FSB IOO

Energy System Modeling in the INTERENERGY project: H2RES model.

100 godina Fakulteta strojarstva i brodogradnje Sveučilišta u Zagrebu

100 Years of Faculty of Mechanical Engineering and Naval Architecture University of Zagreb

<u>Felipe Feijoo^{1,2}</u>, Antun Pfeifer¹, Luka Herc¹, Neven Duić¹

¹ University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture, Zagreb, Croatia.

STUDIORUM STUDIO STUDIORUM ² Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile.

December 21, 2021

The INTERENERGY project

100 godina Fakulteta strojarstva i brodogradnje Sveučilišta u Zagrebu

100 Years of Faculty of Mechanical Engineering and Naval Architecture University of Zagreb

- INTERENERGY: Investigating energy transitions pathways Interrelation between power-to-X, demand response and market coupling.
- Main goals of the project
 - ✓ Optimal mix between Power-to-X and demand response technologies.
 - ✓ Provide comprehensive knowledge about these technologies and their opportunities on emerging markets
 - Provide an environment well suited to the education of new generation of researchers
- To achieve these objectives we,
 - ✓ Develop a bottom-up model which allows for consideration of several types of technologies with different techno/economic characteristics.
 - \checkmark Free and open sources for researchers to use.

The INTERENERGY project

100 godina Fakulteta strojarstva i brodogradnje Sveučilišta u Zagrebu

100 Years of Faculty of Mechanical Engineering and Naval Architecture University of Zagreb

The H2RES model, we develop and propose:

- ✓ A linear program optimization model.
- ✓ A Long-term energy capacity investment model with hourly dispatch resolution.
- ✓ A model that provides the "cheapest" mix of technologies (transition) to supply the energy demand from different sectors.
- The H2RES model optimizes the mix of technologies and provides the optimal:
 - ✓ Size or capacities (investment of different technologies and power plants)
 - \checkmark Dispatch of such technologies
 - ✓ Transformation of energy carriers
 - ✓ Storage levels
 - ✓ Critical Excess of Electricity Production (CEEP)
 - ✓ Other
- The optimization is done to comply with different policy options, including limits on CEEP, penetration of RES, limits on CO₂ emissions from different sectors, others.

100 godina Fakulteta strojarstva i brodogradnje Sveučilišta u Zagrebu

100 Years of Faculty of Mechanical Engineering and Naval Architecture University of Zagreb

The H2RES model: Heating sector and Power-to-Heat

- ✓ The heating sector considers District Heating (DH) demand sectors (no limit) and individual space heating demand.
- ✓ DH demand sectors may (or not) have a CHP (different fuels) plant and heat storage.
- ✓ Both DH sectors and individual heat demand ban be supplied by traditional boilers and electric heating (different heat-pump technologies and boilers).

100 Years of Faculty of Mechanical Engineering and Naval Architecture University of Zagreb

The H2RES model: Heating sector and Power-to-Heat

Constraints include:

Primary

fuels

Heat network storage size, supply = demand, heat storage for individual heating (electric heating), fuel prices for traditional boilers, investments in capacity for each DH area and individual heating, among others

100 godina Fakulteta strojarstva i brodogradnje Sveučilišta u Zagrebu

100 Years of Faculty of Mechanical Engineering and Naval Architecture University of Zagreb

The H2RES model: Industry sector

- ✓ The model considers a profile for energy demand in industry. Different industries are grouped as a single demand; however, it is possible to desegregate.
- ✓ Fuel utilization to satisfy the demand level follows a "logit function" approach rather than a purely cost approach.
- \checkmark H2 is used to decarbonize the industry sector (we can include electricity, WIP)

100 godina Fakulteta

Sveučilišta u Zagrebu

100 Years of Faculty of Mechanical Engineering

and Naval Architecture University of Zagreb

Methods: The H2RES model

$$\frac{S_i}{S_j} = \frac{\alpha_i}{\alpha_j} \ e^{\left[\beta(p_i - p_j)\right]}$$

InterSnergy

100 godina Fakulteta strojarstva i brodogradnje Sveučilišta u Zagrebu

100 Years of Faculty of Mechanical Engineering and Naval Architecture University of Zagreb

The **H2RES** model: Power to Hydrogen and Power (H2) to Power

- \checkmark H2 can be produced from different electrolyzer technologies.
- ✓ H2RES considers a single H2 storage (optimized) which serves different demands
- ✓ Feedback loop (power to power) with fuel cell technologies
- \checkmark H2 base load and transformation of Industry and transport (WIP) sectors

100 godina Fakulteta strojarstva i brodogradnje Sveučilišta u Zagrebu

100 Years of Faculty of Mechanical Engineering and Naval Architecture University of Zagreb

The H2RES model: Electricity storage and Power to EV (transport)

- The model allows for endogenous investments in stationary storage (electricity and H2)
- ✓ The transport sector, via EV, provides variable storages depending on profiles of EV availability and their energy consumption.
- ✓ We follow similar assumptions than the EnergyPlan model.

