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ABSTRACT 

Recent advances in digital technologies and optimization methodologies are revolutionizing 

how we monitor, allocate, and conserve vital natural assets such as water, energy, and arable 

land. This review presents a comprehensive perspective on the transformative role of digital 

innovations—including artificial intelligence (AI), geographic information systems (GIS), and 

blockchain—in enhancing the visibility, efficiency, and transparency of resource management 

systems. It also highlights the mathematical and algorithmic frameworks, such as Pinch Analysis 

or optimization approaches, that underpin modern techniques used to address complex resource 

allocation problems. The paper further discusses emerging directions to underscore the need for 

interdisciplinary collaboration and policy alignment. This article aims to inform stakeholders 

and researchers on the integrative potential of technology and optimization approaches in 

driving resilient, data-driven, and equitable resource management practices. 
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INTRODUCTION 

Natural resources are the foundation of human survival and economic development. 

However, their sustainable management is increasingly challenged by global issues such as 

climate variability, urbanization, and escalating industrial consumption. Traditional resource 

management systems, often reactive and fragmented, are insufficient in addressing the 

complexity and scale of today’s environmental and socio-economic pressures [1]. There is a 

growing urgency to develop more adaptive, transparent, and efficient approaches to monitor 

and allocate resources in a manner that supports both ecological balance and human well-being. 

Amid this backdrop, digital technologies have emerged as powerful enablers of 

transformation. From real-time environmental monitoring using satellite imagery and IoT 

sensors to data-driven forecasting powered by machine learning, these technologies are 

reshaping the landscape of natural resource governance. When coupled with mathematical 

optimization techniques—such as linear programming, heuristic algorithms, and process 

integration frameworks—these innovations enable more precise, responsive, and equitable 

allocation of limited resources. 
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Industrial symbiosis (IS) refers to a collaborative strategy where the waste outputs, such as 

excess heat, pressure, and other by-products generated by one industry, are repurposed as input 

materials or alternative energy sources for another industry [2]. This exchange system fosters 

a closed-loop production cycle that contributes to reducing the overall consumption of raw 

materials and energy, while simultaneously minimizing environmental pollutants [3]. By 

facilitating material and energy flow across industrial boundaries, IS supports the transition 

toward more resource-efficient and sustainable industrial systems. 

Compared to traditional energy conservation and emissions reduction (ECER) strategies, 

industrial symbiosis has been shown to offer superior cost-effectiveness and environmental 

benefits [4]. These advantages have sparked growing interest among policymakers, scholars, 

and industry leaders, positioning IS as a key component in the broader framework of 

environmental and industrial management. 

Globally, numerous governments are actively supporting the development of eco-industrial 

parks (EIPs)—planned areas where multiple companies cooperate to optimize resource use and 

reduce waste—through various policy instruments. These include legislative reforms, financial 

incentives, subsidies, and preferential land use policies aimed at encouraging industrial 

collaboration and circular resource flows. 

From a research standpoint, the complexity and interdisciplinary nature of IS 

implementation have prompted the use of advanced analytical models and decision-support 

tools. For example, Bacudio et al. [5] applied the Decision Making Trial and Evaluation 

Laboratory (DEMATEL) method to identify and analyze the barriers hindering the 

development of IS networks, highlighting challenges such as information asymmetry, lack of 

stakeholder engagement, and infrastructural limitations. In another line of inquiry, Wen et al. 

[4] utilized a single-objective optimization approach to evaluate and select the most effective 

symbiotic technologies for various types of eco-industrial parks within the iron and steel sector. 

Their study demonstrated how mathematical modelling can be used to systematically assess 

symbiosis potential and technology suitability across different industrial contexts. 

These theoretical and practical efforts underscore the growing recognition of industrial 

symbiosis as a viable and impactful pathway toward achieving sustainable industrial 

development. However, successful implementation requires overcoming institutional, 

technological, and behavioural barriers—necessitating a coordinated effort among businesses, 

regulators, and researchers to design systems that are both economically viable and 

environmentally resilient. 

