Under the patronage of:

Journal Metrics


Impact factor (2022): 2.1

4.9
2022CiteScore
 
78th percentile
Powered by  Scopus


More about CiteScore


Impact Factor (IF) (2022): 2.1


Source Normalized Impact per Paper (SNIP): 0.532


SCImago Journal Rank (SJR): 0.42

 
 

Multicomponent Modelling Kinetics and Simultaneous Thermal Analysis of Apricot Kernel Shell Pyrolysis

Original scientific paper

Journal of Sustainable Development of Energy, Water and Environment Systems
Volume 8, Issue 4, pp 766-787
DOI: https://doi.org/10.13044/j.sdewes.d7.0307
Nebojša G. Manić1 , Bojan B. Janković2, Vladimir M. Dodevski3, Dragoslava D. Stojiljković4, Vladimir V. Jovanović4
1 Faculty of Mechanical Engineering, Fuel and Combustion Laboratory, University of Belgrade, Kraljice Marije 16, P.O. Box 35, 11120 Belgrade, Serbia
2 Institute of Nuclear Sciences “Vinča”, Laboratory for Physical Chemistry, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia
3 Institute of Nuclear Sciences “Vinča”, Laboratory for Materials Sciences, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia
4 Faculty of Mechanical Engineering, Fuel and Combustion Laboratory, University of Belgrade, Kraljice Marije 16, P.O. Box 35, 11120 Belgrade, Serbia

Abstract

Apricot kernel shells are naturally available source of biomass with potential for conversion to clean energy through a thermo-chemical process such as pyrolysis. To facilitate further process development, an advanced mathematical model which represents the process kinetics is developed and validated on the thermal decomposition studies using simultaneous thermal analysis, over a temperature range of 30-900 °C, at four heating rates of 5, 10, 15 and 20 °C min−1, under argon atmosphere. Model-free analysis and numerically developed methods were utilized for determination of effective activation energies, pre-exponential factors and the fractional contribution. A novel approach is introduced in order to determine actual pseudo-components of studied biomass that are included in its composition. The comparative study of the obtained kinetic results was also presented. The results obtained strongly indicated that the pseudo-component reaction modelling method could be employed to predict the experimental devolatilization rate and biomass composition with a high likelihood of success.

Keywords: Fruit-based biomass, Pseudo-component, Kinetics, Model, Pyrolysis, Thermogravimetric analysis.

Creative Commons License
Views (in 2023): 264 | Downloads (in 2023): 135
Total views: 2678 | Total downloads: 1331

DBG