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ABSTRACT 

The Urban Wastewater Treatment Directive 91/271/EEC introduced a series of measures 

for the purpose of protecting the environment from the adverse effects of effluent 

discharge from wastewater treatment plants. There are environmental costs associated 

with attaining the required level of water quality set out in the directive such as 

greenhouse gas emissions due to energy production, and ecotoxicity from sludge 

application to land. The goal of this study is to assess the environmental costs in an Irish 

context, focusing specifically on the effects of variation in scale and discharge limitation. 

Life cycle assessment is the analytical tool used to evaluate the environmental impact. 

The life cycle impact assessment methodology developed by the Centre of 

Environmental Science, Leiden University (2010) has been adopted and implemented 

using GaBi 6.0 life cycle assessment software. Two plants of varying size and location 

were chosen for the study. The study found that energy consumption and sludge 

application to land are the largest contributors to the overall environmental impact 

associated with the treatment process at both plants. Economies of scale were observed in 

energy usage during secondary aeration. 

KEYWORDS  

Wastewater treatment, Life cycle assessment, Energy, Sludge disposal, Anaerobic 
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INTRODUCTION 

On the 21
st
 of May 1991 the then European Economic Community (EEC) issued the 

91/271/EEC Urban Wastewater Treatment Directive (UWWTD) that would set in motion 

a series of reforms to protect the environment from the adverse effects of effluent being 

discharged from Wastewater Treatment Plants (WWTPs) [1]. The directive made 

recommendations on the collection, treatment, and discharge of urban waste water. One 

of the key recommendations made in the directive is that WWTPs serving 

agglomerations greater than 2,000 PE
†
 discharging final effluent into freshwater and 

estuaries, and all other agglomerations greater than 10,000 PE are to employ secondary 

treatment
‡
. This requirement presented local and national authorities with the challenge 

of firstly assessing the state of their respective sewage systems, before bringing standards 

to required levels.   

In Ireland it is the responsibility of the Environmental Protection Agency (EPA) to 

enforce the measures outlined in 91/271/EEC. In 2013 the EPA initiated a research 

project to benchmark the energy and resource efficiency of WWTPs in Ireland. The 

project involved four different approaches: development of a benchmarking tool, process 

auditing and optimization, exergy analysis and environmental performance assessment.  

It is the findings from the latter of these four approaches that is the subject of this study. 

The advancement of environmental awareness at both societal and policy-making 

level over the last two decades has brought with it the need for appropriate tools to 

analyse products and systems for sustainability and environmental impact. A range of 

tools have been developed for this purpose such as: 

 Environmental Risk Assessment (ERA) [3]; 

 Environmental Impact Assessment (EIA); 

 Ecological footprint [4]; 

 Exergy Analysis (EA) [5]. 

It should be noted that the application of exergy analysis to assess environmental 

impact of a product or system is a relatively new concept and is currently the subject of 

much debate between those that advocate its use in this context [6], and those who do not 

[7]. Life Cycle Assessment (LCA) is an analytical tool that allows for a holistic approach 

to assessing the environmental performance of a product or system from cradle to grave 

[8]. It has been widely accepted as a decision support tool for government bodies, 

environmental authorities, and areas of the private sector [9]. The use of LCA is 

particularly suited to WWTP analyses due to the nature of the relationship between a 

plant’s technosphere and the surrounding ecosphere. Indeed, there has already been a 

variety of LCA studies carried out on WWTPs, each with their own unique set of 

objectives, but with the common underlying theme of seeking to quantitatively and 

qualitatively assess environmental impact. 

The application of LCA to a wastewater treatment plant or system was first reported 

in The Netherlands in 1997. The study carried out by Roeleveld et al. [10] examined the 

environmental sustainability of wastewater treatment. The study concluded that 

improvements in the environmental performance of wastewater treatment should focus 

on minimizing effluent discharge pollutants, and sludge production. Since then, there 

have been over forty studies published in peer reviewed journals [11]. Much of the earlier 

                                                 
†
 1 PE (person equivalent) is estimated to be 0.2 m

3
 of waste water influent and 60 g of BOD (bio-

logical oxygen demand) [2] 
‡
 “Secondary treatment means treatment of urban waste water by a process generally involving 

biological treatment with a secondary settlement.”  



Journal of Sustainable Development of Energy, Water  
and Environment Systems 

Year 2016 
Volume 4, Issue 3,  pp 216-233  

 

218 

work that was carried out involved assessing the environmental impact of variations in 

system parameters such as: 

 System configuration [12]; 

 System boundaries and scale [13]; 

 Structural changes [14]; 

 Competing technologies for large [15] and small scale plants [16]. 

