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ABSTRACT 

Plastic pollution has become a major environmental challenge. Despite the availability of 

various recycling technologies, only a small proportion of plastic waste is currently recycled. 

Developing an Integrated Plastic Recycling Network (IPRN) offers a promising solution to 

tackling this issue. Facilitating the exchange of material and energy outputs among system 

components can enhance recycling efficiency. However, disruption in an IPRN component can 

trigger cascading effects that impact the whole network. This disruption may include shortages 

in plastic waste inputs. Thus, identifying optimal operating conditions during such disruptions 

is crucial. This study builds upon previously developed Mixed-Integer Linear Programming 

(MILP) models based on an enterprise Input-Output (IO) modelling framework to optimize 

IPRN operations under abnormal conditions. The model is modified to allow input substitution 

during shortages. The improved model incorporates user-defined substitution conditions, such 

as redirecting materials from mechanical recycling to pyrolysis or gasification, but not vice 

versa. During disruptions, rerouting some inputs to prioritize the most profitable processes can 

significantly improve the network’s revenue. Application of the model to a case study of an 

IPRN demonstrates that allowing input substitution reduces the revenue drop from 9% to 2.4% 

under a 10% supply shortage in mixed plastic wastes. Incorporating flexible input substitution 

can enhance the robustness of IPRNs and ensure more effective recycling even under crisis 

conditions. 
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INTRODUCTION 

Plastic pollution has recently become a global environmental concern that requires a United 

Nations-led treaty [1]. A key contributor to this issue is the rising dependence on plastics, 

particularly in packaging, construction, and textiles. Global plastic demand is projected to rise 

from 464 Mt in 2020 to 884 Mt by 2050. This will result in a corresponding increase in plastic 

waste generation from 367 Mt in 2020 to 874 Mt by 2050 [2]. Unfortunately, mismanagement 

of these waste materials has contributed to plastic pollution in both aquatic and terrestrial 
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ecosystems. This alarming trend has serious implications for Planetary Boundaries [3] and the 

Sustainable Development Goals [4]. 

Once plastics enter the ocean, they can gradually fragment into smaller particles known as 

microplastics [5]. These particles are persistent and can remain in the environment for centuries 

or even millennia [6]. Aquatic organisms exposed to these microplastics may suffer from 

reduced food intake, stunted growth, and lower reproductive rates [7]. These impacts can, in 

turn, affect the fishing industry by reducing the yields of fish and seafood [8]. Humans who 

consume contaminated seafood may also experience negative health effects [9]. Microplastics 

have also been detected in soil ecosystems, where they have been shown to disrupt the growth 

and photosynthesis of plants [10], as well as cause reproductive damage to small invertebrates 

residing in the soil [11]. Addressing the issue of plastic pollution requires a multifaceted 

approach with solutions targeting various aspects of the problem. These measures include 

reducing plastic use at the source, designing plastics to be more recyclable, enhancing waste 

collection and sorting processes, and advancing current recycling methods [12]. 

Plastic recycling plays an important role in managing plastic waste and promoting 

sustainable waste management [13]. Among the various recycling techniques, mechanical 

recycling is the most widely used. This process involves the physical conversion of plastic 

waste into secondary raw materials [14]. More advanced methods include pyrolysis, 

gasification, and solvolysis. Pyrolysis thermally breaks down plastic polymers in the absence 

of oxygen, yielding products that can be refined into fuels or plastic monomers [15]. 

Gasification partially oxidizes plastic waste to produce syngas, a versatile feedstock that can 

be used to produce hydrogen, methanol, and other compounds [16]. Solvolysis specifically 

targets condensation plastics, breaking them down into monomers that can be repolymerized 

into new plastics. A notable example is methanolysis, which uses methanol for decomposition 

[17]. Despite the availability of these technologies, global recycling rates remain low. Only 

9% of plastic waste is recycled, while 12% is incinerated, 50% is sent to landfills, and 22% 

leaks into the environment [18]. Even achieving a 55% recycling rate by 2030 may not prevent 

environmental impacts from surpassing 2018 levels [19]. These statistics highlight the urgent 

need to enhance current recycling methods to improve recycling rates and address the growing 

plastic waste issue effectively. 