In terms of technological advancements, Green innovation (GI) often is the way forward 

considering the increasing environment awareness [6]. GI reflects a company’s ability to align 

environmental objectives with business growth, offering a dual advantage of ecological 

sustainability and economic performance [7]. Achieving GI typically requires substantial 

investments in eco-friendly materials, cleaner production methods, environmental surveillance, 

and recycling systems. While green financing—such as green loans—has been found to 

increase firms’ motivation for technological advancement [8], the path to green innovation is 

often costly and carries significant supply chain risks, with returns that may not be immediately 

visible [9]. 

Despite these hurdles, advanced technologies like big data, artificial intelligence (AI), and 

the Internet of Things (IoT) provide transformative potential for manufacturing/processing 

industries, enabling firms to overhaul traditional production systems and enhance both 

environmental and economic results [10]. Key elements—such as IoT integration in the 

process to enable real-time data streaming [11], efficient energy usage and supply chain 

improvements [12], and the deployment of AI tools in decision-making are increasingly seen 

as foundational to driving GI. Tools like data mining, intelligent algorithms, and computer 

vision support greater efficiency, lower energy demands, and reinforce sustainable practices 

across operations [13]. 
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Historically, technological revolutions have had both constructive and disruptive effects on 

industries [14]. On the downside, new technologies can render existing expertise or business 

frameworks obsolete, leaving established firms vulnerable to market newcomers. 

Overinvestment in innovation with a short-term mindset may lead to "technological 

shortsightedness," wasting resources and misaligning market expectations [15]. Disruptive 

digital changes—termed Digital Disruptive Events (DDEs), including AI, big data, and IoT—

may lead to organizational instability, such as employee displacement and task restructuring. 

technological changes can lead to extreme events, and intense task changes can result in large-

scale personnel turnover – see Figure 1.These disruptions, however, could also open new 

innovation pathways, especially in green practices within manufacturing [16]. As such, 

organizations should balance technological advancement with collaboration and knowledge 

sharing to thrive in a fast-evolving environment [17]. 

  
Figure 1: Disruptive events due to Digital Disruption Events on any industries, adapted from [6] 

 

Advancing GI in the manufacturing sector often involves participation in various inter-

organizational networks [18]. For instance, Rizzo et al. [19] highlighted how personal network 

ties influence the adoption of mobile applications for food waste reduction, while Hossain et 

al. [20] emphasized the distinct roles of knowledge and financial resources in fostering GI. 

This underscores the need to conceptualize two types of innovation-related networks in 

manufacturing: knowledge networks and collaboration networks. Knowledge networks capture 

the flow of information and expertise between entities, while collaboration networks represent 

cooperative efforts among inventors or professionals. Understanding how these two networks 

individually and jointly shape green innovation is especially important amid growing digital 

disruptions. However, the degree of interaction and overlap requires still a need for more 

empirical inquiry into their combined influence on innovation during digital transformation 

processes [21]. 

Prior studies have investigated precursors to GI—such as green strategy adoption [22], 

environmental learning, and sustainable supplier involvement [23].  Xiao et al. [6] had 

examined the relationship between DDEs and GI, clarifying how firms could organize and 

leverage their collaboration and knowledge assets in volatile, rapidly changing environments. 

As manufacturing firms evolve to embrace GI, they often integrate into multiple inter-

organizational networks [24].  
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Summarizing the literatures review above, this review article aims to explore the 

intersection of digital technologies and optimization approaches in enhancing natural resource 

management. It provides an examination of tools such as remote sensing, big data analytics, 

geospatial systems, and blockchain, illustrating their practical applications towards natural 

resources managements. This paper delves into the role of optimization models in resolving 

resource allocation challenges and introduces future directions including digital twins and 

decentralized computing. By presenting a cross-disciplinary perspective, the article aims to 

highlight the potential of integrated technological solutions in achieving sustainable resource 

use for current and future generations. 

 

ROLE OF DIGITAL TECHNOLOGY 

The role of Artificial Intelligence (AI) 

Efficient resource utilization, risk mitigation, and early anomaly detection are essential for 

the smooth operation of process industries such as chemicals, pharmaceuticals, oil and gas, and 

food processing. The integration of Artificial Intelligence (AI) and remote sensing technologies 

offers new opportunities to monitor assets, identify inefficiencies, and optimize decision-

making processes in real-time. By leveraging machine learning (ML) algorithms and high-

resolution imaging data, industries can detect deviations, classify materials, and forecast 

system failures more accurately and cost-effectively. This section briefly explores three key 

areas—classification, early detection, and decision-making—where AI-driven tools are being 

adapted to manage resources more intelligently in industrial settings. 