Other LCA studies examined wastewater reclamation and reuse alternatives [17]. 

As the body of work in this area increased some common findings began to emerge. 

Firstly, the environmental loading associated with energy production for use in the 

treatment process was found to be one of the main contributors to the overall 

environmental profile of treatment plants and systems [16], with particular emphasis on 

global impact categories such as global warming and acidification. This is contrary to the 

findings in the earlier work by Roeleveld et al. [18] who concluded that electricity use 

had a negligible impact. However, the results of the study were normalised with Dutch 

normalization factors that output the electricity use as a percentage of the overall 

electricity use of The Netherlands. It is not a surprise that the environmental impact from 

energy use can vary between studies. The magnitude of impact is not only dependant on 

the amount of energy used, but also on the way the energy is generated. For example, the 

impact from electricity generation in Norway where over 90% is hydro-electric power 

will be much less than that of Italy where over 60% of electricity is generated from fossil 

fuels [19].   

The second significant finding was the impact resulting from sludge disposal. Much 

like the impact from energy generation, it is the mode of sludge disposal that dictates both 

the magnitude and the type of impact incurred. Traditionally, methods of sludge disposal 

in Europe have been either by application to agricultural farmland, incineration, or by 

landfill. In relation to the latter, the EU Directive on the landfill of waste (1991/31/EEC) 

recommends a reduction in the quantities of sewage sludge going to landfills [20], and in 

some countries such as Sweden the practice has been banned completely since 2005 [21]. 

The LCA study carried out by Pasqualino et al. [22] that examined several sludge 

disposal options concluded that land fill was the worst scenario.  This finding was echoed 

by Houillon and Jolliet [23] who also include agricultural application as one of the least 

desirable methods of sludge disposal from a global warming perspective, and claim that 

incineration in cement kilns is preferable.  Conversely, Lundin et al. [24] expanded the 

impact assessment of sludge disposal options to include more impact categories than just 

global warming and found that incineration had environmental restrictions. The debate 

on sludge disposal is ongoing.  

Quite often the metric used to assess the performance of a WWTP is the percentage 

reduction of influent pollutants such as: 

 Biochemical Oxygen Demand (BOD); 

 Chemical Oxygen Demand (COD); 

 Total Suspended Solids (TSS); 

 Total Nitrogen (TN); 

 Total Phosphorus (TP). 

 While control of these parameters is necessary for compliance with the regulations, it 

affects only eutrophication and aquatic toxicity, and there are many other environmental 

factors involved that must be taken into account such as global warming resulting from 

energy production and toxicity resulting from sludge disposal. In more recent times there 

has been a paradigm shift from considering not only water quality and human health, but 

also energy and resource recovery during wastewater treatment [11]. A common finding 

throughout many of the published LCA studies of wastewater treatment plants and 
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systems is that there are trade-offs, where reducing the load in one impact category 

increases the loading in another.   

This paper seeks to further expand the knowledge of WWTP analysis by examining 

the environmental loadings of two WWTPs in Ireland and add to the body of work that 

has been carried out around the rest of the Europe. To the best of the author’s knowledge, 

this is the first study of this type on the island of Ireland.  

GOAL AND SCOPE DEFINITION 

This study is part of a larger project that aims to assess the energy and resource 

efficiency of WWTPs in Ireland. The main goal of the LCA component of the project is 

to quantify the environmental loading that results from reaching the effluent quality 

standards set out in 91/271/EEC. The specific goal of this paper is to assess the 

environmental costs or gains associated with variations in plant size and location. It has 

been reported in previous studies by Tillman et al. [12] and Lundin et al. [13] that there 

are economies of scale to be achieved in terms of environmental impact, however, this 

claim has never been investigated from an Irish perspective. The variation in plant 

location focuses mainly on the effects of differences in discharge limitations.   

Functional unit 

The choice of functional unit is one of the most critical aspects of an LCA. Baumann 

and Tillman [8] define the functional unit as corresponding to a reference flow to which 

all other flows of a system are related. There is some variance of opinion in the literature 

as to what the most suitable functional unit for this type of study should be: m
3
 of 

influent, PE or volume of sludge produced. Volume of treated wastewater per unit time 

has been suggested by Suh and Rousseaux [25] to be the most appropriate choice as it is 

based on realistic data. However, Corominas et al. [11] argue that this is not always 

representative, because it may not give a true indication of the pollutant removal 

efficiency of a WWTP. Volume of sludge produced has also been suggested [26], 

although it could be argued that this metric is secondary to the primary function of a 

WWTP. Population equivalence has been chosen as the function unit by several LCA 

practitioners [12, 13, 16], the rationale being that it allows comparisons between plants. 