Each recycling method is developed to handle specific types of plastic waste input. 

Combining these technologies is crucial for maximizing recycling efficiency [20]. These 

technologies can achieve a 78% reduction in total plastic waste by 2040 when deployed 

optimally [21]. A promising solution is to incorporate these technologies into an Integrated 

Plastics Recycling Network (IPRN). An IPRN is a system of interconnected plastic recycling 

facilities that synergistically share material and energy flows to optimize resource use and 

improve economic performance. This approach adopts the concept of industrial symbiosis [22], 

similar to the frameworks applied in integrated product biorefineries [23], integrated energy 

systems [24], and eco-industrial parks [25]. Mathematical programming is often used for the 

optimal synthesis of such systems [26]. Despite its potential, only two studies have been 

published on optimizing IPRNs to date. Tan et al. [27] proposed an approach using Pinch 

Analysis (PA) to optimize the matching of plastic waste with appropriate recycling 

technologies, while Aviso et al. [28] employed Linear Programming (LP) and Mixed-Integer 

Linear Programming (MILP) models to achieve similar objectives. However, these approaches 

do not consider the potential impact of disruptions and the subsequent adjustments needed 

within the network to mitigate such effects.  

Interdependencies resulting from the tight integration of different technologies can lead to 

increased network vulnerability. A disruption in one unit, such as a reduction in its input, can 

cascade and affect other parts of the system [29]. This high interconnectivity and resulting 

supply (or demand) uncertainties have been identified as key factors contributing to failures in 

many eco-industrial parks [30]. Managing these risks is therefore essential for ensuring the 

robustness and resilience of such systems. Leontief [31] developed the Input-Output (IO) 
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model to mathematically represent this interdependence using a system of linear equations. 

Haimes and Jiang [32] extended the IO model to create the Inoperability Input-Output Model 

(IIM), which analyzes the cascading failures in a highly integrated system. In this model, 

inoperability is a measure of a system's inability to perform its intended function that ranges in 

value from 0 (normal state) to 1 (total failure). The IIM framework provides insights that 

support the development of risk mitigation strategies [33]. For instance, Kasivisvanathan et al. 

[29] developed an MILP model that optimizes operational adjustments to maximize revenue 

in multi-functional energy systems under partial inoperability. Tan et al. [34] introduced an 

equivalent approach using P-graph methodology as an alternative to MILP. Tan et al. [35] 

applied Fuzzy Linear Programming (FLP) to find optimal production adjustments for industrial 

complexes during crises caused by resource scarcity, considering the self-interest of each plant. 

Supply shortages can significantly impact the operation of a plastic recycling plant, leading 

to increased operational costs or even temporary shutdowns [36]. In an IPRN, such disruptions 

can cascade throughout the network, leading to further losses. However, these financial impacts 

can be mitigated through the strategic optimization of IPRN operations. This work develops a 

novel optimization model designed to support operational adjustments during supply-related 

inoperability. Unlike previous works, this model considers partial input substitution during 

abnormal operations. The models discussed earlier rely on the Leontief production function 

assumption that inputs cannot be substituted. This assumption can be too restrictive since 

partial substitution is possible in IPRNs. For example, mechanically recyclable plastic waste 

can also be processed through pyrolysis or gasification, although this flexibility does not apply 

in reverse. Relaxing the Leontief assumption by allowing input substitution enables the model 

to identify less conservative strategies to minimize losses from supply disruptions. Insights 

gained from this model can enhance the robustness of future commercial plastic recycling 

operations.  

The rest of this paper is organized as follows: The next section presents the formal problem 

statement, followed by the formulation of the optimization model. A case study is then 

presented, examining an IPRN under supply shortages and analyzing the impact of allowing 

versus restricting input substitution. Finally, the conclusions and recommendations for future 

research are discussed. 

