝑝𝑝(𝑡𝑡) is the position vector of the 
prey (best solution). The coefficient vectors 𝐴𝐴 and 𝐶𝐶, along with the distance vector 𝐷𝐷��⃗  between 
the wolf and prey, influence the wolf's movement. The calculation of vectors 𝐴𝐴 and 𝐶𝐶 proceeds 
according to eq. (14) and eq. (15) [18]: 
 

 𝐴𝐴 = 2 × �⃗�𝑎 × 𝑟𝑟1 − �⃗�𝑎  (14) 
 

  𝐶𝐶 = 2 × 𝑟𝑟2  (15) 
 

The variables 𝑟𝑟1 and  𝑟𝑟2 are derived from the random vectors within the range [0,1], 
whereas �⃗�𝑎 is a vector with identical elements. To simulate the encircling behaviour, the value 
of its elements gradually reduces from 2 to 0 throughout iterations [52]. 

The hunting phase in GWO simulates the collaborative effort of wolves to locate and 
encircle prey. Alpha, Beta, and Delta wolves, representing the top three solutions, guide the 
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pack towards the optimal solution. These leaders, considered to have a superior understanding 
of the search space, direct the remaining wolves (Omega) in their pursuit [51]. By following 
the positions of Alpha, Beta, and Delta, the wolves gradually converge towards the potential 
prey position, mimicking the encirclement behaviour observed in real wolf packs. 

The mathematical model of an individual grey wolf tracking the location of its prey is 
described as follows [52]: 

 
 𝐷𝐷��⃗ 𝛼𝛼 = �𝐶𝐶1 × �⃗�𝑋𝛼𝛼 − �⃗�𝑋�  (16) 

 
 𝐷𝐷��⃗ 𝛽𝛽 = �𝐶𝐶2 × �⃗�𝑋𝛽𝛽 − �⃗�𝑋�  (17) 

 
 𝐷𝐷��⃗ 𝛿𝛿 = �𝐶𝐶3 × �⃗�𝑋𝛿𝛿 − �⃗�𝑋�  (18) 

 
Where 𝐷𝐷��⃗ 𝛼𝛼 , 𝐷𝐷��⃗ 𝛽𝛽 , and 𝐷𝐷��⃗ 𝛿𝛿  denote the distances between 𝛼𝛼 , 𝛽𝛽  and 𝛿𝛿  and other individuals, 
respectively; �⃗�𝑋𝛼𝛼, �⃗�𝑋𝛽𝛽, and �⃗�𝑋𝛿𝛿 denote the current positions of 𝛼𝛼, 𝛽𝛽 and 𝛿𝛿, respectively; 𝐶𝐶1, 𝐶𝐶2, 
and 𝐶𝐶3  are random vectors and �⃗�𝑋 is the current location of the grey wolf. The following 
equations simulate the search process [52]: 
 

 �⃗�𝑋1 = �⃗�𝑋𝛼𝛼(𝑡𝑡) − 𝐴𝐴1 ×  𝐷𝐷��⃗ 𝛼𝛼 (19) 
 

 �⃗�𝑋2 = �⃗�𝑋𝛽𝛽(𝑡𝑡) − 𝐴𝐴1 × 𝐷𝐷��⃗ 𝛽𝛽 (20) 
 

 �⃗�𝑋3 = �⃗�𝑋𝛿𝛿(𝑡𝑡) − 𝐴𝐴1 × 𝐷𝐷��⃗ 𝛿𝛿  (21) 
 
Where �⃗�𝑋1, �⃗�𝑋2 and �⃗�𝑋3 are the positions of Alpha, Beta and Delta wolves, respectively; 𝐴𝐴1, 𝐴𝐴2 
and 𝐴𝐴3 are random vectors satisfying the restrictions of eq. (14). Equations (19), (20) and (21) 
define the step length and direction of ω individuals in the wolf pack toward 𝛼𝛼, 𝛽𝛽 and 𝛿𝛿, 
respectively, and eq. (22) defines the updated position of 𝜔𝜔 [52]. 
 