However, care must be taken when defining PE as there are two quantities being referred 

to: volume of influent and mass of organic loading. In this study PE refers to the 

hydraulic definition of 0.2 m
3
 of wastewater. 

Boundaries 

It has been documented by other LCA practitioners that the construction phase of a 

WWTP’s life cycle is negligible compared to the operation and maintenance phase [12, 

13], and as such has been omitted from the analysis. The delivery of influent has not been 

included in the analysis as delivery systems can vary, thus leading to unfair comparisons 

of plant efficiency, and therefore the “gate-to-grave” practice has been adopted for the 

delivery of the influent, whereby the “gate” is deemed to begin where the influent 

physically enters the WWTP domain. Many LCA studies extend the boundaries of their 

systems to include the production of mineral fertilizers so as to include nitrogen and 

phosphorus in the sludge applied to land as avoided products [27, 28]. However, in a 

study carried out by Renou et al. [29], it is stated that mineral fertilizers are spread on 

growing crops, and that due to safety concerns sludge is applied to the land before crop 

growth. Therefore, the sludge cannot be deemed to have the same fertilizing effect.  

Consequently, nitrogen and phosphorous in sludge outputs have not been included as 

avoided products. 
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PLANT DESCRIPTIONS 

Plant A is the largest and most sophisticated of the two plants under study. It has a 

design capacity of 186,000 PE and a dry weather flow of 35,000 m
3
/day. The plant is 

situated on the coast and releases its final effluent through a long sea outfall where the 

waters are deemed to be non-sensitive, thus avoiding the need for nutrient reduction. The 

SCADA system used at the plant is bespoke and state of the art. All aspects of process 

control take place at the hub of the SCADA system. Figure 1 shows the treated influent 

flow line for the plant.   

 

 
 

Figure 1. Plant A treated influent flow line 

 

The sludge line is as shown in Figure 2. Primary and secondary sludge go through a 

series of dewatering and thickening processes, and are then mixed prior to being sent to 

anaerobic digesters. The sludge is brought to 22% solids concentration before being sent 

off-site to an external composting company.  

 

 
 

Figure 2. Plant A sludge line 

 

Plant B has a design capacity of 50,000 PE serving a current agglomeration of  

37,500 PE. The plant also accepts industrial sludge from the surrounding area as well as 

the sludge outputs from the smaller rural plants. The flow for the plant is shown below 

(Figure 3). The plant is equipped with anaerobic digesters and biogas storage facilities, 

but the plant operators were having difficulties running the digesters effectively and they 

were out of commission during the study period. The sludge outputs from the plant are 

sent to a sludge management company that stabilizes the sludge with lime before sending 

it for application to farmland. 

 

 
 

Figure 3. Plant B influent flow and sludge flow lines 
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DATA 

Data quality  

The data quality of an LCA will ultimately determine the level of meaningfulness and 

transparency in a study. Direct collection and analysis of data is always the most 

preferred level of quality but not always the most practical or even possible. In this 

project a selection of data has been collected from the literature and a number of 

estimations have had to be made where gaps in direct, on-site data existed. Table 1 

outlines the data sources used in the study. In general, the data for plant A is of a higher 

quality than that of plant B. Plant A in its current form is less than 3 years old. It has a 

bespoke, state-of-the-art SCADA system that monitors almost all aspects of plant 

operation. Sampling of influent, primary effluent and final effluent for BOD5, COD and 

TSS are carried out daily. Sludge outputs are recorded as well as biogas produced from 

Anaerobic Digestion (AD). Electricity consumption is recorded and can also be quan-

tified at a subsystem level – inlet works, biological reactors, sludge treatment, outfall 

pumping and utilities have individual metering. All of the upstream data such as 

electricity and chemical production is supplied by PE International. Electricity and 

natural gas production reflects Ireland’s electricity grid and natural gas mix respectively, 

but chemical production is based on European averages. Downstream data – energy and 

resource consumption data, emissions data – for the composting company used by plant 

A were not available; therefore the main pollutants in the sludge leaving the plant 

(nitrogen, phosphorus, heavy metals) were considered to end up in soil regardless of 

dilution post composting. The author recognises that this is a broad assumption, but a full 

LCA of the composting company is outside the scope of this stage of the project. 