PROBLEM STATEMENT 

The problem addressed by the proposed model may be formally stated as follows: 

• Consider an Integrated Plastic Recycling Network (IPRN) consisting of multiple 

component plants 𝑘, transforming various types of raw plastic waste 𝑖 into a range of 

products 𝑙 . Under normal conditions, each plant operates at its baseline production 

capacity and product net flow rates. Material and energy balances are assumed to be 

scale-invariant for each unit. 

• In certain limited cases, substitution between the different types of raw plastic waste 𝑖 
is allowed, resulting in the plastic waste input 𝑗, provided that the requirements of the 

component units are met. However, the extent of substitution is restricted to avoid 

significantly altering each component unit's product quantity and quality. 

• It is further assumed that the material and energy balances remain consistent for all 

allowed substitution scenarios. Process yields thus remain unchanged for these 

substitutions. 

• An external disruption is assumed to occur that affects the supply of one or more types 

of plastic waste inputs. This disruption is assumed to be prolonged enough to require 

planning for a temporary, off-design, steady-state operation deviating from the IPRN's 

baseline design state. 

• The objective of the model is to determine the optimal operational adjustments that will 

maximize the overall operating revenue of the IPRN during the supply disruption. 
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Variable operating costs, such as inputs to each component unit, heat, and electricity, 

are explicitly included in the model. On the other hand, fixed operating costs, such as 

labor and administrative expenses, are assumed to remain constant during the temporary 

disruption. As a result, maximizing revenue effectively corresponds to maximizing 

profit under these conditions. 

MODEL FORMULATION 

The optimization model developed here extends the frameworks proposed by 

Kasivisvanathan et al. [29] and Tan et al. [35] by relaxing the assumption that the system 

components have Leontief production functions. The objective of this model is to maximize 

the overall operating revenue under off-design crisis conditions. It can be expressed as follows: 

 

max ∑ 𝑐𝑙𝑦𝑙

𝑙

  (1) 

 

Here, 𝑐𝑙 represents the unit price while 𝑦𝑙 denotes the net output of the product stream 𝑙. 
The energy and material balances for the IPRN are assumed to be linear and can be represented 

by the following input-output model: 

 

∑ 𝐴𝑙𝑘

𝑘

𝑥𝑘 = 𝑦𝑙     ∀𝑙 (2) 

∑ 𝐵𝑗𝑘

𝑘

𝑥𝑘 =  𝑧𝑖𝑛𝑝𝑢𝑡,𝑗      ∀𝑗 (3) 

𝑥𝑘 , 𝑦𝑙, 𝑧𝑖𝑛𝑝𝑢𝑡,𝑗  ≥  0     ∀𝑗  ∀𝑘  ∀𝑙 (4) 

 

where the process coefficient 𝐴𝑙𝑘  indicates the amount of material 𝑙 either consumed or 

produced per unit of the main product of the component unit 𝑘 . A positive value of 𝐴𝑙𝑘 

indicates that the material is produced, while a negative value means it is consumed as an input. 

Similarly, the resource coefficient 𝐵𝑗𝑘 denotes the amount of plastic waste input 𝑗 required to 

produce one unit of the main product in component unit 𝑘 . The variable 𝑥𝑘  refers to the 

production level of component unit 𝑘, while 𝑦𝑙 represents the net output flow rate of material 

𝑙 . The term 𝑧𝑖𝑛𝑝𝑢𝑡,𝑗  represents the quantity of plastic waste used as an input to a certain 

component unit. The values of 𝑥𝑘 and 𝑧𝑖𝑛𝑝𝑢𝑡,𝑗 are constrained to be non-negative. Although 𝑦𝑙 

can theoretically take negative values if there is an option to import materials that are normally 

outputs, but it is restricted to non-negative values in this study. 