 �⃗�𝑋(𝑡𝑡 + 1) =
1
3
�⃗�𝑋1 +

1
3
�⃗�𝑋2 +

1
3
�⃗�𝑋3 (22) 

 
In GWO algorithm, the new solution is randomly positioned within the regions defined by 

Alpha, Beta, and Delta, and updated based on these three best solutions, as shown in  
Figure 4a. Compared to other metaheuristics algorithms, GWO stands out due to its 
simplicity, efficiency, and ability to maintain a suitable equilibrium between diversification 
and intensification, making it applicable to various engineering domains [51]. The flowchart 
for the basic GWO algorithm is shown in Figure 4b. 

The GWO algorithm was employed to fine-tune the parameters 𝜎𝜎 and 𝑃𝑃𝑆𝑆, which are pivotal 
in membrane modelling. These parameters describe membrane imperfections and have a 
profound influence on its performance. By leveraging the collaborative strategies of Alpha, 
Beta, and Delta wolves, GWO identifies the optimal parameter values, which enhance the 
accuracy of the membrane transport phenomena and contribute to significant advancements in 
membrane technology and process optimisation. 
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Figure 4. Position updating of the Omega wolf, based on the positions of three  
leading wolves (a), and flowchart for the basic GWO algorithm (b) 

Models implementation and evaluation 
In this study, two advanced bio-inspired metaheuristic algorithms in conjunction with the 

Spiegler-Kedem Model (SKM) were implemented and evaluated to optimise salt rejection in 
NF and RO membranes. Figure 5 schematically shows the two applied algorithms, PSO and 
GWO, each offering unique advantages for enhancing the predictive accuracy and efficiency of 
the SKM. 

The implementation of the SKM-PSO model begins with the initialisation of input data, 
which is processed through the Spiegler-Kedem Model to generate initial predictions. These 
predictions undergo an error evaluation phase, providing necessary feedback to the PSO 
algorithm. The PSO algorithm initialises particles, evaluates them, updates their positions, and 
iteratively searches for the best solution, which optimises the SKM parameters (𝜎𝜎 and 𝑃𝑃𝑆𝑆). This 
optimised solution is then used to produce refined predictions. 

 

 
 

Figure 5. Implementation and optimisation frameworks for SKM-PSO and SKM-GWO models 
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Similarly, the SKM-GWO model follows a parallel structure. Input data are fed into the 
Spiegler-Kedem Model to generate initial predictions, followed by error evaluation. The GWO 
algorithm then initialises a pack of wolves, evaluates them, updates their positions based on 
social hierarchy, and searches for the optimal solution. The best solution obtained is used to 
optimise the SKM parameters, resulting in improved predictive accuracy. 

Both models have been rigorously evaluated to ensure robustness and precision in 
predicting membrane performance. The integration of PSO and GWO with the 
Spiegler-Kedem Model provides a comprehensive approach to membrane modelling, 
leveraging the strengths of metaheuristic optimisation to enhance the accuracy and efficiency 
of salt rejection predictions. 

The statistical indicators used to evaluate the performance of the SKM-PSO approach are: 
the mean absolute error (𝑀𝑀𝐴𝐴𝑀𝑀), the mean squared error (𝑀𝑀𝑆𝑆𝑀𝑀), the root-mean-squared error 
(𝑅𝑅𝑀𝑀𝑆𝑆𝑀𝑀), the normalised objective function (𝑁𝑁𝑁𝑁𝐹𝐹), the Nash-Sutcliffe coefficient (𝑁𝑁𝑆𝑆𝐶𝐶), and 
R-squared values (𝑅𝑅2). The equations used to determine these indicators are given by [53] [54]: 
 

 𝑀𝑀𝐴𝐴𝑀𝑀 =
1
𝑛𝑛
� �𝑅𝑅𝑒𝑒𝑒𝑒𝑝𝑝,𝑖𝑖 − 𝑅𝑅𝑝𝑝𝑝𝑝𝑒𝑒𝑝𝑝,𝑖𝑖�

𝑛𝑛

𝑖𝑖=1
 (23) 

