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ABSTRACT 
We are pleased to present the inaugural issue of the Journal of Sustainable Development of 
Smart Energy Networks, a platform dedicated to advancing research in energy systems powered 
by variable renewable energy sources. This highly interdisciplinary field is pivotal to the global 
transition toward a fully decarbonized energy paradigm. The development of smart energy 
networks requires the integration of diverse research disciplines, including energy engineering, 
control engineering, electrical engineering, environmental science, and social science. In this 
context, the Journal welcomes contributions that explore emerging technologies and their 
integration into innovative energy systems. A key challenge for future smart networks is the 
effective management of excess renewable energy production, which is essential for ensuring 
safe and robust system operation. Technologies such as Power-to-X (PtX), district heating and 
cooling systems, renewable energy communities, sector coupling, demand response strategies, 
the water-energy-food nexus, and advanced energy storage will play a central role in shaping 
these networks.  Moreover, further efforts are needed to promote building energy efficiency, 
HVAC systems, renewable electrical and thermal technologies, hydrogen, fuel cells, and 
sustainable transportation systems. These technologies are critical to achieving decarbonization 
targets.  The Journal also encourages contributions that examine circular economy principles 
and the social acceptability of smart energy networks, recognizing their importance in fostering 
sustainable and inclusive energy transitions. Through this Journal, we aim to cultivate a 
collaborative and forward-thinking research community dedicated to the sustainable 
development of next-generation energy networks. 
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Energy network, district heating and cooling, energy storage, renewables, buildings, energy 
efficiency. 

INTRODUCTION 
The global transition toward a fully decarbonized energy system is the key challenge for 

energy policymakers across most nations [1]. This urgent transition has been driven by the 
escalating impacts of climate change, primarily caused by anthropogenic greenhouse gas 
emissions. The persistent rise in Earth average temperature, coupled with increasingly frequent 
and severe climate-related events, underscores the necessity of moving away from the current 
fossil-fuel-dominated energy paradigm. The new model must be mandatory based on carbon 
neutrality, sustainability, and resilience [2, 3]. Achieving these goals requires a multifaceted 
approach, where the use renewable energy sources plays a pivotal role. Simultaneously, 
additional strategies must be also implemented to ensure a holistic and effective transition, 
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including: energy efficiency, electrification of end-use sectors, and emission reduction 
technologies [4].  

During the past few years, all the main players - academia, industry, and policymakers -
have made substantial progress in developing innovative technologies and frameworks aimed 
at promoting sustainable development. These technologies include: smart grid systems, energy 
storage solutions, low-carbon transportation, and building retrofits. Despite these 
advancements, the rate of change remains insufficient, as recently shown by the International 
Renewable Energy Agency (IRENA) [5]. IRENA highlights several priority areas [6] that 
require accelerated action: expansion of renewable energy capacity; electrification of transport, 
heating, and industrial processes; development of high-efficiency technologies; use of heat 
pumps and district heating systems; development and scaling of hydrogen technologies [7]. 

Among these, the development of smart renewable energy networks stands out as a 
particularly underdeveloped yet potentially transformative solution [8]. This topic is widely 
investigated in the open literature, presenting a plurality of solutions to improve efficiency, 
stability and robustness of these novel energy networks. In particular, the integration of novel 
Artificial Intelligence (AI) techniques and the design of novel smart energy networks is one of 
the most popular topics. Alhasnawi et al. [9] recently presented a comprehensive review 
exploring the relationship between smart grids and smart cities, addressing applications, 
challenges, and future prospects. The urgent need to improve the efficiency of these grids is 
driven by the fact that around 75 % of worldwide energy consumption is due to the population 
living in cities. This paper emphasizes the role of AI, machine learning, IoT, and renewable 
integration in tackling the “energy trilemma” of sustainability, security, and affordability. The 
paper highlights gaps in research, such as cyber-physical security and AI-based energy 
management systems, and calls for integrated strategies to enhance resilience, optimize urban 
energy use, and ensure sustainable urban development. Modern AI techniques are also explored 
by Biswal et al. [6], analysing the impact of the use of machine learning and deep learning 
techniques for load forecasting in smart grids, compared to the conventional forecasting 
methods. This comparison shows that the new techniques come with a significant improvement 
in terms of assessment robustness also enhancing grid stability and achieving a more accurate 
load forecasting. This topic was also recently analyzed by  Majidi et al.[10], presenting an 
extensive review of the available modeling tools, to be used in the analysis of smart energy 
networks, coupled with IoT and AI. It highlights the growing complexity of sector coupling, 
renewable variability, and distributed resources, emphasizing the need for adaptive, open-
source, and multi-energy optimization frameworks. The study provides a comparative analysis, 
identifying strengths and limitations of tools for policy, planning, and operational decision-
making in sustainable system transitions. 