 
Table 1. Sources of data used in the LCA 

 

Site specific data Plant A Plant B 
Influent flow Plant operators – measured Based on plant 

agglomeration Effluent flow Plant operators – measured EPA data – measured 

BOD, COD, TSS Plant operators – measured EPA data – measured 

Total N, total P EPA data – average EPA data – measured 

Influent heavy metals EPA data – average EPA data – measured 

Sludge output volume Plant operators – measured EPA data – average 

Sludge dry solid 

concentration 
Plant operators – measured Estimated – based on plant 

Sludge heavy metals Literature [31]  

Electricity consumption Plant operators – measured Plant operators – measured 

Biogas production Plant operators – measured N/A 

Natural gas consumption Plant operators – measured N/A 

Chemical consumption Plant operators – measured Estimated 

Upstream/downstream 

data 

  

Electricity production PE International PE International 

Chemical production PE International PE International 

Natural gas production PE International PE International 

Diesel refinement PE International PE International 

 

The flow data for plant B are supplied mainly from the data collection carried out by 

the EPA as part of its compliance with 91/271 for the year 2012. This data includes; 

levels of BOD5, COD, TSS, TN and TP, as well as heavy metal concentrations in influent 

and effluent. It also includes details of sampling frequency and quality. Other data for the 
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plant was estimated or taken from the literature. As with plant A, all of the upstream and 

downstream data such as electricity and chemical production is supplied by PE 

International. Both plants employ solid waste compressors to reduce volume, but neither 

plant could provide meaningful data for quantities of solid waste disposal.   

The impact of land-use has not been included in these analyses. The issue of how to 

model land-use in terms of inventory and characterisation is an area of fervent debate in 

the LCA community [30]. Significant uncertainties exist regarding temporal and spatial 

variabilities. In addition to this, the lack of site-specific solid waste data meant that there 

would have to be broad assumptions made regarding the impact of land-use, and the 

author felt that this would reduce the quality of the results. 

RESULTS 

Life cycle inventory 

The Life Cycle Inventory (LCI) is a compilation of all of the inputs and outputs of the 

system up to the established boundary limits. The data shown below in Table 2 are the 

average values of the key metrics used in the study. It would not be practical to present 

the full LCI due to the large volume of data. The influent pollutant concentrations at both 

plants are similar. Plant A experiences higher TSS, BOD5 and TP concentrations than 

plant B, but lower COD and TN concentrations. 

 
Table 2. Selection of data from the life cycle inventory 

 

Inputs Plant A Plant B 

Influent [m
3
/year] 10,844,150 4,743,605 

BOD5 [mg/l] 184 175 

COD [mg/l] 377 400 

TSS [mg/l] 263.3 166 

TN [mg/l] 38.15 41.4 

TP [mg/l] 8.25 5.14 

NH3 29.11 - 

Electricity [kWh/year] 5,299,500 3,376,844 

Ferric chloride [kg/m
3
 influent] 0.008 0.036 

Outputs   

BOD5 [mg/l] 5.1 10.97 

COD [mg/l] 34.8 32.2 

TSS [mg/l] 10.1 8.76 

TN [mg/l] 14.42 20.89 

TP [mg/l] 3.15 0.54 

NH3 1.11 1.2 

Sludge [kg-ds/year] 1,047,012 665,202 

 

The discharge limitations for both plants are presented in Table 3. Plant B releases its 

final effluent to a freshwater body and as such is subject to more stringent discharge 

limitations than plant A. Despite this, plant A exhibits a high level of effluent quality, and 

even surpasses plant B in BOD5 and TN reduction even though there is no requirement 

for TN reduction at plant A. The effluent ammonia concentrations at plant A were also 

lower; however there were no recorded influent ammonia data for plant B, thus, it cannot 

be assumed that plant A has a better removal efficiency of ammonia. Plant A had a lower 

sludge output per unit of influent treated, 0.09 kg-ds/m
3
 of influent treated compared with 
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0.14 kg-ds/m
3
 at plant B. The breakdown of energy use is discussed separately in the 

following section. 