The substitutability of inputs can then be expressed by the following equations: 

 

𝑧𝑖𝑗 ≤ 𝑆𝑖𝑗𝑀     ∀𝑖  ∀𝑗   (5) 

∑ 𝑧𝑖𝑗

𝑖

= 𝑧𝑖𝑛𝑝𝑢𝑡,𝑗      ∀𝑖 (6) 

∑ 𝑧𝑖𝑗 ≤ 𝑧𝑟𝑎𝑤,𝑖     ∀𝑗

𝑗

 (7) 

 

In these expressions, 𝑧𝑟𝑎𝑤,𝑖 denotes the availability of each raw plastic wastes 𝑖, while 𝑧𝑖𝑗 

represents the amount of raw plastic waste 𝑖 used for plastic waste input 𝑗. When 𝑖 = 𝑗, 𝑧𝑖𝑖 

corresponds to the use of plastic waste 𝑖  for its intended purpose. When 𝑖 ≠ 𝑗, 𝑧𝑖𝑗  reflects 

substitution of raw plastic waste 𝑖 for input 𝑗. The substitutability parameter 𝑆𝑖𝑗  is a binary 
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value that determines whether raw plastic waste 𝑖 can replace plastic waste input 𝑗 (𝑆𝑖𝑗 = 1) or 

not (𝑆𝑖𝑗 = 0). For all 𝑖, 𝑆𝑖𝑖 is set to 1 to allow each raw plastic waste to be used for its original 

intended purpose. The term 𝑀 is an arbitrarily large number used in Eq. (5), ensuring 𝑧𝑖𝑗 is 

zero if plastic waste input 𝑖 cannot substitute plastic waste input 𝑗. Eq. (6) indicates the total 

amount of input for the component unit, while Eq. (7) limits the total amount of each raw 

material used to match its availability. 

To ensure the amount and quality of the resulting products do not significantly change 

despite substitutions, the substitution amount is limited according to: 

 

𝑧𝑗𝑗 ≥ (1 − 𝜎𝑚𝑎𝑥,𝑗) 𝑧𝑖𝑛𝑝𝑢𝑡,𝑗     ∀𝑗  (8) 

 

where 𝜎𝑚𝑎𝑥,𝑗  indicates the maximum allowable fractional substitution for component 𝑗. 

This parameter represents the limit at which process performance shows a negligible drop. In 

practice, this threshold can be set based on a combination of factors, such as equipment 

specifications, experiments, and the expert judgement of the process engineers. Additional 

constraints to ensure the feasible operating range of each component unit’s production level 

are given by: 

 

𝑥𝑘
𝐿𝑡𝑘 ≤  𝑥𝑘 ≤  𝑥𝑘

𝑈𝑡𝑘     ∀𝑘 (9) 

𝑡𝑘 ∈ {0,1}     ∀𝑘  (10) 

 

where 𝑥𝑘
𝐿 and 𝑥𝑘

𝑈 denote the lower and upper limits of the feasible operating range for the 

production level of component unit 𝑘. 𝑡𝑘 is a binary variable indicating whether the component 

unit 𝑘 is operating (𝑡𝑘 = 1) or not (𝑡𝑘 = 0). Eq. (9) ensures that the component units only 

operate within their feasible ranges. 

This formulation is a MILP model, for which globally optimal solutions can be readily 

found for problems on the scale expected in practice. The next section provides a case study to 

illustrate the application of this model. 

CASE STUDY 

The proposed model is implemented using the commercial optimization software LINGO 

v20.0 [37] on a laptop equipped with an i7 CPU and 16 GB of RAM. Solutions for various 

case study scenarios were obtained in less than one second each. The LINGO model is available 

upon reasonable request. 

The model is illustrated through a case study of an IPRN shown in Figure 1. This network 

processes four types of plastic waste inputs: sorted polyethylene terephthalate (PET) plastics, 

single sorted plastics (SSP), mixed plastic waste containing oxygen (MPWcO), and mixed 

plastic waste without oxygen (MPWwO). Sorted PET wastes undergo methanolysis to 

chemically recycle them back into PET, while SSP is sent for mechanical recycling to recover 

usable plastics. MPWcO is processed through gasification, producing syngas that can be 

converted into methanol, hydrogen, and electricity. A portion of this syngas output is diverted 

to methanolysis and mechanical recycling processes as an alternative to natural gas for heating. 

MPWwO is processed via pyrolysis and hydrotreatment, yielding ethylene, propylene, and 

hydrocarbon (HC) fuels. The HC fuel is subsequently burned in a boiler to produce steam. 