 
 𝑀𝑀𝑆𝑆𝑀𝑀 =

1
𝑛𝑛
� �𝑅𝑅𝑒𝑒𝑒𝑒𝑝𝑝,𝑖𝑖 − 𝑅𝑅�𝑒𝑒𝑒𝑒𝑝𝑝�

2𝑛𝑛

𝑖𝑖=1
 (24) 

 
 

𝑅𝑅𝑀𝑀𝑆𝑆𝑀𝑀 = ��
∑ �𝑅𝑅𝑒𝑒𝑒𝑒𝑝𝑝,𝑖𝑖 − 𝑅𝑅𝑝𝑝𝑝𝑝𝑒𝑒𝑝𝑝,𝑖𝑖�

2𝑛𝑛
𝑖𝑖=1

𝑛𝑛
� (25) 

 
 

𝑁𝑁𝑁𝑁𝐹𝐹 = �
𝑅𝑅𝑀𝑀𝑆𝑆𝑀𝑀
𝑅𝑅�𝑒𝑒𝑒𝑒𝑝𝑝

� (26) 

 
 

𝑁𝑁𝑆𝑆𝐶𝐶 = 1 − �
∑ �𝑅𝑅𝑒𝑒𝑒𝑒𝑝𝑝,𝑖𝑖 − 𝑅𝑅𝑝𝑝𝑝𝑝𝑒𝑒𝑝𝑝,𝑖𝑖�

2𝑛𝑛
𝑖𝑖=1

∑ �𝑅𝑅𝑒𝑒𝑒𝑒𝑝𝑝,𝑖𝑖 − 𝑅𝑅�𝑝𝑝𝑝𝑝𝑒𝑒𝑝𝑝�
2𝑛𝑛

𝑖𝑖=1

� (27) 

 
 

𝑅𝑅2 = 1 − �
∑ �𝑅𝑅𝑒𝑒𝑒𝑒𝑝𝑝,𝑖𝑖 − 𝑅𝑅𝑝𝑝𝑝𝑝𝑒𝑒𝑝𝑝,𝑖𝑖�

2𝑛𝑛
𝑖𝑖=1

∑ �𝑅𝑅𝑒𝑒𝑒𝑒𝑝𝑝,𝑖𝑖 − 𝑅𝑅�𝑒𝑒𝑒𝑒𝑝𝑝�
2𝑛𝑛

𝑖𝑖=1

� (28) 

 
The coefficient 𝑀𝑀𝐴𝐴𝑀𝑀 indicates the average absolute error of the model, regardless of the 

direction of the errors; a lower 𝑀𝑀𝐴𝐴𝑀𝑀 points out better model performance. The 𝑀𝑀𝑆𝑆𝑀𝑀 provides 
an indication of the spread of errors, giving more weight to more significant errors due to 
squaring; a lower 𝑀𝑀𝑆𝑆𝑀𝑀 indicates a better fit between the model predictions and the actual data 
[29]. The 𝑅𝑅𝑀𝑀𝑆𝑆𝑀𝑀 provides a rating for the model error and shows a perfect similarity between 
the values that are observed and those predicted, in case of being equal to 0. For 𝑁𝑁𝑁𝑁𝐹𝐹, when it 
is less than 1, the model error is said to be negligible. The 𝑁𝑁𝑆𝑆𝐶𝐶 ranges from −∞ to 1, and its 
value close to 1 marks that the model performs well. 

DATA, RESULTS AND DISCUSSION 
This section provides an overview of the study area and the specific characteristics of the 

feed water and membranes used in this research. Additionally, the attributes of the NF and RO 
membranes employed in the experiments were detailed, along with the methodology for 
measuring and calculating key performance parameters. 
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Study area: Tan-Tan City, Morocco 
Tan-Tan City, situated in the arid, water-scarce south of Morocco (Figure 6), is an 

important site for understanding the challenges of water desalination due to its proximity to 
brackish water sources [24]. The city experiences significant problems with water salinity, 
which impacts both agricultural activities and the availability of potable water for residents 
[26]. The primary source of water in Tan-Tan comes from the nearby Oued Draâ and coastal 
aquifers, which are prone to saltwater intrusion due to over-extraction and climatic conditions. 