 
Table 3. Final effluent discharge limitations for both plants 

 

Discharge parameter Plant A Plant B 

pH - 6-9 

Temperature - 25 °C (max) 

cBOD 25 mg/l 13 mg/l 

COD 125 mg/l 100 mg/l 

TSS 35 mg/l 35 mg/l 

Total Nitrogen (TN) - 15 mg/l 

Total Phosphorous (TP) - 1 mg/l 

Ammonia - 3 mg/l 

Energy 

Plant A consumes 36 kWh/PE year, 60% of which is supplied by the national 

electrical grid and 40% is generated by the Combined Heat and Power (CHP) plant. Of 

the 40% of power produced by the CHP plant, 75% of the energy comes from natural gas 

and the remaining 25% is generated from biogas produced by anaerobic digestion of the 

sludge, which provides 10% of the total energy consumption of the plant. Plant B 

consumes 52 kWh/PE year, all of which comes from the national grid. Figure 4 shows the 

percentage consumption per process of both plants. Data for plant B were limited to 

metering of the biological reactors and the total plant consumption. The biological 

reactors at plant B account for 75% of the total plant energy consumption. The biological 

reactors at plant A account for just 30% of energy consumption. Sludge treatment was the 

largest consumer of energy at plant A at 37%. However sludge treatment at plant A 

consists of an extensive series of thickening and dewatering processes, a vast odour 

extraction system, as well as two mesophilic anaerobic digesters. The inlet works which 

includes pre-screening, grit removal and primary sedimentation account for 26% of the 

total energy.    

 

 
Figure 4. Process breakdown of energy expenditure. The biological reactors in plant B account 

for 75% of total energy consumed. Sludge treatment consumes the most energy at plant A with 

37% of the total 

LIFE CYCLE IMPACT ASSESSMENT 

Methodology 

The format used in this study follows the procedure set out by the ISO 14040 series of 

standards [32-35], and references guidelines on the standards published by Guinée et al. 

[36]. The software chosen for the project was GaBi 6.0. The GaBi database provided by 

PE International contains inventory data for many of the WWTPs upstream processes 

0% 20% 40% 60% 80% 100% 

Plant A 

Plant B 
Biological Reactors 

Pre & Primary Treatment 

Sludge Treatment 

Outfall Pumping Station 

Peripheral  

Rest (plant B) 
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such as energy and chemical production. The Life Cycle Impact Assessment (LCIA) 

methodology used in the study is the CML (Centre for Environmental Science) 2001 

(Nov. 10) which is compliant with the ISO 14040 series, and has been adopted by authors 

of similar studies [27]. The impact categories defined in the methodology are presented 

in Table 4. Once the impact categories have been defined the next phase of the LCIA is 

classification, whereby system inputs and outputs that have been compiled in the LCI are 

assigned qualitatively to one or more of the impact categories. Following this, the 

characterisation phase calculates the magnitude of a substance in an impact category 

based on an equivalency factor relative to a baseline substance for that category. For 

example, COD in the final effluent discharge is assigned to eutrophication. The baseline 

substance for eutrophication is PO4
3-

 (phosphate) and has a value of 1. The equivalency 

factor value of COD is 0.022 [8], therefore, every 1 g of COD is equivalent to 0.022 g of 

phosphate in the CML eutrophication impact category.  

This method allows for aggregation of all substances in a given category into a single 

score or indicator result (eq. 1) [36], where i is the type of substance,    is the magnitude 

and     is the equivalency factor for that substance: 

 

                       
 

 (1) 

 
Table 4. CML 2001 life cycle impact assessment categories 

 

Impact category Abbreviation Units 

Global warming potential GWP [kg CO2 eq] 
Acidification potential AP [kg SO2 eq] 

Eutrophication potential EP [kg PO4
3-

 eq] 

Ozone depletion potential ODP, steady state [kg R11 eq]
§
 

Photochemical oxidation potential PCOP [kg C2H6 eq] 

Ecotoxicity   

Freshwater aquatic FAETP inf. 

[kg C6H4Cl2 eq] Terrestrial TETP inf. 

Marine aquatic MAETP inf. 

Human toxicity potential HTP inf. kg C6H4Cl2 eq] 
Abiotic depletion elements ADPe [kg Sb eq] 

Abiotic depletion fossil ADPf [MJ] 

Impact category loading 

Figure 5 and Figure 6 present the environmental loading of both plants. Ozone 

depletion potential (Figure 6) is presented seperately due to the large difference in 

loading magnitude when compared with the other impact categories. The outputs have 

been normalised with 2013 Western Europe normalisation factors that yield 

dimensionless weighted quantities. This allows easier interpretation of results, as 

illustrated by Ramos et al. [37]. It should be noted that the vertical axis in Figure 5 is in 

logarithmic scale and therefore differences in outputs of some categories are significant. 