Table 1 outlines the IPRN’s overall material and energy balances, net product output flow 

rates, and product prices. Product prices are based on published prices at the time of this study. 

The process and resource coefficients used in this study are based on data from existing techno-

economic analyses, also listed in Table 1.  
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Table 1. Process Data for the baseline case of the IPRN 

  
Methano 

lysis 

Meth – 

Elec Gen 

Mech 

Recy 

Hyd – 

Elec 

Gen 

Gasi Pyro Boiler Net Flow 

Rate 

Price  

[USD/kg or 

kWh] 

Inputs          

Chem recycled PET [kg/h] 1 0 0 0 0 0 0 833 1.4 

Methanol [kg/h] −0.18 1 0 0 0 0 0 4,843 0.4 

Recycled Plastics [kg/h] 0 0 1 0.0 0 0 0 6,667 0.2 

Hydrogen [kg/h] 0 0 0 1 0 −0.029 0 500 3.5 

Syngas [kg/h] −0.51 −2.4 −0.035 −14 1 0 0 0 - 

HC fuel [kg/h] 0 0 0 0.00 0 1 −0.08 748 1.4 

Ethylene [kg/h] 0 0 0 0.00 0 0.35 0 660 1.06 

Propylene [kg/h] 0 0 0 0.00 0 0.25 0 472 1.21 

Steam [kg/h] −10.4 0 0 −6 −0.11 0 1 0 - 

Electricity [kW] −0.79 1.9 −0.45 7.5 −0.21 −0.14 −0.01 5297 0.15 

Outputs          

Sorted PET [kg/h] 1.2 0 0 0 0 0 0 1,000 - 

SSP [kg/h] 0 0 1.2 0 0 0 0 8,000 - 

MPWcO [kg/h] 0 0 0 0 0.49 0 0 10,000 - 

MPWwO [kg/h] 0 0 0 0 0 5.3 0 10,000 - 

References [38] [39] [38] [39] [39] [40]    
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However, syngas was used to substitute for natural gas to meet heating demands. A 

substantially larger quantity of syngas was used since it has a lower heating value when 

compared to natural gas. Table 2 presents the baseline production levels and the feasible 

operating ranges for each component unit, which are assumed values for modelling purposes 

due to limited available data on precise operational limits. Under baseline conditions, the 

system processes 1,000 kg/h of sorted PET, 8,000 kg/h of SSP, 10,000 kg/h of MPWcO, and 

10,000 kg/h of MPWwO, resulting in an operating revenue of 9,299 USD/h. 

 

 
 

Figure 1. IPRN baseline case 

 
Table 2. Baseline and feasible operating ranges of the component units of IPRN 

 

Component Unit 

Baseline 

Operating 

Range [kg/h] 

Feasible Operating Ranges 

[kg/h] 

Methanolysis 833  667 – 833 (80%-100%) 

Methanol – Electricity Generation 4,993  2,996 – 4,993 (60%-100%) 

Mechanical Recycling 6,667  5,333 – 6,667 (80%-100%) 

Hydrogen – Electricity Generation 555  444 – 555 (80%-100%) 

Gasification 20,408  12,245 – 20,408 (60%-100%) 

Pyrolysis with Hydrotreatment 1,887  1,509 – 1,887 (80%-100%) 

Boiler 14,240  8,544 – 14,240 (60%-100%) 

 

Disruptions in plastic waste supply can occur due to various reasons. Supply chain issues 

like transportation delays can create these supply shortages. Consumer waste generation can 

also fluctuate due to seasonal changes, which further affect supply availability. Additionally, 

high levels of contamination in the collected plastic waste can even further reduce the usable 

supply [36]. This case study examines a disruption scenario where both MPWcO and MPWwO 

supplies decrease by 10%, dropping from 10,000 kg/h to 9,000 kg/h. An operational strategy 

is needed to maximize the operating profit despite the constraints imposed by this disruption. 