Classification 

In process industries, accurate identification of raw materials, intermediate products, or 

waste streams is vital for efficient resource management and quality control. Traditionally, 

laboratory-based spectral analysis has been used to differentiate between materials, but real-

time implementation in industrial settings has been limited due to the lack of high-resolution 

imaging, robust machine learning (ML) algorithms, and reliable sensor data. 

Recent advancements in data fusion techniques—especially combining hyperspectral 

imaging with LiDAR—have shown promise for on-site material classification. Convolutional 

Neural Networks (CNNs) can analyze hyperspectral signatures and incorporate spatial 

characteristics using LiDAR inputs [25]. For example, a custom CNN model trained on 

hyperspectral and RGB images, along with LiDAR data collected using aerial platforms, 

demonstrated significant accuracy in classifying different tree species based on field-verified 

data [26]. When applied to process industries, similar methodologies could be used to classify 

different materials on conveyor belts, detect contamination in pipelines, or identify corrosion 

in storage tanks. 

Notably, the hyperspectral CNN model in that forestry study outperformed the RGB-based 

model by a margin of 23%, with overall classification accuracy reaching 87% [27]. This 

suggests that integrating high-resolution multisensor data with ML algorithms could form a 

repeatable and scalable approach for material identification in industrial environments. 

Early Detection 

Timely identification of equipment faults, chemical leaks, or microbial contamination is 

crucial in process industries to prevent costly downtime and ensure product integrity. In high-

value sectors such as food processing or pharmaceuticals, early detection can prevent 

widespread product recalls and protect consumer safety. 

Drawing parallels from agriculture, where hyperspectral drone imaging has been used to 

detect diseases like citrus greening with up to 99.7% accuracy, similar ML-based monitoring 
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systems can be adopted in industrial settings [28]. These systems rely on multi-feature fusion—

combining vegetation indices (analogous to spectral or thermal indicators in industrial 

equipment) and physical attributes (e.g., heat signatures, surface area changes)—to distinguish 

between healthy and compromised components or batches. 

Implementing such AI-driven inspection frameworks using drones, robots, or mounted 

sensors can significantly reduce inspection time and costs [29]. Moreover, integrating them 

into predictive maintenance systems could allow facilities to quarantine affected sections, 

reduce risks of large-scale failures, and optimize resource use by targeting interventions more 

precisely. 

Decision-Making 

Strategic investment and resource allocation are fundamental to efficient operations in 

process industries, especially when balancing safety, environmental compliance, and 

production goals. Artificial Intelligence (AI) can support these decisions by automating risk 

assessments and optimizing maintenance schedules [30]. 

For instance, a decision-tree model applied to urban forestry successfully assessed the 

collapse risk of trees using just 14 out of 36 initially measured variables [31]. In process 

industries, similar methodologies could assess the risk of equipment failure or production 

bottlenecks using a reduced set of critical indicators—such as vibration, temperature 

fluctuations, or pressure variances—collected through sensors and analyzed using decision-

tree or other classification algorithms [33]. 

A case study from Brazil used mobile data collection tools to evaluate tree risks and 

achieved a 73% accuracy rate in prioritizing interventions [30]. Translating this approach, plant 

managers can develop AI-based protocols to rank and address the most pressing operational 

hazards. Though current models may struggle with edge cases, ongoing refinement using larger 

and more diverse datasets will improve accuracy and applicability over time [33]. 

Geospatial tools for resource management 

In the field of remote sensing and geospatial data analysis, the efficient management of 

massive datasets is crucial. To address the growing demand for large-scale data processing, 

several specialized platforms have been developed. These tools not only enable researchers and 

professionals to analyze spatial information effectively but also support a wide array of 

applications ranging from environmental monitoring to disaster management. This section 

explores five prominent geospatial software tools—Google Earth Engine, ENVI, ERDAS 

IMAGINE, Global Mapper, and others—highlighting their features, strengths, and relevance 

in managing complex geospatial resources. 