AI techniques demonstrated also extremely promising results in the management of the 
time shift between renewable power production (mainly wind and solar) and user demand. In 
particular, such techniques were successfully implemented by many researchers in the 
framework of demand response (DR) strategies, where users may significantly contribute to 
grid stability and peak shaving. Huang et al. [11] categorized DR into four types—Price-Based 
(PBDR), Incentive-Based (IBDR), Integrated (IDR), and Multi-Region (MRDR). This study 
also points out that DR often suffers for incomplete information, which maybe due to  privacy 
constraints, communication failures, and data acquisition limitations. Here, some mitigation 
techniques  - including regression methods, generative models (VAE, GAN), reinforcement 
learning (RL), and distributed algorithms (ADMM, MARL) – may be implemented to limit the 
effect of incomplete information. A similar study was presented by Akhila et al. [12], analysing 
the use DR in smart grids, focusing on its impact on cost optimization, pollution reduction, 
mobility integration, and grid resilience. The study also presents advanced optimization and 
machine learning techniques, and proposes a resilience-enhancing framework. Results show 
that DR can reduce peak loads by up to 59.9%, CO₂ emissions by 10.28%, and improve outage 
survivability metrics. DR is also widely used for the optimization of electric vehicles (EV) 



Calise, F. 
Smart Energy Networks: a pathway for the energy transition 

Year 2025 
Volume 1, Issue 1, 1120626 

 

Journal of Sustainable Development of Smart Energy Networks 3 

mobility [13], buildings loads [14], HVAC [15] and industrial loads [16]. All these studies 
underscore the transformative potential of DR in modern energy networks, emphasizing the 
crucial role of the novel digital technologies. 

These novel digital technologies also showed huge potential in optimizing district heating 
and cooling (DHC) networks, used to deliver hot and chilled water to the users of a smart 
energy network. In this field, the most advanced technology is the 5th Generation DHC 
(5GDHC) which allows for bidirectional energy flows in the energy grids [17]. However, there 
is still an ongoing debate regarding the effective potential advantages of the 5GDHC vs the 
previous 4th generation DHC (4GDHC) [18], which is specifically designed for the integration 
with renewables and for maximizing the use of waste energy [19]. Zhou et al. [20] analyzed 
the use of machine learning techniques to optimize the operation of DHC networks, pointing 
out that advanced digital techniques are mainly used to optimize electrical systems, whereas 
their use for DHC is limited. They proposed a novel inter-city sharing energy system, using 
ML for energy planning and system optimization. Their approach showed important results in 
terms of demand prediction and energy dispatch. Nevertheless, some important challenges 
were identified in the availability of suitable energy storage systems and in the management of 
the energy congestion problem. A similar study was also conducted by Ahmed et al. [8] 
analyzing the use of ML for forecasting and optimizing purposes. This paper also outlines 
future research directions, including multi-agent systems, demand-side management, and 
resilient energy architectures for sustainable urban development. Lilliu et al. [21] present a 
systematic review of business and pricing models in DHC. This work identifies trends such as 
the dominance of heat pumps, hourly granularity, and mathematical optimization in model 
design. The paper highlights gaps in research, including the lack of models for district cooling, 
CHP systems, and non-European contexts. It calls for future work on machine learning-based 
models, peak shaving strategies, and multi-objective optimization to enhance flexibility, 
profitability, and environmental performance in DHC systems. In the framework of novel DHC 
networks, heat pumps (HP) are considered the most promising technology for providing space 
heating and cooling due to their ultra-high efficiency and to the possibility to be integrated with 
renewables and/or waste heat sources [22]. They can be powered by the electricity produced 
by renewables or even convert waste heat into cooling energy, for ultra-high conversion 
efficiency [23] and their effectiveness can be further increased by their integration with suitable 
thermal energy storage systems (TES) [24]. The use of HP is only one of the possible actions 
to be taken to reduce the building energy demand. The reduction of buildings energy 
consumption is one of the main goals of the future energy networks, also considering that 
buildings account for about 40 % of the overall energy consumption. Many actions can be 
implemented to this goal: improvement of buildings envelope [25–27], use of renewables [28], 
optimization of HVAC systems [29], use of optimized control systems, etc [30]. In this 
framework, in many EU Countries, the target to achieve net zero energy buildings [31] must 
be mandatorily achieved in case of new buildings or major refurbishment of existing buildings, 
whereas specific funding policies have been proposed for existing buildings [32, 33].   