 

 
 

Figure 6. Study area: Tan-Tan City, Morocco 

Tan-Tan is emblematic of the immense regional challenge of balancing water needs for a 
growing population and agricultural demands with the limitations posed by saline water 
sources. The arid local climate, characterised by limited rainfall, intensifies the water scarcity 
challenge. As a result, advanced desalination techniques, such as NF and RO, are indispensable 
for maintaining a sustainable water supply. In an effort to identify the most suitable and 
cost-effective solution, particularly concerning energy efficiency for a long-term water supply 
for Tan-Tan City, and to gain proficiency in new technologies [55], ONEE (Office National de 
l'Électricité et de l'Eau potable) carried out technical and economic studies on various thermal 
and membrane technologies. These studies also examined energy sources such as fossil fuels, 
solar power, gravity, and nuclear energy while considering their long-term environmental 
impacts. 

Tan-Tan faces significant challenges, particularly in managing the high levels of Total 
Dissolved Solids (TDS) in the water, which often exceed WHO safety standards for drinking 
water [27]. Addressing these issues necessitates the deployment of effective desalination 
technologies and strategies for sustainable water management. Pilot studies and research in 
Tan-Tan are focused on optimising membrane technologies to lower salinity levels and ensure 
a consistent supply of safe drinking water. 

This description provides a detailed overview of Tan-Tan City as a study site, underscoring 
the critical role of desalination research in addressing the dual challenges of water scarcity and 
salinity. 
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Characteristics of the feed water 
The characteristics of the feed water of Tan-Tan City (Table 1) can be obtained from 

ONEE. The pH measurement of 7.9 indicates that the water is slightly alkaline, which can 
impact its chemical behaviour and compatibility with certain materials. Temperature is an 
important parameter to monitor as it can influence various water properties and reactions. With 
a recorded temperature of 27.0 °C, the water is within a typical range for ambient conditions. 

The concentrations of specific ions in the water, such as chloride (1287−1349) ppm, 
calcium 270 ppm, magnesium 115 ppm, sodium (595−761) ppm, potassium 19 ppm, and 
sulphate 500 ppm, provide insights into its chemical composition. These ions play crucial roles 
in various chemical reactions and processes, including membrane filtration and desalination. 
Table 1 shows that several parameters of water quality exceed both WHO (World Health 
Organisation) and Moroccan standards for drinking water. Specifically, TDS and ion 
concentrations Na+, SO4

2-, and Cl- are high, indicating a need for desalination. 
Overall, these detailed analytical results provide valuable information about the feed water 

used in the experiments, enabling researchers to assess its suitability for membrane filtration 
studies and evaluate potential challenges or considerations during the experimental process. 

 
Table 1. Feed water characteristics compared with Moroccan and WHO standards [26] 

 Tan-Tan feed water Moroccan standards WHO standards 
T [°C] 27 - 25 

pH 7.9 6.0–9.2 6.5–8.5 
TDS [ppm] 3300 <1000 <1000 
Cl- (ppm] 1287 <250 <250 

NO3- [ppm] 20 <50 <50 
F- [ppm] 1.1 1.5 0.5–1.5 

SO4
2- [ppm] 500 200 250 

Ca2+ [ppm] 270 <500 <270 
Mg2+[ppm] 115 100 <50 
Na+ [ppm] 595 <200 <200 
K+ [ppm] 19 - 10 

Characteristics of nanofiltration and reverse osmosis membranes 
This study investigated three nanofiltration membranes (NF90, NF200 and NE90) and one 

reverse osmosis membrane (BW30LE). Table 2 outlines the key characteristics of the 
membranes utilised in the experimental setup. The membranes vary in their Molecular Weight 
Cut-Off (MWCO) values, which determine the size of the particles or molecules that can pass 
through the membrane. Additionally, the surface area of each membrane module is provided, 
indicating the available area for filtration processes. Notably, three of the membranes are made 
of polyamide, a commonly used material known for its robustness and effectiveness in 
membrane filtration applications, while the NF200 membrane is made of cross-linked poly 
piperazine amide with sulfonated functional groups. 