GIS tools 

Launched in 2010, Google Earth Engine (GEE) is a cloud-based geospatial processing 

platform built upon Google's computational infrastructure. It provides researchers with free 

access to an extensive data catalog—including Landsat, Sentinel, MODIS, and climate 

datasets—and supports JavaScript, Python, and R for algorithm development [34]. Tailored 

for educational and research purposes, GEE provides free access to a powerful suite of tools 

designed for the large-scale analysis of spatial data. Its core mission is to support scientific 

advancement by facilitating unrestricted access to a vast array of datasets and computational 

tools, particularly for addressing global-scale challenges in environmental monitoring and big 

data analytics. 

GEE hosts an extensive data catalog, featuring petabytes of satellite imagery and 

geophysical datasets, including those from Landsat, MODIS, and Sentinel missions. Users can 

interact with the platform through a JavaScript-based code editor or utilize the Python and R 

APIs for advanced scripting. For those unfamiliar with programming, GEE offers a simplified 
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interface known as “Explorer” to perform essential operations. Additionally, GEE allows for 

both importing local data and exporting results for further analysis in desktop GIS tools such 

as QGIS and ArcGIS Pro [35]. 

Widely used in remote sensing and geoscience, GEE supports a diverse range of 

applications—from crop monitoring [36] and vegetation tracking [37] to land cover 

classification and forest fire analysis [38]. It has played a key role in academic and practical 

research, especially when supported by bibliometric studies that trace evolving trends and 

uncover knowledge gaps [39]. The integration of AI technologies—such as machine learning 

(ML), deep learning (DL), and computer vision—has further expanded its capabilities, 

particularly in high-impact domains like natural disaster assessment and healthcare analytics. 

The emerging field of GeoAI, which combines geospatial science with AI and high-

performance computing, demonstrates how GEE is central to extracting valuable insights from 

geospatial big data. 

Global Mapper is another user-friendly GIS software package, released in 2001, and 

recognized for its versatility in handling a wide range of spatial data. Supporting over 300 file 

formats, it offers robust functionality for managing vector, raster, elevation, and point cloud 

data. Its real-time reprojection capabilities and integration with online data services—such as 

aerial and satellite imagery—make it a highly adaptable tool for geospatial analysis [40]. 

The software provides a powerful set of tools for vector digitization, spatial operations (like 

intersection and union), and attribute editing. Global Mapper also features scripting and batch 

processing, allowing users to automate routine GIS tasks and streamline workflows. Its “Pixels-

to-Points” tool is particularly useful for UAV users, enabling the conversion of aerial imagery 

into high-resolution 3D models and dense point clouds using photogrammetry techniques [41]. 

Image processing tools 

Introduced in 1994, The Environment for Visualizing Images (ENVI) is a remote sensing 

software suite designed for users at all skill levels, offering a blend of usability and advanced 

analytical capabilities. Its interface simplifies the image processing workflow by organizing 

tasks into guided steps, covering operations such as calibration, atmospheric correction, 

orthorectification, and image registration [42]. A typical spectral workflow in ENVI includes 

data preparation, creating spectral libraries, target detection, mapping unique materials, and 

visualization 

ENVI is compatible with a wide variety of data formats, including HDF, CDF, GeoTIFF, 

and NITF, and supports multiple sensor types—radar, LiDAR, SAR, multispectral, 

hyperspectral, thermal, and more. The platform integrates data from modern satellite and 

airborne systems such as Sentinel, AVIRIS, WorldView, and Planet Dove. Its spectral analysis 

capabilities allow for accurate material detection, vegetation monitoring, and environmental 

assessment. 

Recent research underscores ENVI's strength in hyperspectral image processing [43]. 

Studies have used the software to detect bruises on fruits, monitor quality in agricultural 

produce, and identify contaminants. ENVI's flexible workflows support tasks such as anomaly 

detection, feature extraction, and terrain modeling, making it a versatile solution in both 

scientific and applied geospatial contexts. 

Another tool: ERDAS IMAGINE is another comprehensive software suite focused on 

remote sensing data analysis and image classification. Its intuitive interface supports a broad 

spectrum of geospatial workflows, such as orthorectification, mosaicking, terrain 

categorization, and LiDAR editing. Designed for both beginners and experts, it emphasizes 

ease of use while offering powerful backend algorithms for efficient processing [44]. 