ESMAP

SOLAR RESOURCE MA

CROATIA

PHOTOVOLTAIC POWER POTENTIAL

100 godina Fakulteta strojarstva i brodogradnje Sveučilišta u Zagrebu

100 Years of Faculty of Mechanical Engineering and Naval Architecture University of Zagreb

The H2RES model: Power Sector

- ✓ Dispatchable and non-dispatchable units.
- ✓ Users define the level of aggregation.
- ✓ Multiple zones for non-dispatchable units, particularly important for wind and solar.
- Capacity investment for existing and new units, considering the potential for different technologies.
- ✓ Decommission and obsolesce rates are considered for all power plants.

100 godina Fakulteta strojarstva i brodogradnje Sveučilišta u Zagrebu

100 Years of Faculty of Mechanical Engineering and Naval Architecture University of Zagreb

The H2RES model: Power Sector - Hydro sources

✓ H2RES considers HDAM and HPHS

Natural inflows

 \checkmark

- \checkmark Hydro plants are optimized as a dispatchable unit
- ✓ H2RES considers investments in the generator turbines only (not storage)

100 godina Fakulteta strojarstva i brodogradnje Sveučilišta u Zagrebu

100 Years of Faculty of Mechanical Engineering and Naval Architecture University of Zagreb

exponential decay left-over to account for share of technologies that will remain.

H2RES models the decommission for all technologies and power plants. We follow an

The H2RES model: Decommission of technologies

- Assume 100 MW installed at the beginning of horizon
- 100 additional MW each model year
- ** Lifetime of 20 years but technology starts failing after 10 years
- Remaining capacity of 10%

TOTAL CAPACITY BY VINTAGE

■ Init Cap ■ vintage 2025 ■ vintage 2030 ■ vintage 2035 ■ vintage 2040 ■ vintage 2045 ■ vintage 2050

H2RES: Interface and structure

100 godina Fakulteta strojarstva i brodogradnje Sveučilišta u Zagrebu
100 Years of Faculty of Mechanical Engineering and Naval Architecture

University of Zagreb

 \checkmark

- H2RES is written in Python. **Basic** knowledge of Python is needed to use H2RES
- H2RES is solved using the **GUROBI** solver.
 Both Python and GUROBI are free, making
 H2RES freely available to the community.
- Computational time depends on the size of the scenario.
- Test runs, considering hourly dispatch choices, from 2020 to 2050 (5 years time intervals), are solved in 45-90 min (scenario based). Single year simulations are solved in approximately 5 minutes.

H2RES: Interface and structure

100 godina Fakulteta strojarstva i brodogradnje Sveučilišta u Zagrebu Main run file:

100 Years of Faculty of Mechanical Engineering and Naval Architecture University of Zagreb ✓ Main.py: Main script used to set the scenario characteristics and run H2RES.

- "scen" defines the scenario name
- ✓ Set of Boolean indicators for different policy options
- RES targets, CO2 limits, carbon prices, CEEP limits, import prices, Net present values, technology change (learning), etc.
- \checkmark Directories to the input files

main.py	read_process_data.py	K Build_model_e	v.py $ imes$ export_plot_ev.py $ imes$	combine_plot.py × co	mbine_plot2.py
4					
5	@author: felip	e feijoo			
6	nun -				
7	#%%				
8	#MAIN				
9	****	*******	*******	************	########
10	******	########SE	NARIO NAME and s	ingle paramete	rs######
11	*****	********	***************	**********	******
12	scen = 'Scenar'	io_Name'			
13	rps_inv	= True	# Options: Tru	e / False	
14	carbonLimit	= True	# Options: Tru	e / False	
15	nyaro_storage	= True	# Options: Tru	e / False	
10	exports_dat	= Faise	# Options: Tru	e / False	
10	save_csv	= True	# Options: Tru	e / False	
19	NoResToHeatToy	- False	# Options: True	e / Falco	
20	Nokestoneacinv	- 18136		= / 10136	
21	#General Param	enters			
22	resolution	= 'hour'	# Options -> '	nour'. 'dailv'	
23	rps	= list([0.5. 0.7. 0.81)	···· , ····	
24	NPV	= list([1, 0.621, 0.386])	
25	TechChangeSola	r = list([1, 0.95, 0.9])	я¢	
26	TechChangeWind	= list([1, 0.95, 0.9])		
27	CO2_limit	= list([3660497*0.5,3660	497*0.4,366049	7*0.3])
28	reserve	= 1	# Reserve cap	acity = reser	ve * dem
29	carbon_price	= 0	# Carbon price	e in \$/tCO2	
30	ceep_parameter	= 0.05	# % of demand	used as an up	per boun
31	Import_Price	= 45	# \$/MWh		
32	ev_heat_cost	= 25	# Vehicle to	grid cost	
33					
####### ### GEI ######	NCO/Demand data (e	######################################	######################################	######################################	########## ########### #############
genco_o	dat =	'./data/gen	co_data_HR_sdewes.c	sv'	
demand	_dat =	'./data/dem	and_2020_2050_sdewe	s.csv'	
	TCA dat -	,/aata/tue	L COST 2020 2050 Sd	ewes.csv	