The percentage differences are presented in Table 5.  

In general, plant A performs better across all categories. Global impact categories 

such as MAETP, GWP, AP, and ADPf are heavily influenced by energy consumption.  

                                                 
§
 The refrigerant R11 is a chlorofluorocarbon (CFC) 
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Plant A requires only 40% of the energy that plant B requires for biological aeration and 

this is reflected in the percentage difference in loading in these categories. This suggests 

that there are economies of scale to be achieved in aeration energy requirements as 

reported by Burton (Figure 7) [38]. Sludge disposal accounts for the greater percentage of 

loading in MAETP, FAETP and TETP. Final effluent discharge and sludge disposal are 

the largest contributors to eutrophication, and ODP is dominated by ferric chloride 

production. The following sections discuss the loadings of each impact category 

individually. 
 

 
 

Figure 5. Normalized results per PE-year (× 10
10

) 
 

 
 

Figure 6. Normalized results of ozone depletion potential per PE-year (× 10
10

) 

 

Table 5. Dimensionless normalised impact category values (× 10
10

) and percentage difference 

between plants (plant B used as reference) 

 

Impact categories Plant A Plant B 
Percentage difference in 

impact loading [%] 

ADPf 0.0875 0.123 29.25 

AP 0.022 0.033 31.48 

EP 1.150 1.307 12.06 

FAETP 0.097 0.131 25.90 

GWP 100 0.036 0.056 34.52 

HTP 0.022 0.033 33.24 

MAETP 0.369 0.422 12.70 

ODP 3.27 × 10 
-8

 1.47 × 10
-7

 77.6 

TETP 2.30 3.40 32.45 
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Figure 7. Energy consumption for different treatment processes [38] 

 

Eutrophication.  The eutrophication impact from plant A is dominated by the output 

of the final effluent (Figure 8). Plant A discharges its final effluent into coastal waters and 

does not have the TN and TP reduction requirements of plant B. Plant A also has higher 

discharge limits for BOD5 (25 mg/l) and COD (125 mg/l) compared with 13 mg/l and  

100 mg/l respectively for plant B. This is reflected in the EP outputs of both plants where 

the more stringent discharge requirements at plant B have resulted in just over 20% of the 

total EP output coming from the final effluent discharge, compared with close to 100% 

from plant A. Phosphorus contribution to eutrophication is 140 times that of COD [8], 

thus small differences in phosphorus levels in final effluent will have a large effect on 

eutrophication, when compared with changes in BOD5/COD levels. The concentration of 

phosphorus in the plant A final effluent is almost six times that of plant B.  

Nitrification/denitrification requirements at plant B can increase Solids Retention Time 

(SRT) values which reduce secondary sludge yields due to endogenous respiration [39].  

However, when comparing the sludge outputs of both plants, any gains obtained from the 

reduced sludge yield at plant B due to extended SRT are offset by the lack of AD, from 

which plant A benefits. Furthermore, the total sludge output volume per PE increases 

compared with plant A. Despite the large percentage difference in the contributing 

sources to eutrophication, the overall difference between the plants is <13%.  

 

 
 

Figure 8. The contribution to eutrophication by plant A is dominated by the final effluent 

discharge while almost 80% of the contribution of plant B comes from sludge disposal 

 

Global warming potential.  The contribution to GWP from both plants is dominated 

by electrical energy production (Figure 9). Of the total contribution to GWP loading at 

plant A, 73% can be attributed to electricity consumption while ferric chloride production 

0% 20% 40% 60% 80% 100% 

Plant 
A 

Plant 
B 

Effluent 

Electricity 

Sludge Disposal  

Transport 



Journal of Sustainable Development of Energy, Water  
and Environment Systems 

Year 2016 
Volume 4, Issue 3,  pp 216-233  

 

227 

accounts for 22%. The remainder of the loading comes from natural gas production and 

an aggregated total for sludge and chemical transport. The plant B electricity 

consumption accounts for almost 68% of the total contribution to GWP. Lime production 

is the second largest contributor at 24% while the remainder is made up from Ferric 

chloride production and transportation of chemicals and sludge.  

The energy usage at both plants accounts for over 75% of the overall contribution to 

the GWP impact. This can be attributed to the heavy dependence on fossil fuel in the Irish 

electrical grid mix (Figure 10). Natural gas, hard coal, peat and heavy fuel oil make up 

almost 82% of the electrical grid mix in Ireland [40]. 