The software includes tools for supervised and unsupervised image classification, terrain 

modeling, and spatial analysis. ERDAS IMAGINE also provides scripting capabilities through 

its Macro Language (EML) and supports AI-based workflows with tools for training and 

https://www.mdpi.com/2072-4292/16/22/4161#B65-remotesensing-16-04161
https://www.mdpi.com/2072-4292/16/22/4161#B67-remotesensing-16-04161
https://www.mdpi.com/2072-4292/16/22/4161#B51-remotesensing-16-04161
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deploying ML and DL models. These features are especially useful for feature extraction and 

land cover classification [45]. 

The “Advantage” edition of the software builds upon the core functionalities by offering 

more advanced mapping tools, point cloud editing, and radar analysis. It has been effectively 

employed in environmental monitoring, natural resource management, and defense 

applications, and its image enhancement capabilities—such as histogram equalization and 

Gaussian filtering—help improve image clarity and detail [45] 

BLOCKCHAIN TECHNOLOGY 

Blockchain technology is increasingly recognized as a powerful tool for fostering trust 

among distributed stakeholders, particularly in decentralized energy systems [46]. The 

foundational concept, introduced by Nakamoto [47], presents a decentralized computational 

framework known as Blockchain, which offers transformative capabilities in managing data 

and energy transactions. This system is based on a cryptographically secure and distributed 

ledger, maintained through consensus protocols and cryptocurrency mechanisms. Central to 

this framework are smart contracts—self-executing code that enables automated, real-time 

energy trading, transparent data exchange, and collaborative decision-making across multiple 

participants. These contracts ensure fair and optimized resource distribution while reducing 

inefficiencies and operational waste. 

The term "blockchain" refers to a data structure where digital records, or "blocks," are 

sequentially linked to form a secure and immutable "chain." Each block contains a 

cryptographic hash, a timestamp, a batch of verified transactions, and a reference to the 

preceding block’s hash, thereby making any unauthorized alteration evident. Once data is 

added, consensus protocols—like those based on proof of work—ensure that only validated 

transactions are recorded, with agreement required from all participating nodes. This consensus 

mechanism eliminates the need for centralized authorities and establishes trust through 

decentralized validation. The integration of cryptographic elements such as digital signatures, 

hashing, and public-private key encryption makes blockchain one of the most secure data 

systems currently available [48]. Example of a blockchain adjustment when new data comes 

in is illustrated in Figure 2. 

  
Figure 2: Illustration of blockchain adjustment when new data comes in, adapted from [49] 
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In exploring its industrial adoption, Bruel and Godina [50] examined both challenges and 

enablers of Blockchain integration in industrial park ecosystems. They proposed an 

architectural model for smart contracts aimed at enhancing inter-organizational communication 

in industrial symbiosis (IS) settings. Kröhling et al. [51] demonstrated a functional prototype 

utilizing smart contracts for peer-to-peer (P2P) trading of electricity and thermal energy in 

industrial environments, facilitating improved financial outcomes for individual prosumers 

through autonomous negotiations. 

Lin et al. [52] carried out a comparative evaluation of auction-based models for localized 

solar energy trading among neighbors, while Padghan et al. [53] leveraged Ethereum 

Blockchain infrastructure to develop a cooperative and equitable trading mechanism for 

distributed energy assets. Abdo and Zeadally [54] introduced a Blockchain-centric framework 

designed for multi-utility exchanges, emphasizing modularity and transparency. Ramos et al. 

[55] proposed a utility optimization model using a multi-leader–follower game theory 

approach to ensure stable and fair transaction equilibria. In the context of industrial automation, 

Zhou et al. [56] designed a smart contract agent capable of processing feedback during 

autonomous trading operations, validated through simulation using the J-Park platform. 

Expanding on cooperative strategies, Luo et al. [57] proposed decentralized trading 

protocols that support energy reimbursement among prosumers in microgrids with integrated 

renewable sources and storage capabilities. Yang et al. [58] focused on developing incentive 

models to boost participation in surplus energy markets. Building on this, Yang et al. [59] also 

introduced a pricing system grounded in a proof-of-stake consensus tailored to enhance fairness 

in traditional grid-connected prosumer trading. 