Before filtration, the membranes were immersed in ultrapure water for 24 hours at 4 °C to 
eliminate preservatives. Each membrane was then pressurised with pure water for 15 min at 4 
bar until the permeate conductivity stabilised below 1 µS/cm. Following each run, the 
membranes underwent cleaning procedures using alkaline and acidic solutions as per the 
manufacturer's recommendations. These cleaning protocols are necessary for maintaining 
membrane performance and prolonging their operational lifespan by removing fouling agents 
and restoring permeability. Overall, the selection and characterisation of membranes are 
crucial steps in designing and conducting membrane filtration experiments, ensuring accurate 
and reliable results in salt rejection studies. 
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Table 2. Membranes characteristics 

Membrane Manufacturer Material MWCO [Da] Surface area [m2] 
BW30LE Dow (Filmtec) Polyamide 187 7.6 

NF200 Dow (Filmtec) Poly piperazine amide 
sulfonated 401 7.6 

NE90 Saehan Polyamide 254 7.6 
NF90 Dow (Filmtec) Polyamide 213 7.6 

 
Salt rejection efficiency is a critical aspect of membrane filtration systems, particularly in 

applications such as water purification and desalination. By analysing the effects of key 
operational parameters, valuable insights can be gained into membrane performance and 
selectivity based on the available data collected from the literature (e.g., [24] [26] [27]). In the 
following subsections, the research results are presented, and a deep analysis of the findings is 
conducted to explore how different operating parameters affect salt rejection efficiency. 
Moreover, the application results for the Spiegler-Kedem thermodynamic model are 
highlighted, as well as the results of the optimisation by PSO and GWO algorithms. 

Impact of operational parameters on salt rejection efficiency 
Figure 7 presents the experimental data of the Tan-Tan water permeate flux as a function 

of transmembrane pressure for the four tested membranes. 
The fluxes exhibited a pronounced linear increase with pressure, which is a common 

observation in membrane filtration processes due to the proportional relationship between 
driving force and flux. For the NF membranes, the permeate fluxes were significantly higher 
compared to the RO membrane. This difference can be attributed to the larger pore size and 
lower selectivity of NF membranes, allowing for higher water permeability. Among the NF 
membranes tested, NF90 and NE90 achieved the highest fluxes. These membranes are 
designed for high permeability, making them suitable for applications requiring high water 
throughput. On the other hand, the NF200 membrane showed the lowest flux among the NF 
membranes tested. This low flux could be due to NF200 design characteristics, such as a tighter 
membrane structure or different material properties, which result in reduced water 
permeability. 
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Figure 7. Effect of transmembrane pressure on the permeate flux in Tan-Tan water 

The hydraulic permeability 𝐿𝐿𝑃𝑃) of the saline solution was determined from the slope of the 
linear plot, while the x-intercept gave the critical pressure 𝑃𝑃𝑐𝑐 when the transmembrane pressure 
equals the osmotic pressure. Table 3 provides a summary of the 𝐿𝐿𝑃𝑃  and 𝑃𝑃𝑐𝑐  values for all 
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membranes tested with Tan-Tan brackish water, and Figure 8 presents the measurement 
results. 

The 𝑃𝑃𝑐𝑐 of the RO membrane was approximately two to three times higher than that of the 
nanofiltration membrane. This difference is attributed to the higher rejection rates and the 
correspondingly greater osmotic pressure differential across the RO membrane. Flux was 
detected at pressures below 1 bar. NF membranes offer the advantage of partial 
demineralisation, which is linked to a lower impact of osmotic pressure on hydraulic 
permeability compared to RO membranes. This has been expected since the concentration 
difference across the NF membrane is lower, resulting in reduced osmotic pressure effects. 
Consequently, NF membranes demonstrate higher flux rates under lower pressures compared 
to RO membranes. 