 

 
 

Figure 9. GWP 100 impact for both plants is dominated by electricity production 

 

 
 

Figure 10. Ireland’s electricity grid mix. Almost 82% of the electricity grid mix in Ireland is fossil 

fuel based. It is for this reason that the energy consumption at both WWTPs is the main 

contributor to GWP 

 

Acidification potential.  Acidification potential is dominated by the impact of energy 

production, accounting for >60% of the contribution for plant A and 78% for plant B 

(Figure 11). Ferric chloride production accounts for 28% of AP at plant A, while 

transport of sludge and chemicals was the next largest contributor at plant B. 

 

Figure 11. Acidification potential for both plants is dominated by energy generation 

 

Freshwater ecotoxicity potential.  The FAETP impacts for both plant A and plant B are 

dominated by sludge application to land (Figure 12). The effluent discharge from plant B 

contributes 12% of the overall loading in this category. 
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Figure 12. Freshwater aquatic ecotoxicity potential 

 

Marine aquatic ecotoxicity potential. Over 40% of the MAETP output of plant A 

comes from final effluent discharge, over 33% is due to sludge disposal. Sludge disposal 

accounts for over 55% of the loading in plant B. Electricity production is the second 

largest contributor to this category with almost 30% of the total impact (Figure 13).   

 

Figure 13. Marine aquatic ecotoxicity potential 

 

Human toxicity potential.  HTP is dominated in both plants by sludge disposal with 

only small contributions from other processes such as electrical and chemical production 

(Figure 14). 

Figure 14. Human toxicity potential 

 

Terrestrial ecotoxicity.  Sludge disposal accounts for almost 100% of the TETP 

impact in both plants (Figure 15). The digested sludge output from plant A is  

9.7 kg-ds/PE year (kilogrammes of dry solids per person equivalence year) at a solid 

concentration of 22%. The sludge is sent to a composting company 175 km from the plant 

where it is further treated. The undigested sludge output from plant B is 18.6 kg-ds/PE 

year at a solid concentration of 8%. The sludge is estimated to travel an average distance 

of 50 km from the plant for direct application to farmland. Direct application to farmland 

has been found to be the least favourable option of sludge disposal in several LCA studies 

carried out to examine the environmental loading for several disposal methods [23, 24]. 
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Figure 15. Terrestrial ecotoxicity 

 

Ozone depletion potential.  Ferric chloride production accounts for over 90% of the 

ODP impact in both plants with minimal contributions from electrical and other chemical 

production (Figure 16). Plant A outputs 2.01 × 10
-9

 kg of R11-equiv/PE year (kilograms 

of chlorofluorocarbon equivalent per person equivalent year). Ferric chloride production 

accounts for over 98% of this total with less than 2% contribution from electricity 

production. The plant B output to ODP is 9.88 × 10
-9

 kg of R11-equiv/PE year. Ferric 

chloride production accounts for <92% of this total and the contribution from electricity 

production increases to 8%. The study carried out by Hospido et al. [27] found that 

chemical production contributed almost half of the loading to this category with the 

remainder being attributed to electricity production. The difference here can be attributed 

mainly to the difference in both countries electricity grid mix. The Spanish electrical grid 

mix contributes over 100 times more to ODP than the Irish grid, thus decreasing the 

percentage contribution of chemical production in the Spanish scenario. The difference 

between the two Irish plants could be attributed in part to the economies of scale in terms 

of kWh/PE Plant B uses 40% more energy per PE than plant A, thus increasing the 

percentage contribution of electricity production to the impact category. 

 

Figure 16. The ozone depletion impact is dominated by ferric chloride production which accounts 

for over 90% of the loading at both plants 

 

Abiotic depletion potential (fossil).  The CML methodology for ADP distinguishes 

between ADP fossil and ADP elements. ADP elements describes the depletion of the 

total natural reserves of the elements without regard for their functionality, while ADP 

fossil is defined by the energy content of the fossil fuels measured in MJ. As energy 

consumption and production is central to this study, it has been decided that ADP fossil is 

the most relevant of the two impact categories. Electricity production is the main source 

of resource depletion. It accounts for over 60% of the output for plant A and over 80% of 

the output for plant B. Ferric chloride production is the next largest contributor for plant 

A with almost 20%, whilst making up <5% of the contribution for plant B. The diesel 

refinery mix accounted for 15% of the plant A output (Figure 17). 