Several studies have emphasized innovative Blockchain solutions, including alternative 

consensus algorithms for renewable energy coordination and mechanisms to ensure equitable 

energy trade [60]. The use of Blockchain has been explored in chemical processing, 

particularly for optimizing heat exchange systems in eco-industrial parks [61], marking a 

significant expansion of its industrial relevance. Chin et al. [49] also introduced the concept of 

using blockchain to broadcast streams data among site and using smart transaction methods to 

identify the optimal energy resources exchange between sites. 

Blockchain networks can vary significantly depending on how access, control, and 

operations are structured. Based on access governance, blockchains can be public, private, 

consortium-based, or federated. In terms of data access rights, platforms are categorized into 

permissionless (open to all participants) and permissioned (restricted to authorized users) 

systems [62]. Token-based models offer economic incentives within blockchain ecosystems, 

while non-tokenized frameworks operate without such mechanisms [63] 

Despite its vast potential, blockchain technology still faces substantial hurdles that limit its 

widespread commercial implementation. Key challenges span technological, organizational, 

economic, and legal dimensions. Technologically, blockchain's relative immaturity brings 

concerns related to scalability, performance, and user-friendliness. Adoption is further 

constrained by limited technical expertise, infrastructure costs, and system complexity. On an 

organizational level, barriers include insufficient top-level support, cultural resistance to 

change, and financial limitations [64]. 

While practical applications are still emerging, real-world use cases of blockchain have 

been identified across a range of sectors. These include supply chain management and logistics 

[65], the fashion and retail industry [66], Internet of Things (IoT), healthcare systems, finance, 

governance, digital identity management [67], and social impact initiatives. 

Industrial symbiosis and blockchain technology 

Supply chains are intricate systems made up of numerous interdependent business 

relationships focused on the creation and delivery of value. Traditional supply chains often lack 

transparency and trust. The exchange of information, especially between geographically 
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dispersed partners, typically demands significant resources, intermediaries, and time. Many 

transactions are still conducted on paper, making the system vulnerable to fraud, asymmetric 

information, and operational inefficiencies. Another pressing challenge is coordinating 

effectively among supply chain stakeholders. Even though tools like enterprise resource 

planning (ERP) systems and digital tracking technologies are employed, issues related to 

complexity and errors persist [68]. 

In light of these challenges, blockchain has emerged as a particularly promising tool for 

transforming supply chain operations. By enabling complete auditability across the supply 

chain and reducing reliance on intermediaries, blockchain simplifies the process of tracking 

goods and transactions [67]. Through its capacity to consolidate data from various sources, 

blockchain fosters better communication among companies, encouraging the adoption of 

standardized protocols that facilitate strategic and mutually beneficial partnerships. As a result, 

blockchain significantly enhances supply chain mapping, auditing, and certification, helping 

companies build greater trust with end consumers [62]. 

Blockchain supports supply chain management through three key functionalities: 

1. Transparency – The decentralized nature of blockchain ensures that the distributed 

ledger is visible to all participants. 

2. Traceability – All actions and transactions are recorded in an immutable format, 

making it easy to track the origin and movement of goods. 

3. Authentication – All network participants participate in verifying and storing 

transaction data (Wang et al., 2020). 

In some systems, supply chain transactions are logged automatically using smart contracts 

or Internet of Things (IoT) sensors. Smart contracts offer a way to digitally enforce agreements 

and procedures, blending user interfaces with secure protocols to facilitate automated, 

trustworthy operations. In recent years, major global corporations such as Carrefour, Walmart, 

Nestlé, and Alibaba have started incorporating blockchain into their supply chain processes 

[66]. 

Beyond supply chains, blockchain also offers valuable benefits for the Circular Economy 

(CE) and waste management sectors [69]. Blockchain enhances CE practices by enabling 

seamless information flow along supply chains, which is essential for materials and by-

products exchange. It secures data management, ensures shared access to key information 

among stakeholders, and strengthens collaborative efforts. Within waste management, 

programs aimed at waste exchange often suffer from fraud, data inaccuracy, and inefficient 

manual handling. Blockchain can address these issues by ensuring the reliability and 

availability of data. 