= './data/scaled_inflows_HR_2020_2050_sdewes.csv'

= './data/cooling_demand_HR_2020_2050_sdewes.csv'

= './data/import export HR 2020 2050 sdewes.csv'

= './data/heat_demand_HR_2020_2050_sdewes.csv'

= './data/demand_H2_2020_2050_sdewes.csv' = './data/flex tech HR 2020 2050 sdewes.xlsx'

= './data/ev_transp_load.csv'

inflows_dat

import export

h2_demand_dat

flex_tech_dat

heat_demand_dat

cooling_demand_dat

ev transpload dat

New H2RES Interface

New interface

100 godina Fakulteta strojarstva i brodogradnje Sveučilišta u Zagrebu 100 Years of Faculty of

100 Years of Faculty of Mechanical Engineering and Naval Architecture University of Zagreb

 \checkmark

4

- JAVA application tested on Windows machines.
- Input files-data and visualization of results.

✓ To be released in January on www.h2res.org.

									-	\square \times	🛃 H2RES										_	
H2RES											H2RES											
		Energy system modelling software Version 1.0.0										Energy system modelling software										rsion 1.0.0
in program											Home Run program											
Scenario par	rameters Confirmation	s Confirmation Results Help Excel files Scenario parameters Confirmation Results Help																				
he Base Initial year 2020 ▼ Final year 2050 ▼									Load data	Base												
							2040	2045			C	Data		Val				Parameter				
											genco_dat		geno	genco_data_HR_sdewes.csv			rps_inv		True			
nLimit		CO2_Limit									demand_dat fuel price dat		dem fuel	demand_2020_2050_sdewes.csv fuel_cost_2020_2050_sdewes.csv ncre_aval_factor_HR_2020_2050_sdewe				t	True True True			
ts dat		Carbon price			60		80				avl_factor_plant_da	at										
ctorada	True			0.79	0.61	0.40	0.20		0.22		inflows_dat		scale	scaled_inflows_HR_2020_2050_sdewes			exports_dat		True			
storage						0.40					heat_demand_dat		heat	heat_demand_HR_2020_2050_sdewes heat_demand_HR_2020_2050_sdewes.c cooling_demand_HR_2020_2050_sdewe								
		TechChangeSolar					0.7				cooling_demand_c	dat										
		TechChangeWind									· · · · · · · · · · · · · · · · · · ·											
		ThermalDecomInd									Parameter					2040	2045	2050	1			
		HeatPumpDecomI									rps 0.4							1				
ryReserve		ThermalDecomDH									CO2_Limit						00	100				
dan/Peren/e	True	StaStoDecomInd									npv 1				0.48			0.23				
uaryiteserve											TechChangeS 1							0.5				
t price	45										TechChange 1									* All cell	s needs to be filled	
Chucc											HeatPumpD 1			0.3								
rice_inc	0.05																					
parameter											* if you want to ch	ange any valu	ue just change i	it at the corresp	ondant tab and	load the data ag	jain					

H2RES: Interface and structure

100 godina Fakulteta strojarstva i brodogradnje Sveučilišta u Zagrebu

100 Years of Faculty of Mechanical Engineering and Naval Architecture University of Zagreb https://github.com/h2res/H2RES

https://h2res.org/about-h2res/

100 godina Fakulteta strojarstva i brodogradnje Sveučilišta u Zagrebu

100 Years of Faculty of Mechanical Engineering and Naval Architecture University of Zagreb

THANK YOU FOR YOUR ATTENTION!