99% 99% 99% 100% 100% 100% 

Plant A 

Plant B 
Sludge Disposal  

Final Effluent 

Ferric chloride  

 Electricity grid mix  

85% 90% 95% 100% 

Plant A 

Plant B 
Ferric chloride  

Electricity grid mix  

Calcium hydroxide  

Sodium hydroxide  

http://en.wikipedia.org/wiki/Chlorofluorocarbon


Journal of Sustainable Development of Energy, Water  
and Environment Systems 

Year 2016 
Volume 4, Issue 3,  pp 216-233  

 

230 

 
Figure 17. Abiotic depletion potential of both plants 

DISCUSSION 

When considering the environmental impact associated with waste water treatment 

the main focus is generally on eutrophication caused by the final effluent. However, the 

91/271 directive has established a set of acceptable limits for pollutant concentrations in 

final effluent for BOD5, COD and TSS, as well as nutrient limits of phosphorus and 

nitrogen. If it is understood and accepted by the scientific community that these limits 

represent a sustainable, non-destructive level of eutrophication, then the primary focus 

should no longer be on the quality of the final effluent, but more on the impact that results 

from achieving this effluent quality.   

This study found that there were two main contributors to environmental loading 

outside of final effluent discharge: the energy that goes into treating the influent and the 

sludge disposal. The electricity grid mix in Ireland contributes heavily to global impact 

categories such as MAETP, GWP, AP and ADPf, whereas sludge disposal contributes 

mainly to the ecotoxicity categories. Anaerobic digestion creates a link between the 

energy that is consumed during the treatment process and the embedded energy in the 

sludge. Plant A employs anaerobic digestion and this serves a number of purposes: 

 AD reclaims a significant amount of energy that can be fed back into the 

operation of the plant, reducing aerial emissions associated with electricity 

generation; 

 AD reduces the volume of sludge leaving the plant which reduces transport 

emissions and fuel consumption. This can be significant when the sludge has to 

travel long distances to its final destination as is the case with plant A; 

 AD stabilises sludge which reduces the emissions associated with lime 

production, and reduces resource depletion. 

It is without doubt that anaerobic digestion is a key process in wastewater treatment as 

it reduces the output of two of the main contributors to the overall environmental impact. 

In terms of what happens after the sludge is digested, there needs to be a definitive 

solution on how best to dispose of the sludge. The literature is filled with conflicting 

opinions on the topic of sludge disposal. However, most studies would agree that 

land-filling and direct application to farmland are the least favoured options.  

CONCLUSIONS 

The purpose of the study was to assess the environmental performance of two 

WWTPs in Ireland. Life cycle assessment was the analytical tool used. The plants that 

were chosen for the study varied in scale and location.  In relation to the latter, the main 

focus was on the differences in discharge limits. It has been shown that more stringent 

discharge limits will reduce eutrophic environmental loading, but the extra energy and 

materials that are consumed reaching the higher quality final of effluent can increase 

environmental loading in several other impact categories. Lower BOD limits typically 
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result in an increase in aeration energy requirements and this in turn increases loading in 

impact categories that are dominated by contributions from energy production such as 

MAETP, ADPf, GWP and AP. Phosphorous reduction requirements increase ferric 

chloride consumption, and thus production, which increases environmental loading in a 

number of impact categories such as ODP, GWP and MAETP.  

Investigations of the effect of variation in scale proved difficult because of 

differences in system configuration and the fact that one plant was successfully running 

its anaerobic digesters while the other was not. The plant with the functioning digesters 

was reclaiming some energy and reducing sludge outputs. This has the effect of reducing 

the loading in several impact categories. However, even if the energy reclaimed from 

anaerobic digestion were excluded, there would still be a significant difference in energy 

consumption between plants. What could be concluded in relation to scale was that there 

were significant economies of scale to be achieved in aeration energy consumed during 

secondary treatment.   

It would be prudent to research further, and in greater detail, the exact sources of any 

energy and resource savings that could be made. There are other areas of plants operation 

that are also worthy of investigation such as plant management, flow monitoring and 

system configuration. Indeed, there is an abundance of research opportunities in this 

field.  One further point of note in relation to this research is that because the UWWTD is 

pan-European legislation, the research could be expanded to compare energy and 

resource efficiency of water and wastewater treatment systems across the continent. Life 

cycle assessment is growing in popularity, and is seen by many as a suitable analytical 

tool for environmental profiling of existing plants, and as a decision support mechanism 

for future development of more environmentally sustainable wastewater treatment 

systems.  
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