Under the patronage of:

Journal Metrics


CiteScore: 2.8


More about CiteScore


Source Normalized Impact per Paper (SNIP): 0.579


SCImago Journal Rank (SJR): 0.4

 
SCImago Journal & Country Rank
 

The Effects of Salt Concentration on the Rejection of Pharmaceutically Active Compounds by Nanofiltration Membranes

Original scientific paper

Journal of Sustainable Development of Energy, Water and Environment Systems
ARTICLE IN PRESS (volume and issue assigned later), 1080356
DOI: http://dx.doi.org/10.13044/j.sdewes.d8.0356
Hadi M. Kabbani1, Mahmoud Al-Hindi1 , George M. Ayoub2, Mohammad N. Ahmad1
1 Bahaa and Walid Bassatne Department of Chemical Engineering and Advanced Energy American University of Beirut, Beirut, Lebanon
2 Department of Civil and Environmental Engineering American University of Beirut, Beirut, Lebanon

Abstract

While traces of pharmaceuticals have been found in the environment, the pharmaceutical industry produces waste streams high in pharmaceutically active compounds concentration along with other components such as salts. This work investigated the removal of three common pharmaceuticals, carbamazepine, ibuprofen, and diclofenac, at concentrations found in the pharmaceutical industry, under different monovalent salt concentrations of sodium chloride using a commercially available nanofiltration membrane. The influence of a monovalent salt concentration and temperature on the removal were determined. Pharmaceutical rejection was found to be dependent on the compounds’ molecular weights, charge, and hydrophobicity. Diclofenac and ibuprofen rejections were found to be high (90-99%) and (85-96%) respectively, and the rejection increased with increasing salt concentration. Meanwhile, moderate retention values were found for the neutral carbamazepine (65-77%) and these values decreased with increasing salt concentration, and also decreased with increasing temperatures. A threshold salt concentration was found at which these effects were buffered or even reversed.

Keywords: Membranes, Nanofiltration, Pharmaceuticals, Environment, Salt, Temperature.

Creative Commons License
Views (in 2020): 161 | Downloads (in 2020): 71
Total views: 161 | Total downloads: 71

DBG