Felipe Feijoo, Ph.D. felipe.feijoo@fsb.hr / felipe.feijoo@pucv.cl

With Antun Pfeifer, Luka Herc, and Neven Duić.

This work has received support and funding by the Croatian Science Foundation through the project IP-2019-04-9482 INTERENERGY.

H2RES

- The Linear Program provides the "cheapest" mix of technologies that satisfy a demand
 - Size/capacities
 - Dispatch
- Variables to optimize: New investment of technologies, dispatch, transformation of energy, storage levels, Critical Excess of Energy (CEEP).
- The model is built in PYTHON and uses GUROBI to find the optimal solution.
 - For instance: How much Solar and Wind capacity (without any power-to-x option) is required to achieve a 50% reduction of emissions?
 - And if we want to guarantee a CEEP threshold? And if we want reduce curtailed energy? On top of this, we want a cheap solution?... If we find a configuration, can we do it cheaper? (what is the cheapest!?).
 - Different policy options: % of RES and/or Reduction of Emissions, CEEP limits. These are defined in a yearly based (different targets for different years)

INTERENERGY MODEL: Generation constraints

100 godina Fakulteta strojarstva i brodogradnje Sveučilišta u Zagrebu

100 Years of Faculty of Mechanical Engineering and Naval Architecture University of Zagreb

$$\begin{split} & \textit{minGen}_{i} * \textit{committed}_{i,t,y} \leq \textit{generation}_{i,t,y} \leq \textit{maxGen}_{i} * \textit{avlFactor}_{i,t,y} * \textit{committed}_{i,t,y} \\ & \textit{RESgeneration}_{i,t,y} = \left(\textit{maxGen}_{i} + \sum_{y^{'} \leq y} \textit{capInv}_{i,y^{'}} \right) * \textit{avlFactor}_{i,t,y} \end{split}$$

 $\forall t, y, i \in Dispatch$

 $\forall t, y, i \in ResUnits$

 $t, i \in RES$

$$RESgeneration_{i,t,y} = REStoPower_{i,t,y} + REStoHeat_{i,t,y}$$

 $\forall t, y, i \in ResUnits$

INTERENERGY MODEL: Demand balance and CEEP constraints

$$\sum_{i} generation_{i,t,y} + import_{t,y} + evOut_{t,y} = Demand_{t,y} + CEEP_{t,y} + Exp_{t,y} + evIn_{t,y} \qquad \forall t, y$$

$$\sum_{t} CEEP_{t,y} \le CEEPLimit * \sum_{t} Demand_{t,y} \qquad \forall y$$

$$\sum_{t \in RES} generation_{i,t,y} \ge RPS_y * \sum_{t} Demand_{t,y} \qquad \forall y$$

$$\sum_{i} maxGen_{i} * avlFactor_{i,t,y} * committed_{i,t,y} + import_{t,y} \ge Reserve * Demand_{t,y} \qquad \forall t, y \in I_{i,t,y}$$

100 godina Fakulteta

Methods: The H2RES model

INTERENERGY MODEL: Power to heat

strojarstva i brodogradnje $\sum_{h} HeatPumpOut_{h,t,u} \leq COP * \sum_{i \in ResUnits} REStoHeat_{i,t,y}$ Sveučilišta u Zagrebu $\forall t, y$ 100 Years of Faculty of Mechanical Engineering and Naval Architecture University of Zagreb $HeatPumpOut_{h,t,y} \leq MaxHeatPumpCap_h + \sum_{y' \in Y} HeatPumpCapInv_{h,y'}$ $\forall h, t, y$ ∀h,t,y $HeatInput_{h,t,v} * CHPPowerToHeat_h \leq generation_{h,t,v}$ $generation_{h,t,y} \leq maxGen_h * avlFactor_{i,t,y}$ - $HeatInput_{h,t,y} * CHPPowerLossFactor_h$ $\forall h, t, y$ $HeatStorageSOC_{h,t,v} = HeatStorageSOC_{h,t-1,v} + HeatInput_{h,t,v} - HeatOut_{h,t,v}$ ∀h,t,y $HeatStorageSOC_{h,t,v} \leq HeatStorageMAX_{h,v}$ $\forall h, t, y$ $HeatOut_{h,t,v} \leq CHPMaxHeat_h$ $\forall h, t, y$ $HeatOut_{h,t,y} + HeatPumpOut_{h,t,y} + HeatSlack_{h,t,y} = HeatDemand_{h,t,y}$ $\forall h, t, y$

INTERENERGY MODEL: Hydro constraints

Heat pump/Boilers

Combined heat

And power (CHP)