The topic of energy storage is probably the most challenging one in the framework of novel 
smart energy networks. These future energy systems will be featured by unpredictable 
renewable energy sources (mainly wind and solar) and by extremely variable user energy load 
demands. In addition, the novel smart energy networks will be featured by bidirectional energy 
flows where the conventional players (producers and consumers) are replaced by a novel one, 
the so called prosumers, who might both inject or withdraw energy to/from the grid, depending 
on the time dependent energy balance [34–36]. In this framework, the development of novel, 
efficient, robust and reliable energy storage systems is crucial to achieve a safe operation of 
the grid, operating under bidirectional energy flows. This is particularly critical in case of 
electrical networks, where power quality, voltage stability and frequency stabilization are 
crucial issues [37]. In particular, it is well known that the storage of electricity is much more 
complex and challenging than the thermal energy storage [38]. Thermal energy storage is 
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commonly realized using sensible heat [39, 40], by varying the temperature of a fluid. However, 
to reduce the size of these storages [41], phase change materials (PCM) can be also used [42], 
whereas the use of reversible chemical processes is rare [43–45]. The most common electrical 
storage technology is based on the use of conventional electrochemical batteries [46]. Li-ion 
batteries offer the best performance in terms of energy density, response time and adaptability. 
Emerging technologies, such as vanadium redox flow batteries and sodium-sulfur batteries, are 
also available but they are far from a mature commercialization [47]. Electrochemical batteries 
are the reference technology for electrical storage for low-medium scale cases. However, their 
application for large scale (e.g. grid-scale) problems seems to be unfeasible. For grid-scale 
electrical storage several other technologies are under investigation. Gronman et al. [48] 
recently provided a comprehensive classification of these alternative technologies:  

• Gravity based systems: during the charge phase, some weight is lifted to higher 
elevations, whereas during the discharge phase its potential gravitational energy is 
converted to electricity. 

• Compression/expansion: during the charging phase a certain fluid (e.g. air or carbon 
dioxide) is compressed and stored in a vessel in gaseous or liquid form, whereas in 
the discharging phase the fluid is expanded to recover electricity [49]. 

• Power to power: during the charging phase the electricity is used to convert some 
fluid into a fuel (e.g. water is converted into hydrogen [50]via electrolysis[51]), in 
the discharging phase the fuel is used to produce electricity (e.g. by conventional 
engines or fuel cells) [51–56]. 

• Supercapacitors: devices featured by ultra fast response time, long life and small 
dimensions although presently unavailable for large capacities  [57]. 

• Hydro-pumping: in charging mode water is pumped to a high-level basin, whereas 
in discharging mode it operates as a conventional hydro power plant [58–61]. 

Additional novel systems (flywheels [62, 63], thermochemical, magnetic) are presently 
under investigation but extremely far from a long-term demonstration [64]. 