 
Table 3. Hydraulic permeability 𝐿𝐿𝑃𝑃 and critical pressures 𝑃𝑃𝑐𝑐 to Tan-Tan water  

Membranes 𝐿𝐿𝑃𝑃 [m·s-1·bar-1]  𝑃𝑃𝑐𝑐 [bar] 
BW30LE 0.97 2.07 

NF200 1.62 1.13 
NE90 2.11 0.5 
NF90 2.23 0.65 
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Figure 8. Total salinity rejection at 15% Recovery Rate 

Figure 8 depicts the evolution of total salinity rejection measurements as a function of 
transmembrane pressure for the four tested membranes at a 15% recovery rate. This 
comprehensive comparison demonstrates the efficacy of each membrane under consistent 
operational conditions. In general, at a specific operating pressure and conversion rate, the 
order of total salt rejection for the membranes studied was as follows: BW30LE > NF90 > 
NE90 > NF200. As the pressure increases, the salt rejection improves because the higher 
pressure enhances the selectivity of the membrane for water over salt ions. This is due to the 
increased hydraulic pressure overcoming the osmotic pressure, which tends to draw salt 
through the membrane. Consequently, at higher pressures, more water molecules pass through 
the membrane while the salt ions are retained. However, at very high pressures, the marginal 
gains in salt rejection can diminish, highlighting the need for an optimal operating pressure to 
balance permeate flux and salt rejection effectively. 
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Model application and parameter optimisation results 
The optimisation process involved minimising the objective function, which quantifies the 

difference between the model-predicted rejection rates and the experimental data. By 
iteratively adjusting the model parameters, PSO and GWO efficiently searched the parameter 
space to find the optimal 𝜎𝜎 and 𝑃𝑃𝑆𝑆  values that minimised the cost function. The objective 
function 𝑁𝑁𝑃𝑃𝑂𝑂𝐹𝐹(𝑥𝑥) for PSO and GWO optimisation [56] can be formulated as follows: 
 

𝑁𝑁𝑃𝑃𝑂𝑂𝐹𝐹(𝑥𝑥)𝑃𝑃𝑆𝑆𝑃𝑃/𝐺𝐺𝐺𝐺𝑃𝑃 = ���𝐽𝐽𝑖𝑖
𝑒𝑒𝑒𝑒𝑝𝑝 − 𝐽𝐽𝑖𝑖
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𝑛𝑛
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 (29) 

 
Where 𝐽𝐽𝑖𝑖

𝑒𝑒𝑒𝑒𝑝𝑝and 𝐽𝐽𝑖𝑖
𝑝𝑝𝑝𝑝𝑒𝑒 are the experimental and predicted water fluxes, while 𝑅𝑅𝑖𝑖

𝑒𝑒𝑒𝑒𝑝𝑝 and 𝑅𝑅𝑖𝑖
𝑝𝑝𝑝𝑝𝑒𝑒 are 

the experimental and predicted salt rejections, respectively. The variable 𝑥𝑥 represents the set of 
parameters 𝜎𝜎 and 𝑃𝑃𝑃𝑃 that the PSO and GWO algorithms adjust to minimise the objective 
function. 

Both optimisation techniques demonstrated robust performance in calibrating the SKM 
parameters, enhancing the model's accuracy and reliability in predicting membrane behaviour 
under various operating conditions. Figure 9 shows the predicted total salinity rejection 
percentages at a 15% recovery rate as a function of permeate flux for four experimental 
membranes, using the SKM-PSO and SKM-GWO approaches and the experimental data for 
comparison. 
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Figure 9. Experimental and predicted values of total salinity rejection at a 15% recovery rate 

The SKM-PSO and SKM-GWO predictions demonstrate the simulated rejection 
percentages derived from the Spiegler-Kedem Model parameters optimised using PSO and 
GWO algorithms. These predictions serve as theoretical representations of membrane 
performance, aiming to capture the underlying mechanisms governing salt rejection. 
Generally, a consistent trend is observed between the experimental data and the predictions of 
the SKM-PSO and SKM-GWO approaches across all membranes. This consistency indicates 
that the optimised Spiegler Kedem model adequately captures the salt rejection behaviour of 
the membranes under investigation. 