The initial analysis considers a scenario without input substitution. This is modelled by 

assigning the substitutability parameter 𝑆𝑖𝑗 to 1 when 𝑖 = 𝑗 and 0 if 𝑖 ≠ 𝑗. 

Solving the MILP model under these conditions yields a 9% decrease in operating revenue 

to 8,464 USD/h. Figure 2 illustrates the adjustments made across the system to sustain revenue 

as much as possible under these limitations. The figure also highlights that the reduced plastic 
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waste inputs prevent the complete processing of all other waste materials; approximately 200 

kg/h of waste PET remains unprocessed due to the constrained operating conditions. 

 

 
 

Figure 2. IPRN disrupted case without input substitution 

 

One way to increase the operating revenue during disruption is by rerouting certain plastic 

waste streams. Sorted PET and SSP can be redirected as substitutes for MPWcO in the 

gasification process. SSP can also be a substitute for MPWwO in pyrolysis. However, the 

mixed plastic wastes cannot replace sorted PET in chemical recycling or SSP in mechanical 

recycling due to the specificity of these processes. In particular, mechanical recycling 

necessitates a high-quality, well-sorted, and clean single-polymer stream. Current sorting 

technologies can produce only limited quantities of such streams, with most waste still ending 

up as mixed plastic [41]. Furthermore, plastics having high contamination (e.g., with food 

residues) or additives (e.g., fillers or pigments) can make them unappealing for mechanical 

recycling [42]. Additionally, certain plastic types, such as thermosets and multi-layered 

plastics, cannot be mechanically recycled. For these types of plastic waste, pyrolysis or 

gasification can be used. 

It is also important to note that sorted PET and MPWcO are not viable substitutes for 

MPWwO in pyrolysis, as the presence of oxygen in plastic waste inputs can reduce pyrolysis 

product yields [43]. In contrast, MPWwO can replace MPWcO in gasification. Nevertheless, 

the extent of substitution is limited to avoid significantly altering the quantity and quality of 

each component's products. Table 3 shows the substitutability parameters 𝑆𝑖𝑗  and the 

maximum fractional substitution limits 𝜎𝑚𝑎𝑥,𝑗. 

 
Table 3. Substitutability Parameters (𝑆𝑖𝑗) and maximum fractional substitution limits (𝜎𝑚𝑎𝑥,𝑗) 

 

  
Sorted 

PET 
SSP MPWcO MPWwO 

Sorted PET 1 0 1 0 

SSP 0 1 1 1 

MPWcO 0 0 1 0 

MPWwO 0 0 1 1 

𝜎𝑚𝑎𝑥,𝑗 10% 10% 10% 10% 
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The solution of the MILP model considering input substitution resulted in an operating 

revenue of 9,074 USD/h. This represents a significant improvement over the 8,464 USD/h 

revenue achieved without substitution. Figure 3 shows the operational adjustments under the 

disrupted conditions. This revenue increase is mainly attributed to rerouting Sorted PET and 

SSP to more profitable processes. The solution deprioritizes methanolysis which requires 

significant material input and mechanical recycling which produces lower-value products. 

Instead, it focuses on the more profitable operations including methanol generation, hydrogen 

generation, and pyrolysis. By strategically redirecting sorted PET and SSP to these high-value 

processes, the system achieves robust profitability even during supply shortage. Additionally, 

it enables complete processing of all plastic waste. This is unlike the previous scenario where 

some materials remained unused when input substitution is not considered. 

 
Figure 3. IPRN disrupted case with input substitution 

 

Table 4 summarizes the results of the case study. The supply of both MPWcO and 

MPWwO is assumed to drop by 10% under both disrupted conditions. Without input 

substitution, this disruption leads to a 9% decline in revenue. When input substitution is 

allowed, the decline is limited to only 2.4%. These findings demonstrate that rerouting certain 

waste streams can help IPRN minimize revenue losses when facing disruption from plastic 

waste supply shortages. The strategic rerouting identified by the MILP model, particularly 

diverting Sorted PET and SSP into gasification and pyrolysis, yielded a 6.6 percentage points 

of recovery in revenue. 