Similarly, the Industrial Symbiosis (IS) framework—which focuses on collaboration 

among firms to share resources, such as energy, materials, and waste—stands to benefit 

significantly from blockchain integration. Both IS and blockchain operate as decentralized 

ecosystems: blockchain is a peer-to-peer network where information is securely stored and 

shared, while IS is a platform for inter-firm collaboration, often aligned with CE principles. 

Each involves multiple actors working together to create synergies beyond what individual 

firms can achieve alone – see Figure 3 where the concept of resource exchange can be 

managed by a smart transaction framework, namely either Pinch Analysis or some allocation 

methodology, through an internal cryptocurrency between the entities in the region/sites [49]. 

However, both IS and blockchain still face several shared barriers, including a lack of robust 

information systems, technical difficulties in data gathering, and challenges in encouraging 

collaboration, trust, and willingness among participants [70]. Sensitive data—such as waste 

quantities, production volumes, and pricing—often remain undisclosed due to competitive 

concerns, further complicating IS data collection efforts[69]. 

Integrating blockchain into IS platforms could mitigate many of these issues. With its 

secure, transparent, and immutable structure, blockchain can enhance data infrastructure, 

promote trust, and streamline collaboration. Despite growing academic interest in the potential 
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of blockchain within CE and IS contexts, there remains a notable gap in research specifically 

linking blockchain to IS frameworks. 

  
Figure 3: Concept of using blockchain in managing resource exchange between sites, adapted 

from [49] 

RESOURCES PLANNING/ALLOCATION METHODOLOGY 

Pinch Analysis 

Originally developed for thermodynamic systems, Pinch Analysis has been effectively 

adapted for various supply chain applications, including optimization, performance evaluation, 

and environmental impact analysis. The technique was initially used to improve energy 

efficiency by optimizing the heat exchange between industrial processes requiring heating and 

cooling. In this context, Pinch Analysis identifies opportunities to recover and reuse heat across 

processes [71]. 

In supply chain management, a similar principle is employed by plotting supply and 

demand curves separately and analyzing their interactions over time. These curves help to 

visualize inventory levels at different points in a planning horizon, making it easier to detect 

imbalances such as surpluses or shortages. This graphical approach provides decision-makers 

with insights into energy usage and stock availability, allowing timely adjustments [72]. 

The first known application of Pinch Analysis to supply chain planning was introduced in 

2002 [73]. This approach used a combinatorial graph with product quantity on the horizontal 

axis and time on the vertical, to identify the minimum production levels needed to meet demand 

while revealing inventory fluctuations. The "Pinch Point" marks the point of zero inventory, 

guiding adjustments in production, storage, and logistics to optimize profitability while 

satisfying demand requirements. Later, Singhvi et al. [74] validated this method using case 

studies and compared it with solutions generated by the GAMS software. The pinch-based 
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approach significantly reduced computational time—up to six times faster than directly solving 

the mathematical model. 

Further innovations extended Pinch Analysis to cost minimization in resource allocation 

problems [75]. By developing prioritization criteria and applying the analysis, researchers 

proposed efficient methods for internal and cross-regional resource management, balancing the 

use of dedicated and shared assets. 

The methodology has also been adapted to address environmental concerns, such as 

reducing carbon emissions. For example, Carbon Pinch Analysis provides a visual tool for 

understanding how changes in energy sources affect emissions, helping regions to meet carbon 

reduction goals [76]. Li et al. [77] applied this approach to plan regional electricity and biomass 

supply chains under carbon constraints. Adjustments in biomass supply were mapped against 

energy demands and emission targets to identify the minimal requirement for external 

electricity sources. 

Hwangbo et al. [78] introduced a hybrid Pinch Analysis combining carbon dioxide and 

hydrogen metrics, allowing comparative assessments of environmental impacts in hydrogen 

energy systems. Their graphical analysis displayed CO₂-equivalent emissions for different 

hydrogen production processes. Similarly, another study [79] used Pinch Analysis to assess 

greenhouse gas emissions across different bioenergy supply chain configurations. 

As Pinch Analysis matured, it was further extended to handle complex, real-world 

challenges like uncertainty and multiple objectives. For instance, Priya and Bandyopadhyay 

[80] developed a multi-objective version of the analysis that balanced cost and resource quality 

in supply planning. Bandyopadhyay [81] explored uncertain environments by introducing 

interval-based representations of unknown parameters and applying the approach to develop 

feasible planning solutions without precise input data. 