As permeate flow increases, the rejection percentage tends to be asymptotic in the range of 
measurement. This phenomenon is expected and can be attributed to concentration 
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polarisation effects and membrane fouling, which become more pronounced at higher 
permeate fluxes. Noticeable differences in rejection percentages among the different 
membranes, both in the experimental data and model predictions, highlight variations in 
membrane properties, such as pore size, surface charge, and selectivity, which influence salt 
rejection efficiency. 

Both SKM-PSO and SKM-GWO approaches effectively capture the complex transport 
phenomena during membrane filtration. The agreement between the experimental data and 
the SKM-PSO and SKM-GWO predictions reinforces the reliability of the models in 
predicting salt rejection behaviour under varying operational conditions. The close alignment 
between the experimental data and the models demonstrates the robustness of the 
optimisation techniques in fine-tuning the Spiegler-Kedem model parameters to match 
experimental observations. 

Furthermore, the optimised parameters, including solute permeability 𝑃𝑃𝑆𝑆 and reflection 
coefficient 𝜎𝜎, obtained for a 15% recovery rate for each membrane, have been compiled in 
Table 4. These parameters are crucial indicators of membrane performance and play a 
significant role in governing salt rejection efficiency under different operational conditions. 
On the other hand, the comparison between the SKM-PSO and SKM-GWO approaches 
indicates that both optimisation techniques provide valuable insights into membrane 
performance, each excelling in different aspects, such as convergence rates and accuracy. 
Notably, the SKM-GWO model demonstrates superior accuracy and faster convergence rates 
compared to the SKM-PSO model, highlighting its effectiveness in optimising the 
Spiegler-Kedem model parameters for predicting salt rejection in membrane-based separation 
processes. 

 
Table 4. Parameters optimised using PSO and GWO methods 

Algorithms PSO  GWO  
Parameters 𝜎𝜎 𝑃𝑃𝑆𝑆 (×10-6) 𝜎𝜎 𝑃𝑃𝑆𝑆 (×10-6) 
BW30LE 0.89 0.2 0.91 0.28 

NF200 0.38 6.29 0.35 4.86 
NE90 0.73 2.27 0.74 2.52 
NF90 0.82 1.05 0.85 1.51 

 
The statistical calculations yield favourable results, with a low 𝑅𝑅𝑀𝑀𝑆𝑆𝑀𝑀, indicating close 

agreement between predicted and observed values. Additionally, the 𝑁𝑁𝑁𝑁𝐹𝐹 registers below 1, 
affirming the models' efficacy in fitting the data. Moreover, the 𝑁𝑁𝑆𝑆𝐶𝐶 near 1 underscores the 
models' capability to replicate observed values closely. Furthermore, the 𝑀𝑀𝐴𝐴𝑀𝑀  and 𝑀𝑀𝑆𝑆𝑀𝑀 
complement these findings, contributing to the evidence that the approach performs 
effectively. For all membranes, the 𝑅𝑅2 values obtained using the SKM-PSO algorithm are 
consistently lower compared to those obtained with the SKM-GWO algorithm. This situation 
indicates that the SKM-GWO approach provides more accurate predictions of salt rejection 
percentages (Figure 10). 