The primary strength of the model lies in its ability to leverage input flexibility to overcome 

specific input shortages. It achieves this by repurposing other available waste streams towards 

pathways that generate the highest revenue. In addition, it supports the full use of all available 

waste to produce valuable outputs, further increasing the revenue. This strategic adjustment, 

captured quantitatively through MILP optimization, helped turn potentially large losses into a 

more manageable decline in revenue. This highlights the practical value of the proposed model 

for enhancing operational robustness of IPRNs. 

 
Table 4. Summary of the Results 

 

  
Baseline 

Condition 

Disrupted 

without 

Substitution 

Disrupted 

with 

Substitution 

Revenue [USD/h] 9,299 8,464 9,074 

%Revenue Reduction − 9.0% 2.4% 
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CONCLUSION 

This study developed a novel MILP-based model to determine optimal operational 

adjustments for an IPRN during supply-related inoperability. It expands on previous models 

by relaxing the rigid assumption of the Leontief production function and allowing partial input 

substitution. The model's effectiveness was demonstrated through a case study where a 10% 

reduction in MPWcO and MPWwO supplies resulted in a 9% reduction in revenue when input 

substitution is not considered. This loss was reduced significantly to just 2.4% when input 

substitution is allowed. By strategically rerouting inputs to prioritize the most profitable 

components, the model significantly reduces the economic impact of supply disruptions. These 

results highlight the model’s practical value as a decision-support tool for enhancing the 

operational resilience of future plastic recycling networks. 

This study has several limitations that offer opportunities for further research. It assumes 

that material and energy balances remain fixed across all operating levels, and that product 

yields and qualities do not change with input substitution. Additionally, the model does not 

account for the time aspect of disruptions. Future work could address these limitations by 

exploring potential nonlinear relationships in material/energy flows, accounting for changes in 

the output due to substitution, and integrating dynamic modelling to capture how the network 

responds to disruptions over time. Advancing these areas will provide a more robust framework 

for adapting recycling networks to real-world fluctuations. 
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NOMENCLATURE 

Indices 

𝑖 raw plastic waste input prior substitution 

𝑗 plastic waste input after substitution 

𝑘 component unit 

𝑙 product stream 

Parameters 

𝐴𝑙𝑘 Process output/input of stream 𝑙 for component unit 𝑘 [kg or kWh / kg or kWh] 

𝐵𝑗𝑘 Resource input of material 𝑗 for component unit 𝑘 [kg/kg] 

𝑧𝑟𝑎𝑤,𝑖 Availability of raw plastic waste 𝑖 [kg/h] 

𝑐𝑙 Unit price of product 𝑙 [USD/kg or kWh] 

𝑆𝑖𝑗 Substitutability parameter of waste 𝑖 with waste 𝑗  

𝜎𝑚𝑎𝑥,𝑗 Maximum allowable fractional substitution for waste 𝑗  

M Arbitrarily large number [kg/h] 

𝑥𝑘
𝐿 Lower limit of the operating range for unit 𝑘 [kg/h] 

𝑥𝑘
𝑈 Upper limit of the operating range for unit 𝑘 [kg/h] 

Variables 

𝑥𝑘 Production level of component unit 𝑘 [kg/h] 
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𝑦𝑙 Net output flow rate of product 𝑙 [kg/h] or [kW] 

𝑧𝑖𝑛𝑝𝑢𝑡,𝑗 Quantity of plastic waste 𝑗 used as an input [kg/h] 

𝑧𝑖𝑗 Quantity of plastic waste 𝑖 used as substitute for plastic 

waste input 𝑗 

[kg/h] 

𝑡𝑘 Binary variable denoting if component 𝑘 is operating 

or not 

 

Abbreviations 

IPRN Integrated Plastics Recycling Network 

LP Linear Programming 

MILP Mixed-Integer Linear Programming 

IO Input-Output 

IIM Inoperability Input-Output Model 

FLP Fuzzy Linear Programming 

PET Polyethylene terephthalate 

MPWcO Mixed plastic waste containing oxygen 

MPWwO Mixed plastic waste without oxygen 

HC Hydrocarbon 
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