As previously mentioned, the optimal management of the phase shift between renewable 
energy production and user demand represents a key challenge for the robust development of 
future smart renewable energy networks. This issue becomes significantly more complex when 
renewable energy production is fragmented across a multitude of small-scale systems [65]. In 
this context, several innovative regulatory and technical frameworks have recently emerged to 
encourage the use and sharing of renewable energy. The most prominent model is the 
renewable energy community, in which a group of prosumers can share their locally generated 
renewable energy [66]. This approach aims to minimize both the excess energy fed into the 
grid and the electricity drawn from it [67]. This result is crucial in the view of the ongoing 
expansion of the electrical system due to the increasing installation of renewable power plants. 
Using this approach, long-distance transmission can be significantly limited, facilitating the 
management of the transmission infrastructure[68]. This scheme is presently adopted by EU 
Countries as a result of a EU Renewable Energy Directive (CEP4), introducing the concept of 
Renewable Energy Community (REC). However, each national regulatory approach presents 
some specific features, showing also some severe gaps. According to Lopez et al. [69], the 
majority of EU energy communities are found in Germany. Denmark, Netherlands and UK 
also show a non-negligible number of REC (ranging from 400 to 700). For most of the 
remaining EU Countries, the number of running REC is very low (lower than 50). This 
relatively slow development of REC paradigm is due to the need to completely change the 
electricity system value chain structure and the corresponding business model. A number of 
technical and regulatory barriers need to be addressed to promote the development of REC 
paradigm. Simultaneously, social acceptability of novel REC is still an open issue, since the 
majority of the players involved (citizens, social entrepreneurs, public authorities, public 
utilities, etc) are not familiar with this scheme. In particular, citizen active participation (also 
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including the development of a sense of community) has been identified as a key factor for the 
future success of REC [70].  Giannuzzo et al. [71] also pointed out that it is crucial to clearly 
identify the suitable Key Performance Indicators (KPI), to be used to evaluate the energy 
performance and the economic profitability of REC. In this study, authors clearly identified 
Energy, Economic, Environmental and Social KPI, also investigating their impact on the Sector 
Domain (stakeholders, policymakers, REC mem and REC). This multifaceted analysis allows 
one to capture the huge complexity of REC paradigm, also avoiding partial and restricted 
conclusions when considering only a specific aspect of REC. This point was also analyzed by 
Cavana et al. [72], presenting an extensive analysis of Italian REC. They found a lack of 
comparable data, with self-sufficiency ratios varying from 36 % to 84 %. They also emphasized 
that REC are driven only by economic aspects, whereas energy and environmental points of 
view are scarcely addressed, paying poor attention to possible energy saving measures or to 
the energy efficiency.  

Another strategy that is commonly investigated to improve grid stability and resilience 
consists in the integration of electric vehicles (EV) storage capacity within the grid, in the 
framework of the so-called vehicle to grid (V2G) paradigm [57]. In particular, the excess 
renewable production is injected into the EV, up to their maximum allowed state of charge. 
Conversely, when renewable power production is lower than users demand, EV can discharge 
the stored electricity to the grid. This easy strategy may dramatically improve grid stability, 
allowing one to artificially increase the overall storage capacity. Many companies are presently 
investing in V2G technology. Abdolrasol et al. [73] analyzed more than 2000 patents from 
2008 to 2025 in this field, also identifying real-world implementations (e.g., Ford, Nissan, 
Nuvve) to validate the commercial relevance of patented technologies. The paper underscores 
the importance of standardization, cybersecurity, and interdisciplinary collaboration for future 
V2G deployment. On the other hand, V2G has still to overcome severe barriers (grid overload, 
lack of standards, user behavior) to get a stable operation. To this scope, standardization is a 
crucial issue to obtain a safe and resilient operation [74]. Several studies also show that V2G 
may be significantly enhanced by the use of fuel cells [75] and AI technologies [76, 77].  

Finally, it is also extremely important to point out that future energy networks must 
mandatorily consider the close relationship between energy and water, specially for remote 
communities like islands. It is commonly recognized that freshwater scarcity will become the 
most challenging issue during the next decades [78, 79]. Considering that the artificial 
production of freshwater requires huge amounts of energy, the integration of this process in 
energy networks is crucial for achieving a robust and resilient system. Several studies are 
available in the open literature, analyzing different aspects of the so called water-energy nexus 
(in some cases water-energy-food nexus or energy-food nexus), paying attention to the impacts 
on ecosystems, human health, and sustainability. Javan et al. [80] identified a loop (energy 
emissions,  climate change, water scarcity) responsible for the water scarcity. Authors 
recommended integrated governance, AI-driven tools, and renewable energy adoption to 
address water issue. Unfortunately, a huge research effort must still be performed to quantify 
the water-energy-food nexus and to design the actions to optimize their integration. Li et al. 
[81] showed that the majority of the studies providing quantification of resource interactions 
in water-energy-food nexus dramatically suffers for data limitations, methodological 
misalignments, and geographic biases. Similar results are obtained by Bamgboye et al. [82] 
AIM AND SCOPE 