Jalanko and Mahalec [82] applied a supply-demand pinch method for optimizing gasoline 

blending over multiple time periods under component quality uncertainty. Their evaluation of 

this technique against comprehensive models demonstrated its potential for producing quality 

solutions efficiently. 

Overall, the key strength of Pinch Analysis lies in its ability to deliver intuitive and visual 

solutions – see Figure 4. It facilitates energy savings, cost reductions, and more efficient 

supply chain operations by streamlining heat integration and resource allocation. Through 

straightforward calculations, planners can quickly outline preliminary supply-demand 

scenarios. Additionally, adjusting supply curves allows for effective comparison of different 

planning scenarios. Importantly, the method offers a robust starting point for mathematical 

programming, improving convergence speed and solution quality. Despite its growing 

versatility—spanning uncertain and multi-objective optimization—further research is needed 

to refine the method’s reliability and broaden its applicability across diverse planning contexts. 

  
Figure 4: Classic Pinch Analysis diagram to visualize resources allocation 
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Advanced resource allocation methodologies 

Recent studies have expanded the application of the Pinch-based approach to various forms 

of material integration. Chin et al. (2020a) investigated the foundational principles in resource 

conservation networks and developed a Pinch-based targeting methodology for networks 

involving multiple types of contaminants. Yanwarizal et al. (2020) proposed a framework that 

separates limiting Composite Curves at the stream level instead of aggregating them, enabling 

more precise targeting and design. Oladosu et al. (2020) introduced an algebraic method that 

addresses different stream splitting configurations within this problem domain. For 

comprehensive reviews on advanced Pinch-based methods, readers may refer to Klemeš et al. 

(2018) on mass-based and heat-based integration applications. 

CONCLUSION 

Addressing the complex challenges of modern resource management demands the 

integration of advanced digital technologies, innovative resource allocation strategies, and 

secure data frameworks. Geographic Information Systems (GIS) and Artificial Intelligence 

(AI) tools enable comprehensive spatial-temporal analysis and predictive capabilities, allowing 

stakeholders to better understand resource distribution patterns, forecast demand fluctuations, 

and optimize utilization in dynamic environments. These technologies provide non-trivial 

advantages such as real-time data assimilation, adaptive decision-making, and scenario 

simulation, which are essential for effective resource stewardship in increasingly uncertain and 

interconnected systems. 

Simultaneously, blockchain technology introduces unprecedented levels of transparency, 

traceability, and security in resource transactions, facilitating trust among diverse actors and 

enabling decentralized coordination without reliance on central authorities. The inherent 

immutability and smart contract functionality of blockchain help mitigate risks of fraud, 

misallocation, and data tampering, which are often overlooked but critical factors in ensuring 

equitable and efficient resource management. 

Complementing these digital tools, resource allocation methodologies such as Pinch 

Analysis and mathematical programming provide rigorous frameworks for identifying optimal 

pathways to minimize waste, balance competing objectives, and enhance system-wide 

efficiency. These approaches address non-trivial challenges including multi-contaminant 

integration, conflicting stakeholder priorities, and complex network interactions that 

conventional heuristic or ad hoc methods cannot resolve effectively. 

The convergence of GIS, AI, blockchain, and advanced resources allocation methodologies 

forms a multidisciplinary foundation essential for tackling resource management’s 

multifaceted issues. Harnessing their synergistic potential empowers decision-makers to design 

resilient, sustainable, and adaptive resource systems capable of meeting evolving socio-

economic and environmental demands. The ideal digital technology framework on resource 

allocation framework is illustrated in Figure 5.  

Technological advancements facilitate the seamless streaming of essential data for process 

planning across various scales, while also enabling the integration of multiple advanced 

analytical approaches to support diverse decision-making models. This combination provides 

industrial practitioners with high-confidence solutions tailored to different strategic 

performance indicators (SPIs), such as minimizing cost or reducing pollution. This article aims 

to inspire both academic researchers and industry professionals to advance efforts towards 

developing comprehensive digital frameworks for process systems operating at multiple scales. 
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Figure 5: Proposed illustration showing the integration of digital technologies and optimization 

approves in addressing full-scale process industries, adapted from [87] 
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