Finally, both models used permit a rapid assessment of salt rejection in Tan-Tan City and 
can help ensure the safety of the water supply against excessive salinity. They calculate salt 
rejection adequately even at pressures where field measurements are unavailable and can be 
considered as a tool for supporting decision-making. 
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Figure 10. Parity plot comparing calculated vs. measured salt rejection with statistical criteria of 
parameters estimated using PSO and GWO methods for all membranes at a 15% Recovery Rate 

CONCLUSION 
This study presents a comprehensive investigation into the modelling of salt rejection using 

NF and RO membranes. By integrating the Spiegler-Kedem model with PSO and GWO 
algorithms, a robust framework has been achieved for predicting salt rejection behaviour with 
enhanced accuracy and precision. Predicted results by models showed good agreement with 
field measurements. The models' performances were assessed using six different statistical 
criteria 𝑀𝑀𝐴𝐴𝑀𝑀 , 𝑀𝑀𝑆𝑆𝑀𝑀 , 𝑅𝑅𝑀𝑀𝑆𝑆 , 𝑁𝑁𝑁𝑁𝐹𝐹 , 𝑁𝑁𝑆𝑆𝐶𝐶 , and 𝑅𝑅2 . Both models performed satisfactorily in 
predicting salt rejection of the Tan-Tan City water. However, the comparison between the 
SKM-GWO and SKM-PSO approaches showed that the former performed better in terms of 
accuracy and reliability. Furthermore, experimental results indicate that the NF90 membrane 
demonstrated higher retention capabilities, with total salinity retention between 75% and 90%. 
The developed models offer practical implications for water treatment plants, particularly in 
regions prone to salinity issues. They provide a valuable tool for assessing and optimising salt 
rejection processes, thereby ensuring the safety and sustainability of water resources. 

On the other hand, by continuing to innovate and refine such models, it is possible to pave 
the way for more efficient and sustainable solutions to global water scarcity and pollution 
challenges. The model outputs provide a foundation for future research aimed at optimising 
membrane desalination processes, improving predictive accuracy in salt rejection modelling, 
and advancing the integration of artificial intelligence techniques, particularly machine 
learning, which uses a minimum amount of input parameters. The models can contribute to the 
development of desalination strategies. 
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NOMENCLATURE 

Symbols 
𝑅𝑅 Membrane rejection [%] 
𝐽𝐽𝑝𝑝 / 𝐽𝐽𝑆𝑆 / 𝐽𝐽𝑣𝑣  Permeate flux / Solute flux / Water flux [m·s-1] 
𝐶𝐶𝑝𝑝 Solute concentration in the permeate [mol·L-1] 
𝐶𝐶𝑓𝑓 Solute concentration in the feed solution [mol·L-1] 
𝐶𝐶𝑚𝑚 Solute concentration within the membrane [mol·L-1] 
𝑄𝑄𝑝𝑝 Volumetric permeate flux [m3·s-1] 
𝑆𝑆 Membrane's active surface area [m2] 
𝐿𝐿𝑃𝑃 Hydraulic permeability of the membrane [m·s-1·bar -1] 
∆𝑃𝑃 Transmembrane pressure [bar] 
∆𝛱𝛱 Difference in osmotic pressure across the membrane [bar] 
𝑃𝑃𝑆𝑆 Solute permeability [m·s-1] 
∆𝑥𝑥 Membrane thickness [m] 
𝜎𝜎 Reflection coefficient  
𝑌𝑌 The recovery rate  [%] 
𝑁𝑁𝑃𝑃𝑂𝑂𝐹𝐹(𝑥𝑥) The objective function  
𝐽𝐽𝑖𝑖
𝑒𝑒𝑒𝑒𝑝𝑝 / 𝐽𝐽𝑖𝑖

𝑝𝑝𝑝𝑝𝑒𝑒  The experimental / predicted water flux  [m·s-1] 
𝑅𝑅𝑖𝑖
𝑒𝑒𝑒𝑒𝑝𝑝 / 𝑅𝑅𝑖𝑖

𝑝𝑝𝑝𝑝𝑒𝑒 The experimental / predicted salt rejection [%] 

Abbreviations 
NF Nanofiltration  
RO Reverse Osmosis  
PSO Particle Swarm Optimisation  
GWO Grey Wolf Optimisation  
SKM Spiegler-Kedem Model  
TDS Total Dissolved Solids  
WHO World Health Organisation  
ObjF Objective Function  
ONEE National Office of Electricity and Potable Water  
MWCO Molecular Weight Cut-Off   
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