The Journal aims at establishing an open platform for the dissemination of research findings 
in the field of design of resilient and robust energy networks powered by variable renewable 
energy sources (wind, solar, etc). Novel paradigms, based on advanced and smart energy storage 
systems, demand-response strategies, and sector coupling, are crucial topics to be addressed. In 
this framework, the Journal is open to accept papers discussing the recent innovations regarding 
the technologies and strategies allowing one to improve grid balance. Here, Power-to-X (PtX) 
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technologies play a relevant role in grid balancing, energy storage and the water-energy nexus. 
PtX technologies offer a pathway to convert excess renewable energy, which might otherwise be 
wasted, into storable and versatile forms such as hydrogen, synthetic fuels, heat, and water, 
thereby contributing to grid stability and increased system flexibility. Similarly, novel and 
advanced renewable technologies, suitable for their integration in the future energy networks, will 
be analysed and discussed to assess their future technical and economic feasibility. On the user 
side, the Journal is open to discuss all the technologies and strategies to reduce user energy 
consumption and to mitigate the phase shift between renewable production and user demand. 
Special attention will be paid to the user demands for space heating and cooling, analyzing in 
detail the possible technologies to be implemented to improve energy efficiency in buildings, such 
as: heat pumps, refurbishment of building envelope, the integration of electric heavy and light 
vehicles, etc. 

The Journal welcomes papers dealing with topics related to renewable energy networks, 
including but not limited to: 

• Dynamic simulations of energy systems 
• Building dynamic simulation 
• Energy efficiency in buildings 
• HVAC systems 
• 4th and 5th generation district heating and cooling networks 
• Power-to-X Technologies and Applications 
• Net-Zero Energy City 
• Power-to-Water and Water-Energy nexus 
• Vehicles to Grid 
• Sector Coupling and Decarbonization 
• Demand-Response Strategies 
• Hydrogen and Fuel Cells 
• Waste-to-Energy paradigm 
• Sustainable Mobility: e-fuels, biofuels, and electric vehicles. 
• Novel technologies for managing the excess of electric and thermal energy 
• Innovative Renewable Energy Systems: Solar, wind, geothermal, biomass, 

hydropower, etc. 
• Novel technologies for advanced electric and thermal energy storage 
• Advanced control strategies for energy systems 
• Renewable energy communities 
• Biocircular economy approach 

CONCLUSIONS 
The development of resilient, robust, and efficient energy networks powered by variable 

renewable energy sources represents a key challenge in the transition toward a fully decarbonized 
energy scenario. A growing number of researchers are actively contributing to this field, 
developing innovative technologies aimed at enhancing the integration of renewable energy 
sources into existing energy infrastructures. Several promising innovations are already available, 
and many more are expected to emerge in the coming years. In this context, the Journal of 
Sustainable Development of Smart Energy Networks seeks to provide a dedicated platform for 
discussing recent advancements, analyzing cutting-edge technologies, and exploring their 
integration into novel energy systems.  The Journal publishes high-quality research papers that 
present both numerical and experimental analyses of advanced technologies and systems. Authors 
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are encouraged to address economic, social, and environmental dimensions, which are essential 
for enabling the widespread commercialization and adoption of these technologies. The Journal 
is supported by an outstanding editorial board composed of internationally recognized experts 
whose research and editorial expertise span the diverse disciplines involved in the development 
of smart and sustainable energy networks. A rigorous peer-review process will be ensured, and 
the Journal will follow an open-access publishing model to promote broad dissemination of 
research findings.  Our goal is to attract high-quality contributions and establish the Journal as an 
internationally recognized platform for scholarly discussion in the field of renewable energy 
networks. 
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